


2.1 An Economic Model
2.2 An Econometric Model
2.3 Estimating the Regression Parameters
2.4 Assessing the Least Squares Estimators
2.5 The Gauss-Markov Theorem
2.6 The Probability Distributions of the Least 
Squares Estimators
2.7 Estimating the Variance of the Error Term 



Figure 2.1a Probability distribution of food expenditure y given income x = $1000
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Figure 2.1b Probability distributions of food expenditures y
given incomes x = $1000 and x = $2000
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The simple regression function

E y x xy x( | ) |= = +μ β β1 2



Figure 2.2 The economic model:  a linear relationship between 
average per person food expenditure and income
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Slope of regression line

“Δ” denotes “change in”

β2 = =
Δ
Δ

E y x
x

dE y x
dx

( | ) ( | )



Figure 2.3 The probability density function for y at two levels of income
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( ) 1 2|E y x x= β +β
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( ) 2var |y x = σ
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( )cov , 0i jy y =
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2
1 2 ,  y N x⎡ ⎤β +β σ⎣ ⎦�
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1 2( | )E y x x= β +β

2var( | )y x = σ

( )cov , 0i jy y =

( ) 2
1 2~ ,y N x⎡ ⎤β +β σ⎣ ⎦



2.2.1 Introducing the Error Term
The random error term is defined as

Rearranging gives

y is dependent variable; x is independent variable
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1 2( | )e y E y x y x= − = −β −β

y x e= + +β β1 2



The expected value of the error term, given x, is

The mean value of the error term, given x, is zero.
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( ) ( ) 1 2| | 0E e x E y x x= −β −β =



Figure 2.4 Probability density functions for e and y
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1 2y x e= β +β +
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( ) 0E e =

1 2( )E y x= β +β
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2var( ) var( )e y= σ =
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cov( , ) cov( , ) 0i j i je e y y= =
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( )20,e N σ�
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y x e= + +β β1 2

( ) 0E e = 1 2( )E y x= β +β
2var( ) var( )e y= σ =

cov( , ) cov( , )e e y yi j i j= = 0

e N~ ( , )0 2σ



Figure 2.5 The relationship among y, e and the true regression line
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Figure 2.6 Data for food expenditure example
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2.3.1 The Least Squares Principle
The fitted regression line is

The least squares residual
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1 2ˆi iy b b x= +

1 2垐i i i i ie y y y b b x= − = − −



Figure 2.7 The relationship among y, ê and the fitted regression line
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Any other fitted line

Least squares line has smaller sum of squared residuals
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Least squares estimates for the unknown parameters β1

and β2 are obtained my minimizing the sum of squares 

function
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The Least Squares Estimators
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2.3.2 Estimates for the Food Expenditure Function

A convenient way to report the values for b1 and b2 is to 
write out the estimated or fitted regression line: 
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( )( )
( )2 2

18671.2684 10.2096
1828.7876
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−
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1 2 283.5735 (10.2096)(19.6048) 83.4160b y b x= − = − =

ˆ 83.42 10.21i iy x= +



Figure 2.8 The fitted regression line
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2.3.3 Interpreting the Estimates

The value b2 = 10.21 is an estimate of β2, the amount by 
which weekly expenditure on food per household increases 
when household weekly income increases by $100. Thus, we 
estimate that if income goes up by $100, expected weekly 
expenditure on food will increase by approximately $10.21. 

Strictly speaking, the intercept estimate b1 = 83.42 is an 
estimate of the weekly food expenditure on food for a 
household with zero income. 
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2.3.3a Elasticities
Income elasticity is a useful way to characterize the responsiveness 
of consumer expenditure to changes in income. The elasticity of a 
variable y with respect to another variable x is 

In the linear economic model given by (2.1) we have shown that
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percentage change in 
percentage change in 

y y y y x
x x x x y

Δ Δ
ε = = =
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( )
2

E y
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Δ
β =

Δ



The elasticity of mean expenditure with respect to income is 

A frequently used alternative is to calculate the elasticity at the 
“point of the means” because it is a representative point on the 
regression line. 
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2.3.3b Prediction
Suppose that we wanted to predict weekly food expenditure for a 
household with a weekly income of $2000. This prediction is 
carried out by substituting x = 20 into our estimated equation to 
obtain

We predict that a household with a weekly income of $2000 will 
spend $287.61 per week on food. 
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ˆ 83.42 10.21 83.42 10.21(20) 287.61i iy x= + = + =



2.3.3c Examining Computer Output

Figure 2.9 EViews Regression Output
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2.3.4 Other Economic Models
The “log-log” model
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1 2ln( ) ln( )y x= β +β

[ln( )] 1d y dy
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2.4.1 The estimator b2

Slide 2-41Principles of Econometrics, 3rd Edition

2
1

N

i i
i

b w y
=

= ∑

2( )
i

i
i

x xw
x x
−

=
−∑

2 2 i ib w e= β +∑



( ) ( )i i i iE w e w E e=

2.4.2 The Expected Values of b1 and b2
We will show that if our model assumptions hold, then           , which means 
that the estimator is unbiased.
We can find the expected value of b2 using the fact that the expected value of a sum 
is the sum of expected values  

using                                and  
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2.4.3 Repeated Sampling
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( ) ( ) 2
2 2 2var b E b E b= −⎡ ⎤⎣ ⎦The variance of b2 is defined as

Figure 2.10 Two possible probability density functions for b2



2.4.4 The Variances and Covariances of b1 and b2

If the regression model assumptions SR1-SR5 are correct (assumption SR6 is not 
required), then the variances and covariance of b1 and b2 are:
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2.4.4 The Variances and Covariances of b1 and b2
The larger the variance term     , the greater the uncertainty there is in the 
statistical model, and the larger the variances and covariance of the least squares 
estimators.
The larger the sum of squares,                   , the smaller the variances of the least 
squares estimators and the more precisely we can estimate the unknown 
parameters. 
The larger the sample size N, the smaller the variances and covariance of the 
least squares estimators.
The larger this term         is, the larger the variance of the least squares estimator 
b1. 
The absolute magnitude of the covariance increases the larger in magnitude is 
the sample mean    , and the covariance has a sign opposite to that of    .  
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( ) ( ) 2
2 2 2var b E b E b= −⎡ ⎤⎣ ⎦The variance of b2 is defined as

Figure 2.11 The influence of variation in the explanatory variable x on precision of estimation 
(a) Low x variation, low precision (b) High x variation, high precision
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1. The estimators b1 and b2 are “best” when compared to similar estimators, those 
which are linear and unbiased. The Theorem does not say that b1 and b2 are the 
best of all possible estimators.

2. The estimators b1 and b2 are best within their class because they have the 
minimum variance. When comparing two linear and unbiased estimators, we 
always want to use the one with the smaller variance, since that estimation rule 
gives us the higher probability of obtaining an estimate that is close to the true 
parameter value.

3. In order for the Gauss-Markov Theorem to hold, assumptions SR1-SR5 must 
be true. If any of these assumptions are not true, then b1 and b2 are not the best 
linear unbiased estimators of β1 and β2.
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4. The Gauss-Markov Theorem does not depend on the assumption of normality 
(assumption SR6).

5. In the simple linear regression model, if we want to use a linear and unbiased 
estimator, then we have to do no more searching. The estimators b1 and b2 are 
the ones to use. This explains why we are studying these estimators and why 
they are so widely used in research, not only in economics but in all social and 
physical sciences as well.

6. The Gauss-Markov theorem applies to the least squares estimators. It does not
apply to the least squares estimates from a single sample.
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If we make the normality assumption (assumption SR6 about the error term) then 
the least squares estimators are normally distributed
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The variance of the random error ei is

if the assumption E(ei) = 0 is correct.

Since the “expectation” is an average value we might consider estimating σ2 as the 
average of the squared errors,

Recall that the random errors are
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2
2ˆ ie
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1 2i i ie y x= −β −β

2 2 2var( ) [ ( )] ( )i i i ie E e E e E e= σ = − =



The least squares residuals are obtained by replacing the unknown parameters by their 
least squares estimates,

There is a simple modification that produces an unbiased estimator, and that is
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1 2垐i i i i ie y y y b b x= − = − −

2
2 ˆ

ˆ ie
N

σ = ∑

2
2 ˆ

ˆ
2
ie

N
σ =

−
∑

2 2ˆ( )E σ = σ



Slide 2-54Principles of Econometrics, 3rd Edition

Replace the unknown error variance  in (2.14)-(2.16) by       to obtain: 2σ̂2σ
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The square roots of the estimated variances are the “standard errors” of b1
and b2. 

( ) ( )�
1 1se varb b=

( ) ( )�
2 2se varb b=
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The estimated variances and covariances for a regression are arrayed 
in a rectangular array, or matrix, with variances on the diagonal and 
covariances in the “off-diagonal” positions. 

( )� ( )�

( )� ( )�
1 1 2

1 2 2

var cov ,

cov , var

b b b

b b b

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦



Slide 2-58Principles of Econometrics, 3rd Edition

For the food expenditure data the estimated covariance matrix is: 

C INCOME
C 1884.442 -85.90316

INCOME -85.90316 4.381752
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(2A.1)
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Figure 2A.1 The sum of squares function and the minimizing values b1 and b2
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We can rewrite b2 in deviation from the mean form as:
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To obtain (2.12) replace yi in (2.11) by                           and simplify:1 2i i iy x e=β +β +
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2 2 i ib w e= β +∑
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(2F.1)

Let                       be any other linear estimator of β2.
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