
Statistical Inference II: The Principles of Interval Estimation and Hypothesis Testing

6

3. Interval Estimation When the Population Variance σσσσ2 is Not Known

(3.1) The t-distribution

The methods developed in Section 2 require that we know the population variance 2σ .  The statistic that

is the basis of interval estimation when 2σ  is known is the standardized normal N(0,1) random variable
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When 2σ  is unknown it is natural to replace it with its estimator
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However, when we do so
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is the ratio of two random variables b and 2σ̂ , and this ratio no longer has a standard normal distribution.

The correct probability distribution of (3.3) was worked out by W.S. Gossett, an employee of the

Guiness Brewery, who, in 1919, published his work under the pseudonym “Student.”  Gossett called the

statistic “t” and hence its distribution is called “Student’s” t-distribution.  The statistic is actually a clever

combination of the Z statistic in (3.1) and an independent chi-square random variable
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Specifically,
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The notation ( )1Tt −  denotes a t-distribution with T−1 “degrees of freedom.”  The degrees of freedom

parameter is important because it determines the shape of the t-distribution.  In general, a t-random

variable with m degrees of freedom is formed by dividing a standardized normal random variable by an

independent chi-square with m degrees of freedom,
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In Figure 2 the probability density functions for N(0,1) and a ( )3t  random variables are graphed.

Figure 2 The standard normal and ( )3t  distributions

Note that the t-distribution is less “peaked” and there is more probability in the tails than for the standard

normal.  The probability density of a ( )mt  random variable is symmetric, with mean 0 and variance

m/(m−2).  As the degrees of freedom m → ∞ the probability density function for the ( )mt  random variable

approaches that of a standard normal N(0,1) random variable.  Critical values for the t-distribution are

contained in Table 2 in UE/2.

(3.2) Interval estimation

When 2σ  is unknown we can use (3.5) as a basis for interval estimation.  If
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where tc is a critical value from the t-distribution.  Then, following the same steps as in section 2,
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The 100(1−α)% interval estimator for β is

ˆ
cb t

T
σ± (3.10)

Unlike the interval estimator for the known 2σ  case in (2.11), the interval in (3.10) has center and width

that vary from sample to sample.

(3.3) A Simulation Experiment

As we did in Section 2.1 we use a computer simulation, or Monte Carlo experiment, to illustrate the

sampling properties of the interval estimator in (3.10).  We create 10 samples of size T = 30 from a

normal population with mean β = 10 and variance 2 10σ = .  Table 3 contains the results of the

experiment.

Table 3 Interval Estimates Using (3.10) from 10 samples

Sample b 2σ̂ Lower  bound Upper bound

1 10.206 9.199 9.073 11.339
2 9.828 6.876 8.849 10.807
3 11.194 10.330 9.994 12.394
4 8.822 9.868 7.649 9.995
5 10.434 7.985 9.379 11.489
6 8.855 6.231 7.923 9.787
7 10.511 7.333 9.500 11.523
8 9.212 14.686 7.781 10.643
9 10.464 10.414 9.259 11.669
10 10.142 17.690 8.571 11.712

The estimates b are the same as in Table 2.  The estimates 2σ̂  vary about the true value 2 10σ = .  Of these

10 intervals, those for samples 4 and 6 do not contain the true parameter β = 10. Nevertheless, in a large

number of samples 95% of them will contain the true population mean β.
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(3.4) An Empirical Example

In Statistical Inference I we introduced the empirical problem faced by an airplane seat design engineer.

Given a random sample of size T = 50 we estimated the mean U.S. hip width to be b = 17.158 inches.

Furthermore we estimated the population variance to be
2ˆ 3.267σ = (3.11)

Thus ˆ 1.807σ = .  To construct a 95% interval estimate we use (3.10),

[ ]ˆ 1.80717.158 2.01 16.644,17.672
50cb t

T
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We estimate that the population mean hip size falls between 16.644 and 17.672 inches.  While we do not

know if this interval contains the true population mean hip size for sure, we know that the procedure used

to create the interval “works” 95% of the time, thus we would be surprised if the interval did not contain

the true population value β.
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