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5. Hypothesis Tests About the Mean of a Normal Population When σσσσ2 is Not 

Known 

In Section 3 we used the t-distribution as a basis for confidence interval estimation for the mean of a 

normal population when the population variance 2σ  is not known.  Similarly, when testing hypothesis, if 

2σ  is not known, we use a t-statistic.  From (3.5) we know that 
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When testing the null hypothesis 0 :H cβ =  against the alternative hypothesis 1 :H cβ ≠  the test statistic 
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if the null hypothesis is true. Following the same logic as in Section 4, we reject H0: β = c if |t| ≥ tc, or if 

the p-value is less than the level of significance α. The rejection rules and critical values from the t-

distribution are shown in Figure 4. 

 

Figure 4 Rejection region for testing 0 :H cβ =  against 1 :H cβ ≠  

(5.1) An Empirical Example of a Two-Tailed Test 

Let us illustrate by testing the null hypothesis that the population hip size is 16 inches, against the 

alternative that it is not, using the hip data.  We will follow the steps outlined in the testing format 

suggested in Section 4. 

1. The null hypothesis is H0: β = 16.  The alternative hypothesis is H1:  β ≠ 16. 
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2. The test statistic ( 1)
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 if the null hypothesis is true. 

3. Let us select α=.05.  The critical value tc is 2.01 for a t-distribution with (T−1) = 49 degrees of 

freedom.  Thus we will reject the null hypothesis in favor of the alternative if 2.01 or 2.01t t≥ ≤ − , or 

equivalently , if | | 2.01t ≥  

4. Using the hip data, the least squares estimate of β is b = 17.158, with estimated variance 2ˆ 3.267σ = , 

so ˆ 1.807σ = .  The value of the test statistic is 
17.158 16

4.531
1.807 50

t
−= = . 

5. Conclusion:  Since t=4.531 > tc=2.01 we reject the null hypothesis.  The sample information we have 

is incompatible with the hypothesis that β = 16, or, that the population mean hip size is 16 inches.  

Equivalently, for this test the p-value is p=.000038 < α=.05 and on this basis we reject the null 

hypothesis. 

 

(5.2) A Relationship Between Hypothesis Testing and Interval Estimation 

There is an algebraic relationship between two-tailed hypothesis tests and confidence interval estimates 

that is sometimes useful.  Suppose that we are testing the null hypothesis 0 :H cβ =  against the alternative 

1 :H cβ ≠ .  If we fail to reject the null hypothesis at the α level of significance, then the value c will fall 

within a (1−α)×100% confidence interval estimate of β.  Conversely, if we reject the null hypothesis, then 

c will fall outside the (1−α)×100% confidence interval estimate of β.  This algebraic relationship is true 

because we fail to reject the null hypothesis when − ≤ ≤t t tc c , or when 
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which, when rearranged becomes  
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The endpoints of this interval are the same as the endpoints of a (1−α)×100% confidence interval estimate 

of β.  Thus for any value of c within the interval we do not reject 0 :H cβ =  against the alternative 



Statistical Inference II: The Principles of Interval Estimation and Hypothesis Testing 

 

19 

1 :H cβ ≠ . For any value of c outside the interval we reject 0 :H cβ =  and accept the alternative 

1 :H cβ ≠ . 

This relationship can be handy if you are given only a confidence interval and want to determine what 

the outcome of a two-tailed test would be.  You can verify that the test statistics z in Table 4 lead us to 

reject the null hypothesis for the same samples in Table 2 which do not contain the value β = 10. 

We have two comments about this relationship between interval estimation and hypothesis testing:  

 

1. The relationship is between confidence intervals and two-tailed tests.  It does not apply to one-tailed 

tests. 

2. A confidence interval is an estimation tool; that is, it is an interval estimator.  A hypothesis test about 

one or more parameters is a completely separate form of inference, with the only connection being 

that the test statistic incorporates the least squares estimator.  To test hypotheses you should carry out 

the steps outlined in Section 4 and should not compute and report an interval estimate.  

 

(5.3) One-Tailed Tests 

We have focused so far on testing hypotheses of the form H0: β = c against the alternative H1: β ≠ c.  This 

kind of test is called a two-tailed test since portions of the rejection region are found in both tails of the 

test statistic’s distribution.  One-tailed tests are used to test H0: β = c against the alternative H1: β > c, or 

H1: β < c. 

The logic of one-tailed tests is identical to that for the two-tailed tests that we have studied.  The test 

statistic is the same, and given by (5.2).  What is different is the selection of the rejection region and the 

computation of the p-values.  For example, to test H0: β = c against the alternative H1: β > c we select the 

rejection region to be values of the test statistic t that support the alternative hypothesis and which are 

unlikely if the null hypothesis is true.  Large values of the t-statistic are unlikely if the null hypothesis is 

true.  We define the rejection region to be values of t greater than a critical value tc, from a t-distribution 

with T−1 degrees of freedom, such that P t tc( )≥ = α , where α is the level of significance of the test and 

the probability of a Type I error.  See Figure 5 below. 
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Figure 5 Critical Value for One-Tailed Test H0: β = c vs. H1: β > c 

 

The decision rule for this one-tailed test is, “Reject H0: β = c and accept the alternative H1: β > c if t ≥ tc.”  

If t < tc then we do not reject the null hypothesis. 

Computation of the p-value is similarly confined to one tail of the distribution of the test statistic, 

though its interpretation is exactly as before.  For testing H0: β = c against the alternative H1: β > c the p-

value is computed by finding the probability that the test statistic is greater than or equal to the computed 

sample value of the test statistic. 

(5.4) An Empirical Example of a One-Tailed Test 

Let us illustrate by testing the null hypothesis that the population hip size is 16 inches, against the 

alternative that it is greater than 16 inches, using the hip data.  We will follow the steps outlined in the 

testing format suggested in Section 4. 

6. The null hypothesis is H0: β = 16.  The alternative hypothesis is H1:  β > 16 

7. The test statistic ( 1)
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 if the null hypothesis is true. 

8. Let us select α=.05.  The critical value tc is 1.68 for a t-distribution with (T−1) = 49 degrees of 

freedom.  Thus we will reject the null hypothesis in favor of the alternative if 1.68t ≥ . 

9. Using the hip data, the least squares estimate of β is b = 17.158, with estimated variance 2ˆ 3.267σ = , 

so ˆ 1.807σ = .  The value of the test statistic is 
17.158 16

4.531
1.807 50

t
−= = . 

10. Conclusion:  Since t=4.531 > tc=1.68 we reject the null hypothesis.  The sample information we have 

is incompatible with the hypothesis that β = 16, or, that the population mean hip size is 16 inches.  

Thus we accept the alternative that the population mean hip size is greater than 16 inches, based on 



Statistical Inference II: The Principles of Interval Estimation and Hypothesis Testing 

 

21 

our test which has α=.05 probability of a Type I error.  Equivalently, for this test the p-value is 

p=.000019 < α=.05 and on this basis we reject the null hypothesis. 

 

(5.5) A Comment on Stating Null and Alternative Hypotheses 

We have noted in the previous sections that a statistical test procedure cannot prove the truth of a null 

hypothesis.  When we fail to reject a null hypothesis, all the hypothesis test can establish is that the 

information in a sample of data is compatible with the null hypothesis.  On the other hand, a statistical test 

can lead us to reject the null hypothesis, with only a small probability, α, of rejecting the null hypothesis 

when it is actually true.  Thus rejecting a null hypothesis is a stronger conclusion than failing to reject it. 

The null hypothesis is usually stated in such a way that if our theory is correct, then we will reject the 

null hypothesis.  For example, our airplane seat designer has been operating under the assumption (the 

maintained or null hypothesis) that the population mean hip width is 16 inches. Casual observation 

suggests that people are getting larger all the time. If we are larger, and if the airline wants to continue 

accommodate the same percentage of the population, then the seat widths must be increased. This costly 

change should be undertaken only if there is statistical evidence that the population size is indeed larger. 

When using a hypothesis test we would like to find out that there is statistical evidence against our current 

“theory,” or if the data are compatible with it.  With this goal, we set up the null hypothesis that the 

population mean is 16 inches, H0: β = 16against the alternative that it is greater than 16 inches, H1: β > 

16. 

You may view the null hypothesis to be too limited in this case, since it is feasible that the population 

mean hip width is now smaller than 16 inches, or that β < 16.  The hypothesis testing procedure for the 

testing the null hypothesis that H0: β ≤ 16 against the alternative hypothesis H1: β > 16 is exactly the same 

as testing H0: β = 16 against the alternative hypothesis H1:  β > 16.  The test statistic, rejection region and 

p-value are exactly the same.  For a one-tailed test you can form the null hypothesis in either of these 

ways.  What counts is that the alternative hypothesis is properly specified. 

Finally, it is important to set up the null and alternative hypotheses before you carry out the regression 

analysis.  Failing to do so can lead to errors in formulating the alternative hypothesis.  Suppose that we 

wish to test whether β > 16 and the least squares estimate of β is b= 15.5.  Does that mean we should set 

up the alternative β < 16, to be consistent with the estimate?  The answer is no.  The alternative is formed 

to state the conjecture that we wish to establish, β > 16. 
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