Satistical Inferencell: The Principles of Interval Estimation and Hypothesis Testing

5. Hypothesis Tests About the Mean of a Normal Population When & is Not
Known

In Section 3 we used the t-distribution as a basis for confidence interval estimation for the mean of a
normal population when the population variance o is not known. Similarly, when testing hypothesis, if

o’ isnot known, we use a t-statistic. From (3.5) we know that

_b-B _
t - 6—/—\/'? t(T—l) (51)
When testing the null hypothesis H,, : 3 =c against the alternative hypothesis H, : 3 # ¢ thetest statistic
_b-c
t= 6—/—\/'? -~ t(T—l) (52)

if the null hypothesis is true. Following the same logic as in Section 4, wergject Ho: B = cif [t| > t_, or if
the p-value is less than the level of significance a. The rejection rules and critical values from the t-

distribution are shown in Figure 4.
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Figure 4 Rgection region for testing H,:B=c against H,;:f#c

(5.1) An Empirical Example of a Two-Tailed Test

Let us illustrate by testing the null hypothesis that the population hip size is 16 inches, against the
aternative that it is not, using the hip data. We will follow the steps outlined in the testing format
suggested in Section 4.

1. Thenull hypothesisis Ho: B = 16. Thealternative hypothesisis Hy: 3 # 16.
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2. Thetest statistic t = try if the null hypothesisistrue.

b-16 _

&/\T

3. Let us sdlect 0=.05. The critical value t. is 2.01 for a t-distribution with (T-1) = 49 degrees of
freedom. Thus we will rgect the null hypothesis in favor of the alternative if t>2.01ort<-2.01, or
equivalently , if [t|=2.01

4. Using the hip data, the least squares estimate of 3 is b = 17.158, with estimated variance 6% =3.267,

17.158-16

1.807//50

5. Conclusion: Sincet=4.531 > t.=2.01 wergject the null hypothesis. The sample information we have

so 6 =1.807. Thevalue of thetest statisticis t = =4531.

is incompatible with the hypothesis that 3 = 16, or, that the population mean hip size is 16 inches.
Equivalently, for this test the p-value is p=.000038 < a=.05 and on this basis we regject the null
hypothesis.

(5.2) A Relationship Between Hypothesis Testing and Interval Estimation

There is an algebraic relationship between two-tailed hypothesis tests and confidence interval estimates
that is sometimes useful. Suppose that we are testing the null hypothesis H, : 3 =c against the dternative
H,:B#c. If wefail toregect the null hypothesis at the o level of significance, then the value c will fall
within a (1-a)x100% confidence interval estimate of 3. Conversdly, if wergect the null hypothesis, then
c will fall outside the (1-a)x100% confidence interval estimate of B. This algebraic relationship is true

because we fail to regect the null hypothesiswhen —t, <t <t_, or when

b-c
-1. < <t
C A/ [T C
which, when rearranged becomes
o o
b-t.—<c<b+t.—
JT JT

The endpoints of thisinterval are the same as the endpoints of a (1-a)x100% confidence interval estimate

of B. Thus for any value of ¢ within the interval we do not rgject H,:B=c against the alternative
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H,:B#c. For any value of c outside the interval we reject H,:B=c and accept the alternative
H :B#c.

This relationship can be handy if you are given only a confidence interval and want to determine what
the outcome of a two-tailed test would be. You can verify that the test statistics zin Table 4 lead us to
regject the null hypothesis for the same samples in Table 2 which do not contain the value 3 = 10.

We have two comments about this relationship between interval estimation and hypothesis testing:

1. Thereationship is between confidence intervals and two-tailed tests. It does not apply to one-tailed
tests.

2. A confidence interval is an estimation tool; that is, it is an interval estimator. A hypothesis test about
one or more parameters is a completely separate form of inference, with the only connection being
that the test statistic incorporates theleast squaresestimator. To test hypothesesyou should carry out
the steps outlined in Section 4 and should not compute and report an interval estimate.

(5.3) One-Tailed Tests

We have focused so far on testing hypotheses of theform Ho: B = ¢ against the alternative Hy: B # ¢. This
kind of test is called a two-tailed test since portions of the rgection region are found in both tails of the
test statistic's distribution. One-tailed tests are used to test Ho: 3 = ¢ against the alternative Hy: B > ¢, or
Hi:B<c

The logic of one-tailed tests is identical to that for the two-tailed tests that we have studied. The test
statitic is the same, and given by (5.2). What is different is the selection of the rgection region and the
computation of the p-values. For example, totest Ho: B = ¢ against the alternative Hy: B > ¢ we sdlect the
rejection region to be values of the test statistic t that support the alternative hypothesis and which are
unlikely if the null hypothesis is true. Large values of the t-statistic are unlikely if the null hypothesis is
true. We define the rejection region to be values of t greater than a critical value t., from a t-distribution

with T-1 degrees of freedom, such that P(t>t,) = a, where a is the level of significance of the test and
the probability of a Typel error. SeeFigure 5 below.
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Figure5 Critical Valuefor One-Tailed Test Ho: B=cvs. Hi: B>c¢

Thedecision rule for this one-tailed test is, “Reject Ho: B = ¢ and accept the dternative Hy: B> cif t > t..”
If t <t. then we do not rgect the null hypothesis.

Computation of the p-value is similarly confined to one tail of the distribution of the test statistic,
though its interpretation is exactly as before. For testing Ho: 3 = ¢ against the alternative Hy: 3 > ¢ the p-
value is computed by finding the probability that the test statistic is greater than or equal to the computed
sample value of thetest statistic.

(5.4) An Empirical Example of a One-Tailed Test

Let us illustrate by testing the null hypothesis that the population hip size is 16 inches, against the
aternative that it is greater than 16 inches, using the hip data. We will follow the steps outlined in the
testing format suggested in Section 4.

6. Thenull hypothesisis Ho: B = 16. The alternative hypothesisis Hy: 3 > 16

b-16

8. Let us sdlect 0=.05. The critical value t. is 1.68 for a t-distribution with (T-1) = 49 degrees of

7. Thetest statistic t = ~tyy ifthenull hypothesisistrue.

freedom. Thuswe will rgject the null hypothesisin favor of the dternative if t>1.68.
9. Using the hip data, the least squares estimate of 3 is b = 17.158, with estimated variance &° =3.267 ,

17.158-16 _
1.807//50

10. Conclusion: Sincet=4.531 > t.=1.68 we regject the null hypothesis. The sample information we have

so 6 =1.807 . Thevalue of thetest statisticis t = 4531.

is incompatible with the hypothesis that 3 = 16, or, that the population mean hip size is 16 inches.
Thus we accept the alternative that the population mean hip size is greater than 16 inches, based on
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our test which has a=.05 probability of a Type | error. Equivalently, for this test the p-value is
p=.000019 < a=.05 and on this basis we reject the null hypothesis.

(5.5) A Comment on Stating Null and Alternative Hypotheses

We have noted in the previous sections that a statistical test procedure cannot prove the truth of a null
hypothesis. When we fail to reject a null hypothesis, all the hypothesis test can establish is that the
information in a sample of data is compatible with the null hypothesis. On the other hand, a statistical test
can lead us to reject the null hypothesis, with only a small probability, a, of rejecting the null hypothesis
when it isactually true. Thus rgecting anull hypothesisis astronger conclusion than failing to reject it.

The null hypothesis is usually stated in such a way that if our theory is correct, then we will reject the
null hypothesis. For example, our airplane seat designer has been operating under the assumption (the
maintained or null hypothesis) that the population mean hip width is 16 inches. Casual observation
suggests that people are getting larger al the time. If we are larger, and if the airline wants to continue
accommodate the same percentage of the population, then the seat widths must be increased. This costly
change should be undertaken only if thereis statistical evidence that the population size is indeed larger.
When using a hypothesis test we would liketo find out that there is statistical evidence against our current
“theory,” or if the data are compatible with it. With this goal, we set up the null hypothesis that the
population mean is 16 inches, Hy: 3 = 16against the alternative that it is greater than 16 inches, Hy: B >
16.

You may view the null hypothesis to be too limited in this case, since it is feasible that the population
mean hip width is now smaller than 16 inches, or that 3 < 16. The hypothesis testing procedure for the
testing the null hypothesis that Ho: B < 16 against the aternative hypothesisH;: B > 16 is exactly the same
astesting Ho: 3 = 16 against the alternative hypothesis Hy: B > 16. Thetest statistic, rejection region and
p-value are exactly the same. For a one-tailed test you can form the null hypothesis in either of these
ways. What countsis that the aternative hypothesisis properly specified.

Finally, it isimportant to set up the null and alternative hypotheses before you carry out the regression
analysis. Failing to do so can lead to erors in formulating the alternative hypothesis. Suppose that we
wish to test whether B > 16 and the least squares estimate of 3 is b= 15.5. Does that mean we should set
up the alternative 3 < 16, to be consistent with the estimate? The answer is no. The alternative is formed

to state the conjecture that we wish to establish, 3 > 16.
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