Nonlinear Relationships

Chapter 7

Chapter 7: Nonlinear Relationships

- 7.1 Polynomials
- 7.2 Dummy Variables
- 7.3 Applying Dummy Variables
- 7.4 Interactions Between Continuous Variables
- 7.5 Log-Linear Models

7.1 Polynomials

7.1.1 Cost and Product Curves

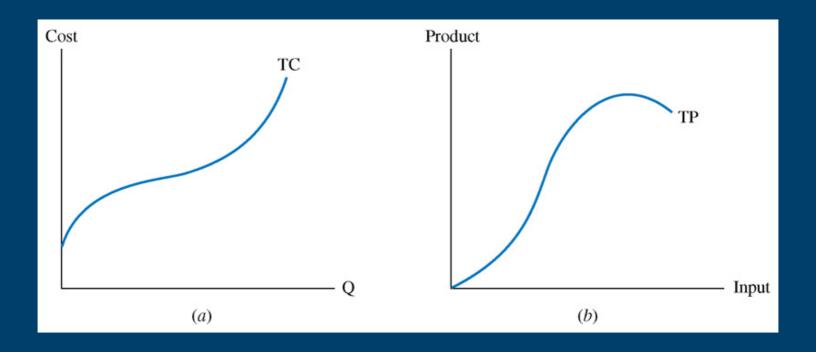


Figure 7.1 (a) Total cost curve and (b) total product curve

7.1 Polynomials

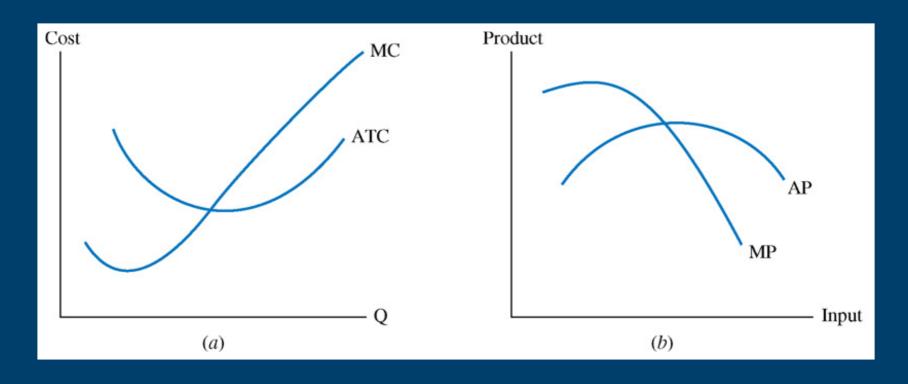


Figure 7.2 Average and marginal (a) cost curves and (b) product curves

7.1 Polynomials

$$AC = \beta_1 + \beta_2 Q + \beta_3 Q^2 + e$$

$$TC = \alpha_1 + \alpha_2 Q + \alpha_3 Q^2 + \alpha_4 Q^3 + e$$

(7.2)

$$\frac{dE(AC)}{dQ} = \beta_2 + 2\beta_3 Q$$

(7.3)

$$\frac{dE(TC)}{dQ} = \alpha_2 + 2\alpha_3 Q + 3\alpha_4 Q^2$$

(7.4)

7.1.2 A Wage Equation

$$WAGE = \beta_1 + \beta_2 EDUC + \beta_3 EXPER + \beta_4 EXPER^2 + e^2$$

(7.5)

$$\frac{\partial E(WAGE)}{\partial EXPER} = \beta_3 + 2\beta_4 EXPER$$

(7.6)

7.1.2 A Wage Equation

Table 7.1	Wage Equation with Quadratic Experience					
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
С	-9.8177	1.0550	-9.3062	0.0000		
EDUC	1.2101	0.0702	17.2282	0.0000		
EXPER	0.3409	0.0514	6.6292	0.0000		
$EXPER^2$	-0.0051	0.0012	-4.2515	0.0000		
$R^2 = 0.2709$	SSE = 28420.08					

7.1.2 A Wage Equation

$$\frac{\partial E(WAGE)}{\partial EXPER}$$
 = .3409 + 2(-.0051)18 = .1576

$$EXPER = -\beta_3/2\beta_4 = -.3409/2(-.0051) = 33.47$$

7.2 Dummy Variables

$$PRICE = \beta_1 + \beta_2 SQFT + e$$

(7.7)

$$D = \begin{cases} 1 & \text{if characteristic is present} \\ 0 & \text{if characteristic is not present} \end{cases}$$

(7.8)

$$D = \begin{cases} 1 & \text{if property is in the desirable neighborhood} \\ 0 & \text{if property is not in the desirable neighborhood} \end{cases}$$

7.2.1 Intercept Dummy Variables

$$PRICE = \beta_1 + \delta D + \beta_2 SQFT + e$$

(7.9)

$$E(PRICE) = \begin{cases} (\beta_1 + \delta) + \beta_2 SQFT & \text{when } D = 1\\ \beta_1 + \beta_2 SQFT & \text{when } D = 0 \end{cases}$$

(7.10)

7.2.1 Intercept Dummy Variables

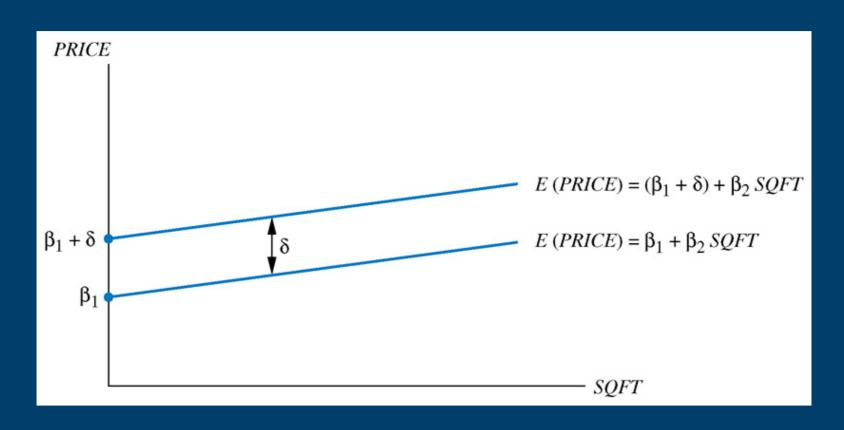


Figure 7.3 An intercept dummy variable

7.2.1a Choosing The Reference Group

$$LD = \begin{cases} 1 & \text{if property is not in the desirable neighborhood} \\ 0 & \text{if property is in the desirable neighborhood} \end{cases}$$

$$PRICE = \beta_1 + \lambda LD + \beta_2 SQFT + e$$

$$PRICE = \beta_1 + \delta D + \lambda LD + \beta_2 SQFT + e$$

7.2.2 Slope Dummy Variables

$$PRICE = \beta_1 + \beta_2 SQFT + \gamma(SQFT \times D) + e$$

$$E(PRICE) = \beta_1 + \beta_2 SQFT + \gamma \left(SQFT \times D\right) = \begin{cases} \beta_1 + (\beta_2 + \gamma)SQFT & \text{when } D = 1\\ \beta_1 + \beta_2 SQFT & \text{when } D = 0 \end{cases}$$

$$\frac{\partial E(PRICE)}{\partial SQFT} = \begin{cases} \beta_2 + \gamma & \text{when } D = 1\\ \beta_2 & \text{when } D = 0 \end{cases}$$

(7.11)

7.2.2 Slope Dummy Variables

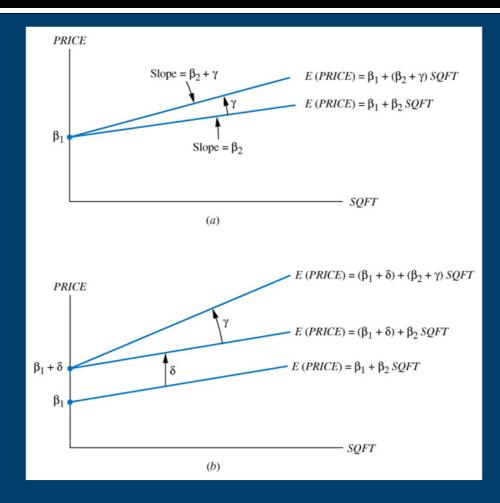


Figure 7.4 (a) A slope dummy variable. (b) A slope and intercept dummy variable

7.2.2 Slope Dummy Variables

$$PRICE = \beta_1 + \delta D + \beta_2 SQFT + \gamma (SQFT \times D) + e$$

(7.12)

$$E(PRICE) = \begin{cases} (\beta_1 + \delta) + (\beta_2 + \gamma)SQFT & \text{when } D = 1\\ \beta_1 + \beta_2 SQFT & \text{when } D = 0 \end{cases}$$

Table 7.2	Representative Real Estate Data Values					
PRICE	SQFT	AGE	UTOWN	POOL	FPLACE	
205.452	23.46	6	0	0	1	
185.328	20.03	5	0	0	1	
248.422	27.77	6	0	0	0	
287.339	23.67	28	1	1	0	
255.325	21.30	0	1	1	1	
301.037	29.87	6	1	0	1	

$$PRICE = \beta_1 + \delta_1 UTOWN + \beta_2 SQFT + \gamma \left(SQFT \times UTOWN \right)$$

$$+\beta_3 AGE + \delta_2 POOL + \delta_3 FPLACE + e$$

$$(7.13)$$

Table 7.3 House Price Equation Estimates						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
С	24.5000	6.1917	3.9569	0.0001		
UTOWN	27.4530	8.4226	3.2594	0.0012		
SQFT	7.6122	0.2452	31.0478	0.0000		
$SQFT \times UTOWN$	1.2994	0.3320	3.9133	0.0001		
AGE	-0.1901	0.0512	-3.7123	0.0002		
POOL	4.3772	1.1967	3.6577	0.0003		
FPLACE	1.6492	0.9720	1.6968	0.0901		
$R^2 = 0.8706$	SSE = 230184.4					

$$PRICE = (24.5 + 27.453) + (7.6122 + 1.2994)SQFT - .1901AGE$$

+ $4.3772POOL + 1.6492FPLACE$

=51.953+8.9116SQFT-.1901AGE+4.3772POOL+1.6492FPLACE

$$PRICE = 24.5 + 7.6122SQFT - .1901AGE + 4.3772POOL + 1.6492FPLACE$$

Based on these regression results, we estimate

- the location premium, for lots near the university, to be \$27,453
- the price per square foot to be \$89.12 for houses near the university, and \$76.12 for houses in other areas.
- that houses depreciate \$190.10 per year
- that a pool increases the value of a home by \$4377.20
- that a fireplace increases the value of a home by \$1649.20

7.3 Applying dummy variables

7.3.1 Interactions Between Qualitative Factors

$$WAGE = \beta_1 + \beta_2 EDUC + \delta_1 BLACK + \delta_2 FEMALE + \gamma (BLACK \times FEMALE) + e$$
 (7.14)

$$E(WAGE) = \begin{cases} \beta_1 + \beta_2 EDUC & WHITE - MALE \\ (\beta_1 + \delta_1) + \beta_2 EDUC & BLACK - MALE \\ (\beta_1 + \delta_2) + \beta_2 EDUC & WHITE - FEMALE \\ (\beta_1 + \delta_1 + \delta_2 + \gamma) + \beta_2 EDUC & BLACK - FEMALE \end{cases}$$

7.3.1 Interactions Between Qualitative Factors

Table 7.4 Wage Equation with Race and Gender						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
C	-3.2303	0.9675	-3.3388	0.0009		
EDUC	1.1168	0.0697	16.0200	0.0000		
BLACK	-1.8312	0.8957	-2.0444	0.0412		
FEMALE	-2.5521	0.3597	-7.0953	0.0000		
$BLACK \times FEMALE$	0.5879	1.2170	0.4831	0.6291		
$R^2 = 0.2482$	SSE = 29307.71					

7.3.1 Interactions Between Qualitative Factors

$$F = \frac{\left(SSE_R - SSE_U\right)/J}{SSE_U/(N-K)}$$

$$WAGE = -4.9122 + 1.1385EDUC$$
 (se) (.9668) (.0716)

$$F = \frac{(SSE_R - SSE_U)/J}{SSE_U/(N-K)} = \frac{(31093 - 29308)/3}{29308/995} = 20.20$$

7.3.2 Qualitative Factors with Several Categories

$$WAGE = \beta_1 + \beta_2 EDUC + \delta_1 SOUTH + \delta_2 MIDWEST + \delta_3 WEST + e$$

(7.15)

$$E(WAGE) = \begin{cases} (\beta_1 + \delta_3) + \beta_2 EDUC & WEST \\ (\beta_1 + \delta_2) + \beta_2 EDUC & MIDWEST \\ (\beta_1 + \delta_1) + \beta_2 EDUC & SOUTH \\ \beta_1 + \beta_2 EDUC & NORTHEAST \end{cases}$$

7.3.2 Qualitative Factors with Several Categories

Table 7.5 Wage Equation with Regional Dummy Variables						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
C	-2.4557	1.0510	-2.3365	0.0197		
EDUC	1.1025	0.0700	15.7526	0.0000		
BLACK	-1.6077	0.9034	-1.7795	0.0755		
FEMALE	-2.5009	0.3600	-6.9475	0.0000		
$BLACK{ imes}FEMALE$	0.6465	1.2152	0.5320	0.5949		
SOUTH	-1.2443	0.4794	-2.5953	0.0096		
MIDWEST	-0.4996	0.5056	-0.9880	0.3234		
WEST	-0.5462	0.5154	-1.0597	0.2895		
$R^2 = 0.2535$	SSE = 29101.3					

$$PRICE = \beta_1 + \delta D + \beta_2 SQFT + \gamma (SQFT \times D) + e$$

$$E(PRICE) = \begin{cases} \alpha_1 + \alpha_2 SQFT & D = 1\\ \beta_1 + \beta_2 SQFT & D = 0 \end{cases}$$

$$WAGE = \beta_1 + \beta_2 EDUC + \delta_1 BLACK + \delta_2 FEMALE + \gamma (BLACK \times FEMALE) + e$$

$$WAGE = \beta_1 + \beta_2 EDUC + \delta_1 BLACK + \delta_2 FEMALE + \gamma (BLACK \times FEMALE) + \theta_1 SOUTH + \theta_2 (EDUC \times SOUTH) + \theta_3 (BLACK \times SOUTH) + \theta_4 (FEMALE \times SOUTH) + \theta_5 (BLACK \times FEMALE \times SOUTH) + e$$

$$(7.16)$$

$$E(WAGE) = \begin{cases} \beta_1 + \beta_2 EDUC + \delta_1 BLACK + \delta_2 FEMALE + \\ \gamma \left(BLACK \times FEMALE\right) \end{cases}$$

$$SOUTH = 0$$

$$(\beta_1 + \theta_1) + (\beta_2 + \theta_2) EDUC + (\delta_1 + \theta_3) BLACK + SOUTH = 1$$

$$(\delta_2 + \theta_4) FEMALE + (\gamma + \theta_5) \left(BLACK \times FEMALE\right)$$

Table 7.6 Comparison of Fully Interacted to Separate Models						
	(1)		(2)		(3)	
	Full sa	ample	Non-south		South	
Variable	Coefficient	Std. Error	Coefficient	Std. Error	Coefficient	Std. Error
C	-3.5775	1.1513	-3.5775	1.2106	-2.2752	1.5550
EDUC	1.1658	0.0824	1.1658	0.0866	0.9741	0.1143
BLACK	-0.4312	1.3482	-0.4312	1.4176	-2.1756	1.0804
FEMALE	-2.7540	0.4257	-2.7540	0.4476	-1.8421	0.5896
$BLACK{ imes}FEMALE$	0.0673	1.9063	0.0673	2.0044	0.6101	1.4329
SOUTH	1.3023	2.1147				
$EDUC \times SOUTH$	-0.1917	0.1542				
$BLACK \times SOUTH$	-1.7444	1.8267				
$FEMALE \times SOUTH$	0.9119	0.7960				
$BLACK \times FEMALE \times SOUTH$	0.5428	2.5112				
SSE	290	12.7	220)31.3	698	31.4
N	100	0	685	5	315	5

$$H_0: \theta_1 = \theta_2 = \theta_3 = \theta_4 = \theta_5 = 0$$

$$F = \frac{(SSE_R - SSE_U)/J}{SSE_U/(N-K)} = \frac{(29307.7 - 29012.7)/5}{29012.7/990} = 2.0132$$

Remark: The usual *F*-test of a joint hypothesis relies on the assumptions MR1-MR6 of the linear regression model. Of particular relevance for testing the equivalence of two regressions is assumption MR3, that the variance of the error term is the same <u>for all</u> observations. If we are considering possibly different slopes and intercepts for parts of the data, it might also be true that the error variances are different in the two parts of the data. In such a case the usual *F*-test is not valid.

7.3.4 Controlling for Time

7.3.4a Seasonal Dummies

7.3.4b Annual Dummies

7.3.4c Regime Effects

$$ITC = \begin{cases} 1 & 1962 - 1965, 1970 - 1986 \\ 0 & otherwise \end{cases}$$

$$INV_{t} = \beta_{1} + \delta ITC_{t} + \beta_{2}GNP_{t} + \beta_{3}GNP_{t-1} + e_{t}$$

Table 7.7	Pizza Expenditure Data	
PIZZA	INCOME	AGE
109	15000	25
0	30000	45
0	12000	20
108	20000	28
220	15000	25

$$PIZZA = \beta_1 + \beta_2 AGE + \beta_3 INCOME + e$$

(7.17)

$$PIZZA = \beta_1 + \beta_2 AGE + \beta_3 INCOME + e$$

$$\partial E(PIZZA)/\partial INCOME = \beta_3$$

$$PIZZA = 342.88 - 7.58AGE + .0024INCOME$$
(t) (-3.27) (3.95)

$$PIZZA = \beta_1 + \beta_2 AGE + \beta_3 INCOME + \beta_4 (AGE \times INCOME) + e$$
 (7.18)

$$\partial E(PIZZA)/\partial AGE = \beta_2 + \beta_4 INCOME$$

$$\partial E(PIZZA)/\partial INCOME = \beta_3 + \beta_4 AGE$$

$$PIZZA = 161.47 - 2.98AGE + .009INCOME - .00016(AGE \times INCOME)$$

(t) (-.89) (2.47) (-1.85)

$$\frac{\partial E(PIZZA)}{\partial AGE} = b_2 + b_4 INCOME$$

$$= -2.98 - .00016 INCOME$$

$$= \begin{cases} -6.98 & \text{for } INCOME = \$25,000 \\ -17.40 & \text{for } INCOME = \$90,000 \end{cases}$$

7.5 Log-Linear models

7.5.1 Dummy Variables

$$ln(WAGE) = \beta_1 + \beta_2 EDUC + \delta FEMALE$$

(7.19)

$$ln(WAGE) = \begin{cases} \beta_1 + \beta_2 EDUC & MALES \\ (\beta_1 + \delta) + \beta_2 EDUC & FEMALES \end{cases}$$

7.5.1a A Rough Calculation

$$\ln(WAGE)_{FEMALES} - \ln(WAGE)_{MALES} = \Delta \ln(WAGE) = \delta$$

$$ln(WAGE) = .9290 + .1026EDUC - .2526FEMALE$$
 (se) (.0837) (.0061) (.0300)

7.5.1b An Exact Calculation

$$\ln(WAGE)_{FEMALES} - \ln(WAGE)_{MALES} = \ln\left(\frac{WAGE_{FEMALES}}{WAGE_{MALES}}\right) = \delta$$

$$\frac{WAGE_{FEMALES}}{WAGE_{MALES}} = e^{\delta}$$

$$\frac{WAGE_{FEMALES}}{WAGE_{MALES}} - \frac{WAGE_{MALES}}{WAGE_{MALES}} = \frac{WAGE_{FEMALES} - WAGE_{MALES}}{WAGE_{MALES}} = e^{\delta} - 1$$

$$100(e^{\hat{\delta}} - 1)\% = 100(e^{-.2526} - 1)\% = -22.32\%$$

7.5.2 Interaction and Quadratic Terms

$$ln(WAGE) = \beta_1 + \beta_2 EDUC + \beta_3 EXPER + \gamma (EDUC \times EXPER)$$
 (7.20)

$$\frac{\Delta \ln(WAGE)}{\Delta EXPER}\bigg|_{EDUC \ fixed} = \beta_3 + \gamma EDUC$$

$$ln(WAGE) = .1528 + .1341EDUC + .0249EXPER - .000962(EDUC \times EXPER)$$
(se) (.1722) (.0127) (.0071) (.00054)

7.5.2 Interaction and Quadratic Terms

$$ln(WAGE) = \beta_1 + \beta_2 EDUC + \beta_3 EXPER + \beta_4 EXPER^2 + \gamma (EDUC \times EXPER)$$

$$\% \Delta WAGE \cong 100(\beta_3 + 2\beta_4 EXPER + \gamma EDUC)\%$$

Keywords

- annual dummy variables
- binary variable
- Chow test
- collinearity
- dichotomous variable
- dummy variable
- dummy variable trap
- exact collinearity
- hedonic model
- interaction variable
- intercept dummy variable
- log-linear models
- nonlinear relationship
- polynomial

- reference group
- regional dummy variable
- seasonal dummy variables
- slope dummy variable

Chapter 7 Appendix

Appendix 7 Details of log-linear model interpretation

Appendix 7 Details of log-linear model interpretation

$$E(y) = \exp(\beta_1 + \beta_2 x + \sigma^2/2) = \exp(\beta_1 + \beta_2 x) \times \exp(\sigma^2/2)$$

$$E(y) = \exp(\beta_1 + \beta_2 x + \delta D) \times \exp(\sigma^2/2)$$

Appendix 7 Details of log-linear model interpretation

$$\%\Delta E(y) = 100 \left[\frac{E(y_1) - E(y_0)}{E(y_0)} \right] \%$$

$$= 100 \left[\frac{\left(\exp(\beta_1 + \beta_2 x + \delta) \times \exp(\sigma^2/2) \right) - \left(\exp(\beta_1 + \beta_2 x) \times \exp(\sigma^2/2) \right)}{\left(\exp(\beta_1 + \beta_2 x) \times \exp(\sigma^2/2) \right)} \right] \%$$

$$= 100 \left[\frac{\exp(\beta_1 + \beta_2 x) \exp(\delta) - \exp(\beta_1 + \beta_2 x)}{\exp(\beta_1 + \beta_2 x)} \right] \%$$

$$= 100 \left[\exp(\delta) - 1 \right] \%$$

Appendix 7 Details of log-linear model interpretation

$$E(y) = \exp(\beta_1 + \beta_2 x + \beta_3 z + \gamma(xz)) \times \exp(\sigma^2/2)$$

$$\frac{\partial E(y)}{\partial z} = \exp(\beta_1 + \beta_2 x + \beta_3 z + \gamma(xz)) \times \exp(\sigma^2/2) \times (\beta_3 + \gamma x)$$

$$100 \left\lceil \frac{\partial E(y)/E(y)}{\partial z} \right\rceil = 100 (\beta_3 + \gamma x) \%$$