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4. Hypothesis Tests about the Mean of a Normal Population When σσσσ2 is 

Known 

 

Hypothesis testing procedures compare a conjecture we have about a population to the information 

contained in a sample of data.  More specifically, the conjectures we test here concern the mean of a 

normal population.  In the context of the problem faced by the airplane seat designer, suppose that 

airplanes since 1970 have been designed assuming the mean population hip width is 17 inches.  Is that 

figure still valid in the year 2000? As with point and interval estimation procedures, hypothesis testing 

procedures are established based on our assumptions.  In this section we assume that we have a sample of 

data from a normal population with unknown mean β but a known variance 2σ .  This is not the usual case 

in practice, but for pedagogic reasons it is a good place to start. The procedures we develop can be 

applied to any sample of data that is obtained.  Because the procedures are general, they depend on 

random quantities.  Thus a test’s characteristics are stated in terms of probabilities. 

Hypothesis testing uses the information about a parameter that is contained in a sample of data, namely 

its least squares point estimate and its standard error, to draw a conclusion about the conjecture, or 

hypothesis.  In each and every hypothesis test four ingredients must be present: 

 

Components of Hypothesis Tests 

 

1. A null hypothesis, H0 

2. An alternative hypothesis, H1  

3. A test statistic 

4. A rejection region 

 

The Null Hypothesis 

The “null” hypothesis, which is denoted H0 (H-naught), specifies a value c for a parameter. We specify 

the null hypothesis as H0: β = c. A null hypothesis is the belief we will maintain until we are convinced by 

the sample evidence that it is not true, in which case we reject the null hypothesis. 

 

The Alternative Hypothesis 

Paired with every null hypothesis is a logical alternative hypothesis, H1, that we will accept if the null 

hypothesis is rejected.  The alternative hypothesis is flexible and depends to some extent on the problem 



Statistical Inference II: The Principles of Interval Estimation and Hypothesis Testing 

 

11 

at hand.  For the null hypothesis H0: β = c, where c is some constant, three possible alternative hypotheses 

are: 

 

• H1:  β ≠ c.  Rejecting the null hypothesis that β = c implies the conclusion that β takes some 

other value. 

• H1:  β > c.  Rejecting the null hypothesis that β = c leads to the conclusion that β is greater 

than c.  Using this alternative completely discounts the possibility that β < c, based on 

economic theory, and implies that these values are logically unacceptable alternatives to the 

null hypothesis.  Inequality alternative hypotheses are widely used in economics.  

• H1:  β < c.  Following the discussion above, use this alternative when the rejecting the null 

hypothesis that β = c leads to the conclusion that β is less than c.  Use this alternative when 

there is no chance that β > c 

 

The Test Statistic 

The sample information about the null hypothesis is embodied in the sample value of a test statistic.  

Based on the value of a test statistic, which itself is a random variable, we decide either to reject the null 

hypothesis or not to reject it.  A test statistic has a very special characteristic: its probability distribution 

must be (completely) known when the null hypothesis is true, and it must have some other distribution if 

the null hypothesis is not true. 

Consider the null hypothesis H0: β = c.  We will introduce hypothesis testing concepts using the 

alternative H1: β ≠ c.  If the sample data come from a normal population with unknown mean β but a 

known variance 2σ , then 

 ( )
2

~ 0,1
b b

Z N
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 (4.1) 

If the null hypothesis H0: β = c is true, then  

 ( )~ 0,1
b c

Z N
T

−=
σ

 (4.2) 

If the null hypothesis is not true, then the Z-statistic in (4.2) does not have a standard normal distribution. 

 

The Rejection Region 

The rejection region is the range of values of the test statistic that leads to rejection of the null hypothesis.  

It is possible to construct a rejection region only if we have a test statistic whose distribution is known 

when the null hypothesis is true.  In practice the rejection region is a set of test statistic values that, when 
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the null hypothesis is true, are unlikely and have low probability of occurring.  If, using a sample of data, 

a value of the test statistic is obtained that falls in a region of low probability, then it is unlikely that the 

test statistic has the assumed distribution, and thus it is unlikely that the null hypothesis is true. 

In Figure 1, the standard normal N(0,1) is depicted.  The critical value zc is such that 

[ ] [ ] / 2c cP Z z P Z z≥ = ≤ − = α .  The values of zc that correspond to different values of α can be found in 

Table 1 at the back of UE/2.  If α = .05 then zc = 1.96; if α = .01 then zc = 2.58.  The random variable Z in 

(4.2) can be used as a test statistic since its distribution is known to be N(0,1) when the null hypothesis is 

true.  If b is the least squares estimate of β based on a sample of data, then use it to compute the value z of 

the test statistic Z. 

If the null hypothesis H0: β = c is true then the test statistic (4.2) has the distribution N(0,1).  Thus, if 

the hypothesis is true, then the distribution of Z is that shown in Figure 1.  If the alternative hypothesis H1:  

β ≠ c is true, then values of the test statistic Z will tend to be unusually “large” or unusually “small.”  The 

terms “large” and “small” are determined by choosing a probability α, called the “level of significance of 

the test,” which provides a meaning for “an unlikely event.”  The level of significance of the test α is 

frequently chosen to be .01, .05 or .10. The rejection region is determined by the critical values zc. Thus 

the rejection region consists of the two “tails” of the N(0,1)-distribution. 

When the null hypothesis is true the probability of obtaining from a sample of data a value of the test 

statistic that falls in either tail area is “small,” and, combined, is equal to α.  Sample values of the test 

statistic which are in the tail areas are incompatible with the null hypothesis and are evidence against the 

null hypothesis being true. When testing the null hypothesis H0: β = c against the alternative H1: β ≠ c we 

are led to the following rule: 

 

Rejection rule for a two-tailed test (σσσσ2 known):  If the value of the test statistic Z falls 

in the rejection region, either tail of the N(0,1)-distribution, then we reject the null 

hypothesis and accept the alternative. 

 

On the other hand, if the null hypothesis H0: β = c is true, then the probability of obtaining a value of the 

test statistic Z in the central non-rejection region, ( ) 1c cP z Z z− ≤ ≤ = − α , is high.  Sample values of the 

test statistic in the central non-rejection area are compatible with the null hypothesis and are not taken as 

evidence against the null hypothesis being true.  Care must be taken here in interpreting the outcome of a 

statistical test, however, because one of the basic precepts of hypothesis testing is that finding a sample 

value of the test statistic in the non -rejection region does not make the null hypothesis true!  Intuitively, if 

the true value of β is near c (but not equal to it), then the value of the test statistic will still fall in the non-



Statistical Inference II: The Principles of Interval Estimation and Hypothesis Testing 

 

13 

rejection region with high probability.  In this case we would not reject the null hypothesis even though it 

is false.  Consequently, when testing the null hypothesis H0: β = c against the alternative H1: β ≠ c, the 

decision rule is: 

 

If the value of the test statistic Z falls between the critical values −zc and zc, in the non-

rejection region, then we do not reject the null hypothesis. 

 

Avoid saying that “we accept the null hypothesis.”  This statement implies that we are concluding that the 

null hypothesis is true, which is not the case at all based on the discussion above.  The weaker statements 

“we do not reject the null hypothesis,” or “we fail to reject the null hypothesis,” do not send any 

misleading message. 

A standard testing format that summarizes the four test ingredients and the test outcome is: 

 

Format for Testing Hypotheses 

 

1. Determine the null and alternative hypotheses. 

2. Specify the test statistic and its distribution if the null hypothesis is true. 

3. Select α and determine the rejection region. 

4. Calculate the sample value of the test statistic. 

5. State your conclusion. 

 

(4.1) Type I and Type II Errors 

Whenever we reject, or do not reject, a null hypothesis there is a chance that we may be making a 

mistake.  This is unavoidable.  In any hypothesis testing situation there are two ways that we can make a 

correct decision and two ways that we can make an incorrect decision.  We make a correct decision if: 

 

• The null hypothesis is false and we decide to reject it. 

• The null hypothesis is true and we decide not to reject it. 

 

Our decision is incorrect if: 

 

• The null hypothesis is true and we decide to reject it (a Type I error) 
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• The null hypothesis is false and we decide not to reject it (a Type II error) 

 

When we reject the null hypothesis we risk what is called a Type I error.  The probability of a Type I 

error is α, the level of significance of the test.  A value of the test statistic in the rejection region, the range 

of unlikely values for the test statistic where we reject the null hypothesis, occurs with probability α when 

the null hypothesis is true.  Thus the hypothesis testing procedure we use will reject a true hypothesis 

with probability α.  The only good news here is that we can control the probability of a Type I error for 

the testing procedure by choosing the level of significance of the test.  If this type of decision error is a 

costly one then we should choose the level of significance to be small, perhaps α = .01 or .05. 

We risk a Type II error when we do not reject the null hypothesis.  Our testing procedure will lead us 

to fail to reject null hypotheses that are false with a certain probability.  The magnitude of the probability 

of a Type II error is not under our control and cannot be computed as it depends on the true but unknown 

value of the parameter in question.  The facts that we can tell you about the probability of a Type II error 

are these: 

 

• The probability of a Type II error varies inversely with the level of significance of the test, α, 

which is the probability of a Type I error.  If you choose to make α smaller, the probability of 

a Type II error increases. 

• The closer the true value of the parameter is to the hypothesized parameter value the larger is 

the probability of a Type II error.  If in the null hypothesis we hypothesize that β = c, and if 

the true (unknown) value of β is close to c, then the probability of a Type II error is high.  

Intuitively, the test loses the power to discriminate between the true parameter value and the 

(false) hypothesized value if they are similar in magnitude. 

• The larger the sample size T, the lower the probability of a Type II error, given a level of 

Type I error α. 

• For most types of hypotheses that economists test there is no one best test that can be used in 

all situations.  By “best” test we mean one that has the minimum Type II error for any given 

level of Type I error, α.  However, the test based on the t-distribution that we have described 

is a very good test and it is without question the test used most frequently in the situation that 

we have described. 
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(4.2) The p-Value of a Hypothesis Test 

When reporting the outcome of statistical hypothesis tests it has become common practice to report the p-

value of a test.  In the context of the food expenditure example, when testing the null hypothesis H0:β = c 

against the alternative hypothesis H1:β ≠ c, we reject the null hypothesis when the absolute value of the Z-

statistic is greater than or equal to the critical value zc that corresponds to the level of significance we 

have chosen.  That is, we reject the null hypothesis when |z| ≥ zc.  The p-value of a test is calculated by 

finding the probability that the Z-distribution can take a value greater than or equal to the absolute value 

of the sample value of the test statistic.   

 To illustrate, suppose we were testing H0:β = c against the alternative hypothesis H1:β ≠ c.  Using 

a sample of data we obtain the value 

2.16
b c

Z
T

−= =
σ

 

The p-value of this test is depicted in Figure 3. 

 

 

Figure 3. The p-value of a Z test statistic value z = 2.16 
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To calculate the p-value of z = 2.16 we proceed as follows: 

 

( ) [ ]
[ ]
( )

[ ]
[ ]

2.16 Pr 2.16 or 2.16

2Pr 2.16

2 Pr 2.16

2 1 .9846

2 .0154 .0308

p value z Z Z

Z

Z

− = = ≤ − ≥

= ≥

=  <  
= −

= =

 

The calculation of [ ]Pr 2.16Z <  can be carried out in two ways. By using Table 1 at the back of UE/2 we 

find that 

 [ ]Pr 0 2.16 .4846Z≤ ≤ =  

So 

[ ]Pr 2.16 .5 .4846 .9846Z < = + =  

Alternatively, your computer software will have a function that can compute this probability. 

Using a p-value we can determine whether to reject a null hypothesis by comparing it to the level of 

significance α.  The rule is: 

 

Rejection rule for a two-tailed test: When the p-value of a hypothesis test is smaller 

than the chosen value of α, then the test procedure leads to rejection of the null 

hypothesis. 

 

This rule is very handy.  If we have the p-value of a test, we can determine the outcome of the test by 

comparing the p-value to the chosen level of significance, α, without looking up or calculating the critical 

values ourselves. 

 The reasoning of the rule is made clear by examining Figure 3.  If the p-value is less than 

or equal to α, then  z  ≥ zc and the null hypothesis is rejected.  Thus by knowing that the p-value 

of z = 2.16 is p = .0308 we can determine immediately that the null hypothesis is rejected at the α 

= .01 level, but it will not be rejected at the α = .01 level of significance. 

 

(4.3) A Monte Carlo Experiment 

To illustrate hypothesis testing outcomes, we use the Monte Carlo simulation technique introduced in 

Section 2.1.  There we assume data come from a normal population with mean β = 10 and variance 

2 10σ = .  In this section we test the null hypothesis H0:β = 10 against the alternative hypothesis H1:β ≠ 10 
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using the test statistic Z in (4.2).  Note that in this artificial data example the hypothesis we are testing in 

this simulation is true. In Table 4 are estimates of β and the test statistics from 10 samples of data. 

 

Table 4 Estimates and Test 
Statistics from 10 Samples 

Sample b z 
1 10.206 0.357 
2 9.828 -0.298 
3 11.194 2.068 
4 8.822 -2.041 
5 10.434 0.752 
6 8.855 -1.984 
7 10.511 0.886 
8 9.212 -1.365 
9 10.464 0.804 
10 10.142 0.245 

 

Notice the variation in the values of b, the least squares estimate of β, and in the values of the test statistic 

z.  The variation we observe is sampling variation, caused by drawing different samples from the 

population.  If we test at the α = .05 level of significance the critical value from the N(0,1) distribution is 

zc = 1.96.  Despite the fact that the hypothesis we are testing is true, in samples 3, 4 and 6 we reject the 

null hypothesis H0:β = 10 and accept the alternative that H1:β ≠ 10.  Recall that α is the probability of a 

Type I error, in which we reject the null hypothesis when it is true.  In this case, we would make a Type I 

error in 3 of 10 samples, which is higher than we might expect.  In 10,000 samples the percentage of Type 

I errors is .0514.  These results remind you that the probability of a Type I error is a repeated sampling 

property of the test procedure, which holds if a large number of samples are drawn. 
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