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1 Two person zero sum games

1.1 Introduction: strategic interdependency

In this section we study games with only two players. We also restrict attention
to the case where the interests of the players are completely antagonistic: at the
end of the game, one player gains some amount, while the other loses the same
amount. These games are called “two person zero sum games”.
While in most economics situations the interests of the players are neither

in strong conflict nor in complete identity, this specific class of games provides
important insights into the notion of "optimal play". In some 2-person zero-sum
games,each player has a well defined “optimal” strategy, which does not depend
on her adversary decision (strategy choice). In some other games, no such
optimal strategy exists. Finally, the founding result of Game Theory, known as
the minimax theorem, says that optimal strategies exist when our players can
randomize over a finite set of deterministic strategies.

1.2 Two-person zero-sum games in strategic form

A two-person zero-sum game in strategic form is a triple G = (S, T, u), where
S is a set of strategies available to the player 1, T is a set of strategies available
to the player 2, and u : S × T → R is the payoff function of the game G; i.e.,
u(s, t) is the resulting gain for player 1 and the resulting loss for player 2, if they
choose to play s and t respectively. Thus, player 1 tries to maximize u, while
player 2 tries to minimize it. We call any strategy choice (s, t) an outcome of
the game G.
When the strategy sets S and T are finite, the game G can be represented

by an n by m matrix A, where n = |S|, m = |T |, and aij = u(si, tj).
The secure utility level for player 1 (the minimal gain he can guarantee him-

self, no matter what player 2 does) is given by

m = max
s∈S

min
t∈T

u(s, t) = max
i
min
j

aij .

A strategy s∗ for player 1 is called prudent, if it realizes this secure max-min
gain, i.e., if min

t∈T
u(s∗, t) = m.
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The secure utility level for player 2 (the maximal loss she can guarantee
herself, no matter what player 1 does) is given by

m = min
t∈T

max
s∈S

u(s, t) = min
j
max
i

aij .

A strategy t∗ for player 2 is called prudent, if it realizes this secure min-max
loss, i.e., if max

s∈S
u(s, t∗) = m.

The secure utility level is what a player can get for sure, even if the other
player behaves in the worst possible way. For each strategy of a player we
calculate what could be his or her worst payoff, resulting from using this strategy
(depending on the strategy choice of another player). A prudent strategy is one
for which this worst possible result is the best. Thus, by a prudent choice of
strategies, player 1 can guarantee that he will gain at least m, while player 2
can guarantee that she will loose at most m. Given this, we should expect that
m ≤ m. Indeed:

Lemma 1 For all two-person zero-sum games, m ≤ m.

Proof : m = max
s∈S

min
t∈T

u(s, t) = min
t∈T

u(s∗, t) ≤ u(s∗, t∗) ≤ max
s∈S

u(s, t∗) =

min
t∈T

max
s∈S

u(s, t) = m.

Definition 2 If m = m, then m = m = m is called the value of the game G.
If m < m, we say that G has no value.
An outcome (s∗, t∗) ∈ S × T is called a saddle point of the payoff function

u, if u(s, t∗) ≤ u(s∗, t∗) ≤ u(s∗, t) for all s ∈ S and for all t ∈ T .

Remark 3 Equivalently, we can write that (s∗, t∗) ∈ S × T is a saddle point if
max
s∈S

u(s, t∗) ≤ u(s∗, t∗) ≤ min
t∈T

u(s∗, t)

When the game is represented by a matrix A, (s∗, t∗) will be a saddle point,
if and only if as∗t∗ is the largest entry in its column and the smallest entry in
its row.
A game has a value if and only if it has a saddle point:

Theorem 4 If the game G has a value m, then an outcome (s∗, t∗) is a saddle
point if and only if s∗ and t∗ are prudent. In this case, u(s∗, t∗) = m. If G has
no value, then it has no saddle point either.

Proof :
Suppose that m = m = m, and s∗ and t∗ are prudent strategies of players 1

and 2 respectively. Then by the definition of prudent strategies

max
s∈S

u(s, t∗) = m = m = m = min
t∈T

u(s∗, t).

In particular, u(s∗, t∗) ≤ m ≤ u(s∗, t∗); hence, u(s∗, t∗) = m.
Thus, max

s∈S
u(s, t∗) = u(s∗, t∗) = min

t∈T
u(s∗, t), and so (s∗, t∗) is a saddle point.
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Conversely, suppose that (s∗, t∗) is a saddle point of the game, i.e.,max
s∈S

u(s, t∗) ≤
u(s∗, t∗) ≤ min

t∈T
u(s∗, t). Then, in particular, max

s∈S
u(s, t∗) ≤ min

t∈T
u(s∗, t).

But by the definition of m as max
s∈S

min
t∈T

u(s, t) we have min
t∈T

u(s∗, t) ≤ m, and

by the definition of m as min
t∈T

max
s∈S

u(s, t) we have max
s∈S

u(s, t∗) ≥ m. Hence, using

Lemma 1 above, we obtain that min
t∈T

u(s∗, t) ≤ m ≤ m ≤ max
s∈S

u(s, t∗).

It follows that m = max
s∈S

u(s, t∗) = u(s∗, t∗) = min
t∈T

u(s∗, t) = m. Thus, G

has a value m = m = m, and s∗ and t∗ are prudent strategies.¥
Examples:

• matching pennies is the simplest game with no value: each player chooses
Left or Right; player 1 wins +1 if their choices coincide, loses 1 otherwise.

• The noisy gunfight is a simple game with a value. The two players walk
toward each other, with a single bullet in their gun. Let ai(t), i = 1, 2,
be the probability that player i hits player j if he shoots at thime t. At
t = 0, they are far apart so ai(0) = 0; at time t = 1, they are so close that
ai(1) = 1; finally ai is a continuous and increasing function of t. When
player i shoots, one of 2 things happens: if j is hit, , player iwins $1 from
j and the game stops (j cannot shoot any more); if i misses, j hears the
shot, and realizes that i cannot shoot any more so j waits until t = 1,
hits i for sure and collects $1from him. Note that the silent version of the
gunfight model (in the problem set below) has no value.

In a game with a value, prudent strategies are optimal–using them, player
1 can guarantee to get at least m, while player 2 can guarantee to loose at most
m.
In order to find a prudent strategy:
— player 1 solves the program max

s∈S
m1(s), where m1(s) = min

t∈T
u(s, t) (max-

imize the minimal possible gain);
— player 2 solves the program min

t∈T
m2(t), where m2(t) = max

s∈S
u(s, t) (mini-

mize the maximal possible loss).
We can always find such strategies when the sets S and T are finite.

Remark 5 (Infinite strategy sets) When S and T are compact (i.e. closed
and bounded) subsets of Rk, and u is a continuous function, prudent strategies
always exist, due to the fact that any continuous function, defined on a compact
set, reaches on it its maximum and its minimum.

In a game without a value, we cannot deterministically predict the outcome
of the game, played by rational players. Each player will try to guess his/her
opponent’s strategy choice. Recall matching pennies.
Here are several facts about two-person zero-sum games in normal form.
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Lemma 6 (rectangularity property) A two-person zero-sum games in normal
form has at most one value, but it can have several saddle points, and each
player can have several prudent (and even several optimal) strategies. Moreover,
if (s1, t1) and (s2, t2) are saddle points of the game, then (s1, t2) and (s1, t2) are
also saddle points.

A two-person zero-sum games in normal form is called symmetric if S = T,
and u(s, t) = −u(t, s) for all s, t. When S, T are finite, symmetric games are
those which can be represented by a square matrix A, for which aij = −aji for
all i, j (in particular, aii = 0 for all i).

Lemma 7 If a symmetric game has a value then this value is zero. Moreover,
if s is an optimal strategy for one player, then it is also optimal for another one.

Proof: Say the game (S, T, u) has a value v, then we have

v = max
s
min
t

u(s, t) = max
s
{−max

t
u(t, s)} = −min

s
max
t

u(t, s) = −v

so v = 0. The proof of the 2d statement is equally easy.

1.3 Two-person zero-sum games in extensive form

A game in extensive form models a situation where the outcome depends on
the consecutive actions of several involved agents (“players”). There is a precise
sequence of individual moves, at each of which one of the players chooses an
action from a set of potential possibilities. Among those, there could be chance,
or random moves, where the choice is made by some mechanical random device
rather than a player (sometimes referred to as “nature” moves).
When a player is to make the move, she is often unaware of the actual choices

of other players (including nature), even if they were made earlier. Thus, a
player has to choose an action, keeping in mind that she is at one of the several
possible actual positions in the game, and she cannot distinguish which one is
realized: an example is bridge, or any other card game.
At the end of the game, all players get some payoffs (which we will measure

in monetary terms). The payoff to each player depends on the whole vector of
individual choices, made by all game participants.
The most convenient representation of such a situation is by a game tree,

where to non terminal nodes are attached the name of the player who has the
move, and to terminal nodes are attached payoffs for each player. We must also
specify what information is available of a player at each node of the tree where
she has to move.
A strategy is a full plan to play a game (for a particular player), prepared in

advance. It is a complete specification of what move to choose in any potential
situation which could arise in the game. One could think about a strategy
as a set of instructions that a player who cannot physically participate in the
game (but who still wants to be the one who makes all the decisions) gives
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to her "agent". When the game is actually played, each time the agent is to
choose a move, he looks at the instruction and chooses according to it. The
representative, thus, does not make any decision himself!
Note that the reduction operator just described does not work equally well

for games with n -players with multiple stages of decisions.
Each player only cares about her final payoff in the game. When the set

of all available strategies for each player is well defined, the only relevant in-
formation is the profile of final payoffs for each profile of strategies chosen by
the players. Thus to each game in extensive form is attached a reduced game in
strategic form. In two-person zero sum games, this reduction is not conceptually
problematic, however for more general n-person games, it does not capture the
dynamic character of a game in extensive form, and for this we need to develop
new equilibrium concepts: see Chapter 5.
In this section we discuss games in extensive form with perfect information.
Examples:

• Gale’s chomp game: the player take turns to destroy a n×m rectangular
grid, with the convention that if player i kills entry (p, q), all entries (p0, q0)
such that (p0, q0) ≥ (p, q) are destroyed as well. When a player moves, he
must destroy one of the remaining entries.The player who kills entry (1, 1)
loses. In this game player 1 who moves first has an optimal strategy that
guarantees he wins. This strategy is easy to compute if n = m, not so if
n 6= m.

• Chess and Zermelo’s theorem: the game of Chess has three payoffs, +1,−1, 0.
Although we do which one, one of these 3 numbers is the value of the game,
i.e., either Win can guarantee a win, or Black can, or both can secure a
draw.

Definition 8 A finite game in extensive form with perfect information is given
by
1) a tree, with a particular node taken as the origin;
2) for each non-terminal node, a specification of who has the move;
3) for each terminal node, a payoff attached to it.

Formally, a tree is a pair Γ = (N,σ) where N is the finite set of nodes, and
σ : N → N ∪ ∅ associates to each node its predecessor. A (unique) node n0
with no predecessors (i.e., σ(n0) = ∅) is the origin of the tree. Terminal nodes
are those which are not predecessors of any node. Denote by T (N) the set of
terminal nodes. For any non-terminal node r, the set {n ∈ N : σ(n) = r} is the
set of successors of r. The maximal possible number of edges in a path from the
origin to some terminal node is called the length of the tree Γ.
Given a tree Γ, a two-person zero-sum game with perfect information is

defined by a partition of N as N = T (N)∪N1 ∪N2 into three disjoint sets and
a payoff function defined over the set of terminal nodes u : T (N)→ R.
For each non-terminal node n, n ∈ Ni (i = 1, 2) means that player i has

the move at this node. A move consists of picking a successor to this node.
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The game starts at the origin n0 of the tree and continues until some terminal
node nt is reached. Then the payoff u(nt) attached to this node is realized (i.e.,
player 1 gains u(nt) and player 2 looses u(nt)).
We do not necessary assume that n0 ∈ N1. We even do not assume that if

a player i has a move at a node n, then it is his or her opponent who moves
at its successor nodes (if the same player has a move at a node and some of its
successors, we can reduce the game and eliminate this anomaly).
The term “perfect information” refers to the fact that, when a player has

to move, he or she is perfectly informed about his or her position in the tree.
If chance moves occur later or before this move, their outccome is revealed to
every player.
Recall that a strategy for player i is a complete specification of what move

to choose at each and every node from Ni. We denote their set as S, or T, as
above.

Theorem 9 Every finite two-person zero-sum game in extensive form with per-
fect information has a value. Each player has at least one optimal (prudent)
strategy in such a game.

Proof :
The proof is by induction in the length l of the tree Γ. For l = 1 the theorem

holds trivially, since it is a one-person one-move game (say, player 1 is to choose
a move at n0, and any of his moves leads to a terminal node). Thus, a prudent
strategy for the player 1 is a move which gives him the highest payoff, and this
payoff is the value of the game.
Assume now that the theorem holds for all games of length at most l − 1,

and consider a game G of length l. Without loss of generality, n0 ∈ N1, i.e.,
player 1 has a move at the origin.
Let {n1, ..., nk} be the set of successors of the origin n0. Each subtree Γi,

with the origin ni, is of length l−1 at most. Hence, by the induction hypothesis,
any subgame Gi associated with a Γi has a value, say, mi. We claim that the
value of the original game G is m = max

1≤i≤k
mi.

Indeed, by moving first to ni and then playing optimally at Gi, player 1 can
guarantee himself at least mi. Thus, player 1 can guarantee that he will gain at
least m in our game G. But, by playing optimally in each game Gi, player 2 can
guarantee herself the loss of not more than mi. Hence, player 2 can guarantee
that she will lose at mostm in our game G. Thus max-min and min-max payoffs
coincide and m is the value of the game G.¥
The value of a finite two-person zero-sum game in extensive form, as well as

optimal strategies for the players, are easily found by solving the game backward.
We start by any non-terminal node n, such that all its successors are terminal.
An optimal choice for the player i who has a move at n is clearly one which
leads to a terminal node with the best payoff for him/her (the max payoff if
i = 1, or the min payoff if i = 2). We can write down this optimal move for
the player i at the node n, then delete all subtree which originates at n, except
the node n itself, and finally assign to n the best payoff player i can get. Thus,
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the node n becomes the terminal node of so reduced game tree. After a finite
number of such steps, the original game will reduce to one node n0, and the
payoff assigned to it will be the value of the initial game. The optimal strategies
of the players are given by their optimal moves at each node, which we wrote
down when reducing the game.

Remark 10 Consider the simple case, where all payoffs are either +1 or −1
(a player either “wins” or “looses”), and where whenever a player has a move
at some node, his/her opponent is the one who has a move at all its successors.
An example is Gale’s chomp game above. When we solve this game backward,
all payoffs which we attach to non-terminal nodes in this process are +1 or −1
(we can simply write “+” or “−”). Now look at the original game tree with “+”
or “−” attached to each its node according to this procedure. A “+” sign at a
node n means that this node (or “this position”) is “winning” <for player 1>,
in a sense that if the player 1 would have a move at this node he would surely
win, if he would play optimally. A “−” sign at a node n means that this node
(or “this position”) is “loosing” <for player 1>, in a sense that if the player 1
would have a move at this node he would surely lose, if his opponent would play
optimally. It is easy to see that “winning” nodes are those which have at least
one “loosing” successor, while “loosing” nodes are those whose all successors
are “winning”. A number of the problems below are about computing the set of
winning and losing positions.

1.4 Mixed strategies

Motivating examples:

Matching pennies: the matrix
µ

1 −1
−1 1

¶
, has no saddle point. Moreover,

for this game m = −1 and m = 1 (the worst possible outcomes), i.e., a prudent
strategy does not provide any of two players with any minimal guarantee. Here
a player’s payoff depends completely on how well he or she can predict the choice
of the other player. Thus, the best way to play is to be unpredictable, i.e. to
choose a strategy (one of the two available) completely random. It is easy to see
that if each player chooses either strategy with probability 1/2 according to the
realization of some random device (and so without any predictable pattern),
then “on average” (after playing this game many times) they both will get
zero. In other words, under such strategy choice the “expected payoff” for each
player will be zero. Moreover, we show below that this randomized strategy is
also optimal in the mixed extension of the deterministic game.
Bluffing in Poker When optimal play involves some bluffing, the bluffing

behavior needs to be unpredictable. This can be guaranteed by delegating a
choice of when to bluff to some (carefully chosen!) random device. Then even
the player herself would not be able to predict in advance when she will be
bluffing. So the opponents will certainly not be able to guess whether she is
bluffing. See the bluffing game (problem 17) below.
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Schelling’s toy safe. Ann has 2 safes, one at her office which is hard to crack,
another "toy" fake at home which any thief can open with a coat-hanger (as in
the movies). She must keep her necklace, worth $10,000, eithe at home or at
the office. Bob must decide which safe to visit (he has only one visit at only one
safe). If he chooses to visit the office, he has a 20% chance of opening the safe.
If he goes to ann’s home, he is sure to be able to opent the safe. The point of
this example is that the presence of the toy safe helps Ann, who should actually
use it to hide the necklace with a positive probability.

Even when using mixed strategies is clearly warranted, it remains to deter-
mine which mixed strategy to choose (how often to bluff, and on what hands?).
The player should choose the probabilities of each deterministic choice (i.e. on
how she would like to program the random device she uses). Since the player
herself cannot predict the actual move she will make during the game, the pay-
off she will get is uncertain. For example, a player may decide that she will
use one strategy with probability 1/3, another one with probability 1/6, and
yet another one with probability 1/2. When the time to make her move in
the game comes, this player would need some random device to determine her
final strategy choice, according to the pre-selected probabilities. In our exam-
ple, such device should have three outcomes, corresponding to three potential
choices, relative chances of these outcomes being 2 : 1 : 3. If this game is played
many times, the player should expect that she will play 1-st strategy roughly
1/3 of the time, 2-nd one roughly 1/6 of the time, and 3-d one roughly 1/2 of
the time. She will then get “on average” 1/3 (of payoff if using 1-st strategy)
+1/6 (of payoff if using 2-nd strategy) +1/2 (of payoff if using 3-d strategy).
Note that, though this player’s opponent cannot predict what her actual

move would be, he can still evaluate relative chances of each choice, and this will
affect his decision. Thus a rational opponent will, in general, react differently
to different mixed strategies.
What is the rational behavior of our players when payoffs become uncertain?

The simplest and most common hypothesis is that they try to maximize their
expected (or average) payoff in the game, i.e., they evaluate random payoffs
simply by their expected value. Thus the cardinal values of the deterministic
payoffs now matter very much, unlike in the previous sections where the ordinal
ranking of the outcomes is all that matters to the equilibrium analysis. We give
in Chapter 2 some axiomatic justifications for this crucial assumption.
The expected payoff is defined as the weighted sum of all possible payoffs

in the game, each payoff being multiplied by the probability that this payoff
is realized. In matching pennies, when each player chooses a “mixed strategy”
(0.5, 0.5) (meaning that 1-st strategy is chosen with probability 0.5, and 2-
nd strategy is chosen with probability 0.5), the chances that the game will
end up in each particular square (i, j), i.e., the chances that the 1-st player
will play his i-th strategy and the 2-nd player will play her j-th strategy, are
0.5 × 0.5 = 0.25. So the expected payoff for this game under such strategies is
1× 0.25 + (−1)× 0.25 + 1× 0.25 + (−1)× 0.25 = 0.
Consider a general finite game G = (S, T, u), represented by an n by m
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matrix A, where n = |S|, m = |T |. The elements of the strategy sets S and T
(“sure” strategy choices, which do not involve randomization) are called pure
or deterministic strategies. A mixed strategy for the player is a probability
distribution over his or her deterministic strategies, i.e. a vector of probabilities
for each deterministic strategy which can be chosen during the actual game
playing. Thus, the set of all mixed strategies for player 1 is s = {(s1, ..., sn) :Pn

i=1 si = 1, si ≥ 0}, while for player 2 it is Y = {(y1, ..., ym) :
Pm

i=1 yj =
1, yj ≥ 0}.

Claim 11 When player 1 chooses s ∈ s and player 2 chooses y ∈ Y, the expected
payoff of the game is equal to sTAy.

Proof: sTAy = (s1, ..., sn)

⎛⎝ a11 ... a1m
... ... ...
an1 ... anm

⎞⎠⎛⎝ y1
...
ym

⎞⎠ =
nP
i=1

mP
j=1

siaijyj ,

and each element of this double sum is siaijyj = aijsiyj =
aij×Prob[1 chooses i]×Prob[2 chooses j] = aij×Prob[1 chooses i and 2 chooses
j].¥
We define the secure utility level for player 1<2> (the minimal gain he can

guarantee himself, no matter what player 2<1> does) in the same spirit as
before. The only change is that it is now the “expected” utility level, and that
the strategy sets available to the players are much bigger now: s and Y , instead
of S and T .
Let v1(s) = min

y∈Y
sTAy be the minimum payoff player 1 can get if he chooses

to play s. Then v1 = max
s∈s

v1(s) = max
s∈s

min
y∈Y

sTAy is the secure utility level for

player 1.
Similarly, we define v2(y) = max

s∈s
sTAy, and v2 = min

y∈Y
v2(y) = min

y∈Y
max
s∈s

sTAy,

the secure utility level for player 2.

Claim 12 The number sTAy can be viewed as a weighted average of the expected
payoffs for player 1 when he uses s against player’s 2 pure strategies (where
weights are probabilities that player 2 will use these pure strategies).

Proof:

sTAy = sT

⎛⎝ a11 ... a1m
... ... ...
an1 ... anm

⎞⎠⎛⎝ y1
...
ym

⎞⎠ = sT [y1A·1 + ...+ ymA·m] =

= y1
£
sTA·1

¤
+ ...+ ym

£
sTA·m

¤
= y1

£
sTAe1

¤
+ ...+ ym

£
sTAem

¤
.

Here A·j is j-th column of the matrix A, and ej = (0, ..., 0, 1, 0, ..., 0) is
the (m-dimensional) vector, whose all coordinates are zero, except that its j-
th coordinate is 1, which represents the pure strategy j of player 2. Recall
A·j = Aej .
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Now, sTAej is the expected payoff to player 1, when he uses (mixed) strategy

s and player 2 uses (pure) strategy ej . Hence, sTAy =
mP
j=1

yj
£
sTAej

¤
is a

weighted average of player 1’s payoffs against pure strategies of player 2 (when
player 1 uses strategy s). In this weighted sum, weights yj are equal to the
probabilities that player 2 would choose these pure strategies ej .
Given this claim, v1(s) = min

y∈Y
sTAy, the minimum of sTAy, will be attained

at some pure strategy j (i.e., at some ej ∈ Y ). Indeed, if sTAej > v1(s) for all
j, then we would have sTAy =

P
yj
£
sTAej

¤
> v1(s) for all y ∈ Y ..

Hence, v1(s) = min
j

sTA·j , and v1 = max
s∈s

min
j

sTA·j . Similarly, v2(y) =

max
i

Ai·y, where Ai· is the i-th row of the matrix A, and v2 = min
y∈Y

max
i

Ai·y.

As with pure strategies, the secure utility level player 1 can guarantee himself
(minimal amount he could gain) cannot exceed the secure utility level payer 2
can guarantee herself (maximal amount she could lose): v1 ≤ v2. This follows
from Lemma 1.
Such prudent mixed strategies s and y are called maximin strategy (for

player 1) and minimax strategy (for player 2) respectively.

Theorem 13 (The Minimax Theorem) v1 = v2 = v. Thus, if players can use
mixed strategies, any game with finite strategy sets has a value.

Proof. Let n×m matrix A be the matrix of a two person zero sum game.
The set of all mixed strategies for player 1 is s = {(s1, ..., sn) :

Pn
i=1 si = 1, si ≥

0}, while for player 2 it is Y = {(y1, ..., ym) :
Pm

i=1 yj = 1, yj ≥ 0}.
Let v1(s) = min

y∈Y
s ·Ay be the smallest payoff player 1 can get if he chooses to

play s. Then v1 = max
s∈s

v1(s) = max
s∈s

min
y∈Y

s·Ay is the secure utility level for player
1. Similarly, we define v2(y) = max

s∈s
s ·Ay, and v2 = min

y∈Y
v2(y) = min

y∈Y
max
s∈s

s ·Ay
is the secure utility level for player 2. We know that v1 ≤ v2.
Consider the following closed convex sets in Rn:

• S = {z ∈ Rn : z = Ay for some y ∈ Y } is a convex set, since Ay =
y1A·1 + ...+ ymA·m, where A·j is j-th column of the matrix A, and hence
S is the set of all convex combinations of columns of A, i.e., the convex
hull of the columns of A. Moreover, since it is a convex hull of m points,
S is a convex polytope in Rn with m vertices (extreme points), and thus
it is also closed and bounded.

• Cones Kv = {z ∈ Rn : zi ≤ v for all i = 1, ..., n} are obviously convex and
closed for any v ∈ R. Further, it is easy to see thatKv = {z ∈ Rn : s·z ≤ v
for all s ∈ s}.

Geometrically, when v is very small, the cone Kv lies far from the bounded
set S, and they do not intersect. Thus, they can be separated by a hyperplane.
When v increases, the cone Kv enlarges in the direction (1, ..., 1), being “below”
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the set S, until the moment when Kv will “touch” the set S for the first time.
Hence, v, the maximal value of v for which Kv still can be separated from S, is
reached when the cone Kv first “touches” the set S. Moreover, Kv and S have
at least one common point z, at which they “touch”. Let y ∈ Y be such that
Ay = z ∈ S ∩Kv.
Assume that Kv and S are separated by a hyperplane H = {z ∈ Rn : s · z =

c}, where
Pn

i=1 si = 1. It means that s · z ≤ c for all z ∈ Kv, s · z ≥ c for all
z ∈ S, and hence s · z = c. Geometrically, since Kv lies “below” the hyperplane
H, all coordinates si of the vector s must be nonnegative, and thus s ∈ s.
Moreover, since Kv = {z ∈ Rn : s · z ≤ v for all s ∈ s}, s ∈ s and z ∈ Kv, we

obtain that c = s · z ≤ v. But since vector (v, ..., v) ∈ Kv we also obtain that
c ≥ s · (v, ..., v) = v

Pn
i=1 si = v. It follows that c = v.

Now, v1 = max
s∈s

min
y∈Y

s ·Ay ≥ min
y∈Y

s ·Ay ≥ v (since s · z ≥ c = v for all z ∈ S,

i.e. for all z = Ay, where y ∈ Y ).
Next, v2 = min

y∈Y
max
s∈s

s · Ay ≤ max
s∈s

s · Ay = max
s∈s

s · z = max
s∈s

z · s ≤ v (since

z = Ay ∈ Kv, and since z · s ≤ v for all s ∈ s and all z ∈ Kv, in particular,
z · s ≤ v for all s ∈ s).
We obtain that v2 ≤ v ≤ v1. Together with the fact that v1 ≤ v2, it gives us

v2 = v = v1, the desired statement.
Note also, that the maximal value of v1(s) is reached at s, while the minimal

value of v2(y) is reached at y. Thus, s and y constructed in the proof are optimal
strategies for players 1 and 2 respectively.

Remark 14 When the sets of pure strategies are infinite, mixed strategies can
still be defined as probability distributions over these sets, but the existence of
a value for the game in mixed strategies is no longer guaranteed. One needs to
check for instance that the assumptions of Von Neumann’s Theorem below are
satisfied.

1.5 Computation of optimal strategies

How can we find the maximin (mixed)strategy s, the minimax (mixed) strategy
y, and the value v of a given game?
If the game with deterministic strategies (the original game) has a saddle

point, then v = m, and the maximin and minimax strategies are deterministic.
Finding them amounts to find an entry aij of the matrix A which is both the
maximum entry in its column and the minimum entry in its row.
When the original game has no value, the key to computing optimal mixed

strategies is to know their supports, namely the set of strategies used with
strictly positive probability. Let s, y be a pair of optimal strategies, and v =
sTAy. Since for all j we have that sTAej ≥ min

y∈Y
sTAy = v1(s) = v1 = v, it

follows that v = sTAy = y1
£
sTAe1

¤
+ ... + ym

£
sTAem

¤
≥ y1v + ... + ymv =

v (y1 + ...+ ym) = v, and the equality implies sTA·j = sTAej = v for all j
such that yj 6= 0. Thus, player 2 receives her minimax value v2 = v by playing
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against s any pure strategy j which is used with a positive probability in her
minimax strategy y (i.e. any strategy j, such that yj 6= 0).
Similarly, player 1 receives his maximin value v1 = v by playing against y

any pure strategy i which is used with a positive probability in his maximin
strategy s (i.e. any strategy i, such that si 6= 0). Setting S∗ = {i|si > 0} and
T ∗ = {j|yj > 0}, we see that s, y solve the following system with unknown s, y

sTA·j = v for all j ∈ T ∗;Ai.y = v for all i ∈ S∗

nX
i=1

si = 1, si ≥ 0,
mX
i=1

yj = 1, yj ≥ 0

The difficulty is to find the supports S∗, T ∗, because there are 2n+m possible
choices, and no systematic way to guess!
However we can often simplify the task of computing the supports of optimal

mixed strategies by successively eliminating dominated rows and columns.

Definition 15 We say that i-th row of a matrix A dominates its k-th row, if
aij ≥ akj for all j and aij > akj for at least one j. Similarly, we say that
j-th column of a matrix A dominates its l-th column, if aij ≥ ail for all i and
aij > ail for at least one i.

In other words, a pure strategy (represented by a row or a column of A)
dominates another pure strategy if the choice of the first (dominating) strategy
is at least as good as the choice of the second (dominated) strategy, and in some
cases it is strictly better. A player can always find an optimal mixed strategy
using only undominated strategies.

Proposition 16 If rows i1, ..., ik of a matrix A are dominated, then player 1
has an optimal strategy s such that si1 = ... = sik = 0; moreover, any optimal
strategy for the game obtained by removing dominated rows from A will also
be an optimal strategy for the original game. The same is true for dominated
columns and player 2.

Given this, we can proceed as follows. Removing dominated rows of A gives
a smaller matrix A1. Removing dominated columns of A1 leaves us with a yet
smaller matrix A2. We continue by removing dominated rows of A2, etc., until
we obtain a matrix which does not contain dominated rows or columns. The
optimal strategies and the value for the game with this reduced matrix will still
be the optimal strategies and the value for the initial game represented by A.
This process is called “iterative elimination of dominated strategies”. See the
problems for examples of application of this technique.

1.5.1 2× 2 games

Suppose that A =

µ
a11 a12
a21 a22

¶
and this game does not have saddle point.

In this case, a pure strategy cannot be optimal for either player (check it!). It
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follows that optimal strategies (s1, s2) and (y1, y2) must have all components
positive. Let us repeat the argument above for the 2× 2 case.
We have v = sTAy = a11s1y1 + a12s1y2 + a21s2y1 + a22s2y2, or

s1(a11y1 + a12y2) + s2(a21y1 + a22y2) = v.

But a11y1 + a12y2 ≤ v and a21y1 + a22y2 ≤ v (these are the losses of player 2
against 1-st and 2-nd pure strategies of player 1; but since y is player’s 2 optimal
strategy, she cannot lose more then v in any case). Hence, s1(a11y1 + a12y2) +
s2(a21y1 + a22y2) ≤ s1v + s2v = v.
Since s1 > 0 and s2 > 0, the equality is only possible when a11y1+a12y2 = v

and a21y1 + a22y2 = v.
Similarly, it can be seen that a11s1 + a21s2 = v and a12s1 + a22s2 = v.
We also know that s1 + s2 = 1 and y1 + y2 = 1.
We thus have the linear system with 6 equations and 5 variables s1, s2, y1, y2

and v. Minimax theorem guarantees us that this system has a solution with
s1, s2, y1, y2 ≥ 0. One of these 6 equations is actually redundant. The system has
a unique solution provided the original game has no saddle point. In particular

v =
a11a22 − a12a21

a11 + a22 − a12 − a21

1.5.2 Symmetric games

The game with matrix A is symmetric if A = −AT (Exercise:check this). Like
in a general 2 person zero-sum game, the value of a symmetric game is zero.
Moreover, if s is an optimal strategy for player 1, then it is also optimal for
player 2.

1.6 Von Neumann’s Theorem

It generalizes the minimax theorem. It follows from the more general Nash
Theorem in Chapter 4.

Theorem 17 The game (S, T, u) has a value and optimal strategies if S, T are
convex compact subsets of some euclidian spaces, the payoff function u is con-
tinuous on S × T , and for all s ∈ S, all t ∈ T

t0 → u(s, t0) is quasi-convex in t0; s0 → u(s0, t) is quasi-concave in s0

Example: Borel’s model of poker.
Each player bids $1, then receives a hand mi ∈ [0, 1]. Hands are inde-

pendently and uniformly distributed on [0, 1].Each player observes only his
hand.Player 1 moves first, by either folding or bidding an additional $5. If
1 folds, the game is over and player 2 collects the pot. If 1 bids, player 2 can
either fold (in which case 1 collects the pot) or bid $5 more to see: then the
hands are revealed and the highest one wins the pot.
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A strategy of player i can be any mapping from [0, 1] into {F,B}, however it
is enough to consider the following simple threshold strategies si : fold whenever
mi ≤ si, bid whenever mi > si. Notice that for player 2, actual bidding only
occur if player 1 bids before him. Compute the probability π(s1, s2) that m1 >
m2 given that si ≤ mi ≤ 1 :

π(s1, s2) =
1 + s1 − 2s2
2(1− s2)

if s2 ≤ s1

=
1− s2
2(1− s1)

if s1 ≤ s2

from which the payoff function is easily derived:

u(s1, s2) = −6s21 + 5s1s2 + 5s1 − 5s2 if s2 ≤ s1

= 6s22 − 7s1s2 + 5s1 − 5s2 if s1 ≤ s2

The Von Neumann theorem applies, and the utility function is continuously
differentiable. Thus the saddle point can be found by solving the system
∂u
∂si
(s) = 0, i = 1, 2. This leads to

s∗1 = (
5

7
)2 = 0.51; s∗2 =

5

7
= 0.71

and the value −0.51: player 2 earns on average 51 cents.
Other examples are in the problems below.

1.7 Problems for two person zero-sum games

1.7.1 Pure strategies

Problem 1
Ten thousands students formed a square. In each row, the tallest student is
chosen and Mary is the shortest one among those. In each column, a shortest
student is chosen, and John is the tallest one among those. Who is taller–John
or Mary?

Problem 2
Compute m = minmax and m = maxmin values for the following matrices:

2 4 6 3
6 2 4 3
4 6 2 3

3 2 2 1
2 3 2 1
2 2 3 1

Find all saddle points.

Problem 3. Gale’s roulette
a)Each wheel has an equal probability to stop on any of its numbers. Player 1
chooses a wheel and spins it. Player 2 chooses one of the 2 remaining wheels
(while the wheel chosen by 1 is still spinning), and spins it. The winner is the
player whose wheel stops on the higher score. He gets $1 from the loser.
Numbers on wheel #1: 2,4,9; on wheel #2: 3,5,7; on wheel #3: 1,6,8

14



Find the value and optimal strategies of this game
b) Variant: the winner with a score of s gets $s from the loser.

Problem 4 Land division game.
The land consists of 3 contiguous pieces: the unit square with corners
(0, 0), (1, 0), (0, 1), (1, 1), the triangle with corners (0, 1), (1, 1), (0, 2), the trian-
gle with corners (1, 0), (1, 1), (2, 1). Player 1 chooses a vertical line L with 1st
coordinate in [0, 1]. Player 2 chooses an horizontal line M with 2d coordinate
in [0, 1]. Then player 1 gets all the land above M and to the left of L, as well
as the land below M and to the right of L. Player 2 gets the rest. Both players
want to maximize the area of their land. Find the value and optimal strategies.

Problem 5 Silent gunfight
Now the duellists cannot hear when the other player shoots. Payoffs are com-
puted in the same way. If v is the value of the noisy gunfight, show that in
the silent version, the values m = minmax and m = maxmin are such that
m < v < m.

Problem 6
Two players move in turn and the one who cannot move loses. Find the winner
(1-st or 2-nd player) and the winning strategy.
a) A castle stays on the square a1 of the 8×8 chess board. A move consists in
moving the castle according to the chess rules, but only in the directions up or
to the right.
b) The same game, but with a knight instead of a castle.
c) A move consists in placing a castle on the 8 by 8 chess board in such a way,
that it does not threatens any of the castles already present.
d) The same game, but bishops are to be placed instead of castles.
e) 20 coins are placed on the table in a chain (such that they touch each other),
so that they form either a straight line, or a circle. A move consists in taking
either one or two adjacent (touching) coins.
f) The game starts with two piles, of respectively 20 and 21 stones. A move
consists in taking one pile away and dividing the other into two nonempty piles.
g) The same game, but the two piles are of sizes n and m.
h) Same rules for moving as in f), but the one who cannot move wins.

Problem 7
Show that, if a 2×3 matrix has a saddle point, then either one row domi-
nates another, or one column dominates another (or possibly both). Show by a
counter-example that this is not true for 3×3 matrices.
Problem 8 Shapley’s criterion

Consider a game (S, T, u) with finite strategy sets such that for every subsets
S0 ⊂ S, T0 ⊂ T with 2 elements each, the 2 × 2 game (S0, T0, u) has a value.
Show that the original game has a value.

1.7.2 Mixed strategies

Problem 9
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In each question you must check that the game in deterministic strategies (given
in the matrix form) has no value, then find the value and optimal mixed strate-
gies. Results in section 1.5 will prove useful.

a) A =

µ
2 3 1 5
4 1 6 0

¶

b) A =

⎛⎜⎜⎜⎜⎝
12 0
0 12
10 6
8 10
9 7

⎞⎟⎟⎟⎟⎠
c) A =

⎛⎝ 2 0 1 4
1 2 5 3
4 1 3 2

⎞⎠
d) A =

⎛⎝ 1 6 0
2 0 3
3 2 4

⎞⎠
e) A =

⎛⎝ 0 1 −2
−1 0 3
2 −3 0

⎞⎠
f) A =

⎛⎝ 2 4 6 3
6 2 4 3
4 6 2 3

⎞⎠
Problem 10 Hiding a number

Fix an increasing sequence of positive numbers a1 ≤ a2 ≤ a3 ≤ · · · ≤ ap ≤ · · · .
Each player chooses an integer, the choices being independent. If they both
choose the same number p, player 1 receives $p from player 2. Otherwise, no
money changes hand.
a) Assume first

∞X
p=1

1

ap
<∞

and show that each player has a unique optimal mixed strategy.
b) In the case where

∞X
p=1

1

ap
=∞

show that the value is zero, that every strategy of player 1 is optimal, whereas
player 2 has only "ε-optimal" strategies, i.e., strategies guaranteeing a payoff
not larger than ε, for arbitrarily small ε.

Problem 11 Picking an entry

a) Player 1 chooses either a row or a column of the matrix
∙
2 1
4 5

¸
. Player 2

chooses an entry of this matrix. If the entry chosen by 2 is in the row or column
chosen by 1, player 1 receives the amount of this entry from player 2. Otherwise
no money changes hands. Find the value and optimal strategies.
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b) Same strategies but this time if player 2 chooses entry s and this entry is not
in the row or column chosen by 1, player 2 gets $s from player 1; if it is in the
row or column chosen by 1, player 1 gets $s from player 2 as before.

Problem 12 Guessing a number
Player 2 chooses one of the three numbers 1,2 or 5. Call s2 that choice. One of
the two numbers not selected by Player 2 is selected at random (equal probability
1/2 for each) and shown to Player 1. Player 1 now guesses Player 2’s choice: if
his guess is correct, he receives $s2 form Player 2, otherwise no money changes
hand.
Solve this game: value and optimal strategies.
Hint: drawing the full normal form of this game is cumbersome; describe instead
the strategy of player 1 by three numbers q1, q2, q5. The number q1 tells what
player 1 does if he is shown number 1: he guesses 2 with probability q1 and 5
with proba. 1− q1; and so on.

Problem 13
Asume that both players choose optimal (mixed) strategies x and y and thus the
resulting payoff in the game is v. We know that player 1 would get v if against
payer 2’s choice y he would play any pure strategy with positive probability in
x (i.e. any pure strategy i, such that si > 0), and he would get less then v if
he would play any pure strategy i, such that xi = 0. Explain why a rational
player 1, who assumes that his opponent is also rational, should not choose a
pure strategy i such that xi > 0 instead of x.

Problem 14 Bluffing game
At the beginning, players 1 and 2 each put $1 in the pot. Next, player 1 draws a
card from a shuffled deck with equal number of black and red cards in it. Player
1 looks at his card (he does not show it to player 2) and decides whether to raise
or fold. If he folds, the card is revealed to player 2, and the pot goes to player
1 if it is red, to player 2 if it is black. If player 1 raises, he must add $1 to the
pot, then player 2 must meet or pass. If she passes the game ends and player 1
takes the pot. If she meets, she puts $α in the pot. Then the card is revealed
and, again, the pot goes to player 1 if it is red, to player 2 if it is black..
Draw the matrix form of this game. Find its value and optimal strategies as
a function of the parameter α. Is bluffing part of the equilibrium strategy of
player 1?

2 Nash equilibrium
In a general n-person game in strategic form, interests of the players are neither
identical nor completely opposed. Thus the information each player possesses
about other participants in the game may influence her behavior. We discuss in
this chapter the two most important scenarios within which the Nash equilib-
rium concept is often a compelling model of rational behavior:

• the decentralized scenarios where mutual information is minimal, to the
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extent that a player may not even know how many other players are in
the game or what their individual preferences look like;

• the coordinated scenarios where players know a lot about each other’s
strategic opportunities (strategy sets) and payoffs (preferences), and use
either deductive reasoning or non binding comunication to coordinate their
choices of strategies.

Decentralized scenarios are well suited to games involving a large number
of players, each one with a relatively small influence on the overall outcome
(competitive context). Coordination scenarios are more natural in games with
a small number of participants.
This chapter is long on examples and short on abstract proofs (next chapter

is just the opposite).

Definition 18 A game in strategic form is a list G = (N,Si, ui, i ∈ N), where
N is the set of players, Si is player i’s strategy set and ui is his payoff, a
mapping from SN =

Y
i∈N

Si into R, which player i seeks to maximize.

Definition 19 A Nash equilibrium of the game G = (N,Si, ui, i ∈ N) is a
profile of strategies s∗ ∈ SN such that

ui(s
∗) ≥ ui(si, s

∗
−i) for all i and all si ∈ Si

Note that the above definition uses only the ordinal preferences represented
by the utility functions ui. We use the cardinal representation as payoff (utility)
simply for convenience.
The following inequality provides a useful necessary condition for the exis-

tence of at least one Nash equilibrium in a given game G.

Lemma 20 If s∗ is a Nash equilibrium of the game G = (N,Si, ui, i ∈ N), we
have for all i

ui(s
∗) ≥ min

s−i∈S−i
max
si∈Si

ui(si, s−i)

Example 0 duopoly a la Hoteling
The two competitors sell identical goods at fixed prices p1, p2 such that p1 < p2.
The consumers are uniformly spread on [0, 1], each with a unit demand. Firms
incur no costs. Firms choose independently where to locate a store on the
interval [0, 1], then consumers buy from the cheapest store, taking into account
a transportation cost of $s if s is the distance to the store. Assume p2−p1 = 1

4 .
Check that

min
S2
max
S1

u1 = p1;min
S1
max
S2

u2 =
p2
8

and that the payoff profile (1, 18) is not feasible. Therefore the game has no
Nash equilibrium.

An important class of games consists of those where the roles of all players
are fully interchangeable.
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Definition 21 A game in strategic form G = (N,Si, ui, i ∈ N) is symmetri-
cal if Si = Sj for all i, j, and the mapping s → u(s) from S|N| into R|N | is
symmetrical.

In a symmetrical game if two players exchange strategies, their payoffs are
exchanged and those of other players remain unaffected.

2.1 Decentralized behavior and dynamic stability

In this section we interpret a Nash equilibrium as the resting point of a dynami-
cal system. The players behave in a simple myopic fashion, and learn about the
game by exploring their strategic options over time. Their behavior is compati-
ble with total ignorance about the existence and characteristics of other players,
and what their behavior could be.
Think of Adam Smith’s invisible hand paradigm: the price signal I receive

from the market looks to me as an exogenous parameter on which my own
behavior has no effect. I do not know how many other participants are involved
in the market, and what they could be doing. I simply react to the price by
maximizing my utility, without making assumptions about its origin.
The analog of the competitive behavior in the context of strategic games is

the best reply behavior. Take the profile of strategies s−i chosen by other players
as an exogeneous parameter, then pick a strategy si maximizing your own utility
ui, under the assumption that this choice will not affect the parameter s−i.
The deep insight of the invisible hand paradigm is that decentralized price

taking behavior will result in an efficient allocation of resources (a Pareto effi-
cient outcome of the economy). This holds true under some specific microeco-
nomic assumptions in the Arrow-Debreu model, and consists of two statements.
First the invisible hand behavior will converge to a competitive equilibrium; sec-
ond, this equilibrium is efficient. (The second statement is much more robust
than the first).
In the much more general strategic game model, the limit points of the best

reply behavior are the Nash equilibrium outcomes. Both statements, the best
reply behavior converges, the limit point is an efficient outcome, are problem-
atic. The examples below show that not only the best reply behavior may
not converge at all, or if it converges, the limit equilibrium outcome may well
be inefficient (Pareto inferior). Decentralized behavior may diverge, or it may
converge toward a socially suboptimal outcome.

Definition 22 Given the game in strategic form G = (N,Si, ui, i ∈ N), the
best-reply correspondence of player i is the (possibly multivalued) mapping bri
from S−i =

Y
j∈NÂ{i}

Sj into Si defined as follows

si ∈ bri(s−i)⇔ ui(si, s−i) ≥ ui(s
0
i, s−i) for all s

0
i ∈ Si
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Definition 23 We say that the sequence st ∈ SN , t = 0, 1, 2, · · · , is a best reply
dynamics if for all t ≥ 1 and all i, we have

sti ∈ {st−1i } ∪ bri(st−1−i ) for all t ≥ 1

and sti ∈ bri(s
t−1
−i ) for infinitely many values of t

We say that st is a sequential best reply dynamics, also called an improvement
path, if in addition at each step at most one player is changing her strategy.

The best reply dynamics is very general, in that it does not require the
successive adjustments of the players to be synchronized. If all players use a
best reply at all times, we speak of myopic adjustment; if our players take turn
to adjust, we speak of sequential adjustment. For instance with two players the
latter dynamics is:

if t is even: st1 ∈ bri(s
t−1
2 ), st2 = st−12

if t is odd: st2 ∈ bri(s
t−1
1 ), st1 = st−11

But the definition allows much more complicated dynamics, where the timing
of best reply adjustments varies accross players. An important requirement is
that at any date t, every player will be using his best reply adjustment some
time in the future. The first observation is an elementary result.

Proposition 24 Assume the strategy sets Si of each player are compact and the
payoff functions ui are continuous. If the best reply dynamics (st)t∈N converges
to s∗ ∈ SN , then s∗ is a Nash equilibrium.

Proof. Pick any ε > 0. As ui is uniformly continuous on SN , there exists
T such that

for all i, j ∈ N and t ≥ T : |ui(stj , s−j)− ui(s
∗
j , s−j)| ≤

ε

n
for all s−j ∈ S−j

Fix an agent i. By definition of the b.r. dynamics, there is a date t ≥ T such
that st+1i ∈ bri(s

t
−i). This implies for any si ∈ Si

ui(s
∗) + ε ≥ ui(s

t+1
i , st−i) ≥ ui(si, s

t
−i) ≥ ui(si, s

∗
−i)−

n− 1
n

ε

where the left and right inequality follow by repeated application of uniform
continuity. Letting ε go to zero ends the proof.
Note that the topological assumptions in the Proposition hold true if the

strategy sets are finite.

Definition 25 We call a Nash equilibrium s strongly globally stable if any best
reply dynamics (starting form any initial profile of strategies in SN) converges
to s. Such an equilibrium must be the unique equilibrium.
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We call a Nash equilibrium strongly locally stable if for any neighborhood N
of s in SN there is a sub-neighborhoodM of s such that any best reply dynamics
starting inM stays in N .
We call a Nash equilibrium weakly globally stable if any sequential best reply

dynamics (starting form any initial profile of strategies in SN) converges to it.
Such an equilibrium must be the unique equilibrium.
We call a Nash equilibrium weakly locally stable if for any neighborhood N of

s in SN there is a sub-neighborhoodM of s such that any sequential best reply
dynamics starting inM stays in N .

Note that if strategy sets are finite, the concept of local stability (in both
versions) has no bite (every equilibrium is strongly locally stable).

2.1.1 stable and unstable equilibria

We give a series of examples illustrating these definitions. The actual analysis
of each game is done in class.

Example 1: two-person zero sum games
Here a Nash equilibrium is precisely a saddle point. In the following game, a
saddle point exists and is globally stable⎡⎣4 3 5

5 2 0
2 1 6

⎤⎦
Check that 3 is the value of the game. To check stability check that from the
entry with payoff 1, any b.r. dynamics converges to the saddle point; then the
same is true from the entry with payoff 6; then also from the entry with payoff
0, and so on.
In the next game, a saddle point exists but is not even weakly stable:⎡⎣4 1 0

3 2 3
0 1 4

⎤⎦
Stability in finite a general two person game (S1, S2, u1, u2) is easy to analyze.

Define f = br2 ◦ br1 the composition of the two best reply correspondences. A
fixed point of f is s2 ∈ S2 such that s2 ∈ f(s2), and a cycle of length T is
a sequence of distinct elements st2, t = 1, · · · , T such that st+12 ∈ f(st2) for all
t = 1, · · · , T − 1, and s12 ∈ f(sT2 ).
The Nash equilibrium s∗ of the game (S1, S2, u1, u2) is strongly stable if and

only if it is weakly stable, and this happens if and only if f has a unique fixed
point and no cycle of length 2 or more.

Example 2 a simple coordination game
The game is symmetrical and the payoffs are identical for all n players

ui(s) = g(
nX
i=1

si)
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If the common strategy space is Si = [0, 1] ⊂ R, the level z, 0 ≤ z ≤ n, obtains
at a Nash equilibrium s∗ of the game if and only if z maximizes g on the interval
[n−1n z, n+1n z]; all such equilibria are weakly locally stable but they are typically
not strongly locally stable. If g has a single local maximum z∗, it is weakly
globally stable in utilities but typically not in strategies. It is not strongly
globally stable if 0 < z∗ < n.

Example 3 price cycles in the Cournot oligopoly
The demand function and its inverse are

D(p) = (a− bp)+ ⇔ D−1(q) =
(a− q)+

b

Firm i incurs the cost Ci(qi) =
q2i
2ci

therefore its competitive supply given the
price p is Oi(p) = cip, and total supply is O(p) = (

P
N ci)p. Assume there

are many agents, each one small w.r.t. the total market size (i.e., each ci is
small w.r.t.

P
N cj), so that the competitive price-taking behavior is a good

approximation of the best reply behavior. Strategies here are the quantities qi
produced by the firms, and utilities are

ui(q) = D−1(
X
N

qj)qi − Ci(qi)

The equilibrium is unique, at the intersection of the O and D curves. If bc > 1 it
is strongly globally stable; if b

c < 1 it is not strongly stable yet weakly globally
stable.

Example 4: Schelling’s model of binary choices
Each player has a binary choice, Si = {0, 1}, and the game is symmetrical,
therefore it is represented by two functions a(.), b(.) as follows

ui(s) = a(
1

n

X
N

si) if si = 1

= b(
1

n

X
N

si) if si = 0

Several possible interpretations. Vaccination: strategy 1 is to take the vaccine,
strategy 0 to avoid it. If 1n

P
N si is very small, a > b, as the risk of catching

the disease is much larger than the risk of complications from the vaccine; this
inequality is reversed when 1

n

P
N si is close to 1. Traffic game: each player

chooses to use the bus (si = 1) or his own car (si = 0); for a given congestion
level 1n

P
N si, traffic is equally slow in either vehicle, but more comfortable in

the car, so a(t) < b(t) for all t; however a and b both increase in t, as more
people riding the bus decreases congestion.
Assuming a large number of agents, we can draw a, b as continuous functions

and check that the Nash equilibrium outcomes are at the intersections of the 2
graphs, at s = (0, · · · , 0) if a(0) ≤ b(0), and at s = (1, · · · , 1) if a(1) ≥ b(1). If
the equilibrium is unique it is weakly (globally) stable but not strongly stable.
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The strategy sets are finite so local stability has no bite. However when the
number of agents is large we can measure the deviation from an equilibrium by
the number of agents who are not playing the equilibrium strategy. This leads
to the simple concept of local stability in population. For a Nash equilibrium
s∗ this requires that for any parameter λ,0 < λ < 1 there exists µ, 0 < µ < 1,
such that if a fraction not larger than µ of the agents change strategies, any
sequential b.r. dynamics converges to an equlibrium where at most λ fo the
palyers have changed from the original equilibrium.
In example 4, an equlibrium is locally stable in populationy if a cuts b from

above, and unstable if a cuts b from below.

2.1.2 potential games

We introduce three classes of games where some form of stability is guaranteed.
Potential games generalize the pure coordination games where all players have
the same payoff functions. As shown in example 2 above, in such games strong
stability is problematic but weak stability is not.

Definition 26 A game in strategic form G = (N,Si, ui, i ∈ N) is a potential
game if there exists a real valued function P defined on SN such that for all i
and s−i ∈ S−i we have

ui(si, s−i)− ui(s
0
i, s−i) = P (si, s−i)− P (s0i, s−i) for all si, s

0
i ∈ Si

or equivalently there exists P and for all i a real valued function hi defined
on SNÂ{i} such that

ui(s) = P (s) + hi(s−i) for all s ∈ SN

The original game G = (N,Si, ui, i ∈ N), and the game P = (N,Si, P, i ∈ N)
with the same strategy sets as G and identical payoffs P for all players, have
the same best reply correspondences therefore the same Nash equilibria. Call
s∗ a coordinate-wise maximum of P if for all i, si → P (si, s

∗
−i) reaches its

maximum at s∗i . Clearly s is a Nash equilibiurm (of G and P) if and only if it
is a coordinate-wise maximum of P .
If P reaches its global maximum on SN at s, this outcome is a Nash equi-

librium of P and therefore of G. Thus potential games with continuous payoff
functions and compact strategy sets always have at least a Nash equilibrium.
Moreover, the best reply dynamics has very appealing stability properties.

Proposition 27 Let G = (N,Si, ui, i ∈ N) be a potential game where the sets
Si are compact and the payoff functions ui are continuous.
i) Any sequential best reply dynamics converges to a Nash equilibrium.
ii) If there is a unique Nash equilibrium, it is weakly globally stable.
iii) If a Nash equilibrium of G is a local maximum, locally unique, of the

potential P , this equilibrium is weakly locally stable.

23



Example 5: the Braess paradox
There are two roads to go from A to B, and 6 commuters want to do just that.
The upper road goes through C, the lower road goes through D. The 2 roads
only meet at A and B. On each of the four legs, AC,CB,AD,DB, the travel
time depends upon the number of users m in the following way:
on AC and DB : 50 +m, on CB and AD : 10m

Every player must choose a road to travel, and seeks to minimize his travel time.
The Nash equilibria of the game are all outcomes with 3 users on each road,
and they all give the same disutility 83 to each player. We now add one more
link on the road network, directly between C and D, with travel time 10 +m.
In the new Nash equilibrium outcomes, we have two commuters on each of the
paths ACB,ADB,ADCB, and their disutility is 92. Thus the new road results
in a net increase of the congestion!
We explain in example 7 below why these two games are potential games.
Example 6 public good provision by voluntary contributions

Each player i contributes an amount of input si toward the production of a
public good, at a cost Ci(si). The resulting level of public good is B(

P
i si) =

B(sN ). Hence the payoff functions

ui = B(sN )− Ci(si) for i = 1, · · · , n

The potential function is

P (s) = B(sN )−
X
i

ci(si)

therefore existence of a Nash equilibrium is guaranteed if B,Ci are continuous
and the potential is bounded over RN+ .
The public good provision model is a simple and compelling argument in

favor of centralized control of the production of pure public goods. To see
that in equilibrium the level of production is grossly inefficient, assume for
simplicity identical cost functions Ci(si) =

1
2s
2
i and B(z) = z. The unique Nash

equilibrium is s∗i = 1 for all i, yielding total utilityX
i

ui(s
∗) = nB(s∗N )−

X
i

Ci(s
∗
i ) = n2 − n

2

whereas the outcome maximizing total utility is esi = n, bringing
P

i ui(es) = n3

2 ,
so each individual equilibrium utility is less than 2

n of its "utilitarian" level.
The much more general version of the game where the common benefit is

an arbitrary function B(s) = B(s1, · · · , sn), remains a potential game for P =
B −

P
i Ci, therefore existence of a Nash equilibrium is still guaranteed. See

example 15 and problem 7 for two alternative choices of B.

Example 7 congestion games
These games generalize both example 5. Each player i chooses from the

same strategy set and her payoff only depends upon the number of other players
making the same choice. Examples include choosing a travel path between a
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source and a sink when delay is the only consideration, choosing a club for the
evening if crowding is the only criteria and so on.

Si = S for all i; ui(s) = fsi(nsi(s)) where nx(s) = |{j ∈ N |sj = x}| and fx
is arbitrary. Here the potential function is

P (s) =
X
x∈S

nx(s)X
m=1

fx(m)

In a congestion game any sequential best reply dynamics converges to a Nash
equilibrium, therefore the decentralized behavior of our commuters leads to a
coordinate-wise maximum of P .

2.1.3 dominance-solvable games

Definition 28 In the game in strategic form G = (N,Si, ui, i ∈ N), we say that
player i’s strategy si is strictly dominated by his strategy s0i if

ui(si, s−i) < ui(s
0
i, s−i) for all s−i ∈ S−i

Given a subset of strategies Ti ⊂ Si we write Ui(TN ) for the set of player i’s
strategies in the restricted game G(TN ) = (N,Ti, ui, i ∈ N) that are not strictly
dominated.

Definition 29 We say that the game G is strictly dominance-solvable if the
sequence defined inductively by

S0i = Si;S
t+1
i = Ui(StN ) for all i and t = 1, 2, · · ·

and called the successive elimination of strictly dominated strategies, converges
to a single outcome s∗:

∩∞t=1StN = {s∗}

Proposition 30 Under this assumption, s∗ is the single Nash equilibrium out-
come of the game, and it is strongly globally stable.

Even if the successive elimination of strictly dominated strategies does not
converges, it does restrict the scope of our search for Nash equilibria, as the
set ∩∞t=1StN contains all Nash equilibria of the game and all limit points of the
b.r. dynamics. It is also true that a "lazy" elimination of dominated strategies
converges to the same set ∩∞t=1StN .
Example 8 Guessing game

Each one of the n players chooses an integer si between 1 and 1000. Compute
the average response

s =
1

n

X
i

si

The winner (or winners) is the player whose bid is closest to 2
3s. Here the

successive elimination process leads rapidly to ∩∞t=1StN = {(1, · · · , 1)}. Yet in
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experimental testing the first time a given group of subjects play the game the
average response s is typically between 200 and 300.

Example 9 Cournot duopoly
This game is dominance-solvable if costs and demand are linear:

ui = (A− s{1,2})+si − cisi for i = 1, 2

2.1.4 games with increasing best reply

A class of games closely related to dominance-solvable games consist of those
where the best reply functions (or correspondences) are non decreasing. By way
of illustration consider a symmetric game where Si = [0, 1] and the (symmetric)
best reply function s→ br(s, · · · , s) is non decreasing. This function must cross
the diagonal; it provides a simple illustration of the first statement in the next
result.

Proposition 31 Assume the sets Si are real intervals [ai, bi] and the best reply
functions in the game G = (N,Si, ui, i ∈ N) are single valued and non decreasing

s−i ≤ s0−i ⇒ bri(s−i) ≤ bri(s
0
−i) for all i and s−i ∈ S−i

The game has a smallest Nash equilibrium outcome s− and s+ a largest one
s+. Any best reply dynamics starting from a converges to s−; any best reply
dynamics starting form b converges to s+.
If in addition the payoff functions ui satisfy the single crossing property:

s0 ≥ s⇒ {ui(s0i, s−i) ≥ ui(si, s−i)⇒ ui(s
0
i, s

0
−i) ≥ ui(si, s

0
−i)}

and {ui(s0i, s−i) > ui(si, s−i)⇒ ui(s
0
i, s

0
−i) > ui(si, s

0
−i)}

then the successive elimination of strictly dominated strategies converges to
[s−, s+], where s− is the smallest Nash equilibrium outcome and s+ is the largest:

∩∞t=1StN = [s−, s+]

In particular if the game has a unique equilibrium outcome, it is strictly dominance-
solvable.

Note that if the function ui is twice continuously differentiable, the single
crossing property amounts to

∂2ui
∂si∂sj

· ∂
2ui
∂s2i

≥ 0

Example 10 A search game
Each player exerts effort searching for new partners. The probability that player
i finds any other player is si, 0 ≤ si ≤ 1, and when i and j meet, they derive
the benefits αi and αj respectively. The cost of the effort is Ci(si). Hence the
payoff functions

ui(s) = αisisNÂ{i) − Ci(si) for all i
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To ensure a single valued best reply function, we may assume that Ci is in-
creasing and convex. However this assumption is not necessary, as explained in
Problem 17. Assuming only that Ci is increasing, we find that s = 0 is always
an equilibrium, but the largest equilibrium is Pareto superior.
Example 11 price competition

Each firm has a linear cost production (set to zero without loss of generality)
and chooses a non negative price pi. The resulting demand and net payoff for
firm i are

Di(p) = (Ai −
αi
3
p2i +

X
j 6=i

βjpj)+ and ui(p) = piDi(p)

The game has increasing best reply functions. In the symmetric case its equi-
librium is unique hence the game is dominance-solvable.

2.2 coordination and Nash equilibrium

We now consider games in strategic form involving only a few players who use
their knowledge about other players strategic options to form expectations about
the choices of these players, which in turn influence their own choices. In the
simplest version of this analysis, each player knows the entire strategic form
of the game, including strategy sets and individual preferences (payoffs). Yet
at the time they make their strategic decision, they act independently of one
another, and cannot observe the choice of any other player.
The two main interpretations of the Nash equilibrium are then the self ful-

filling prophecy and the self enforcing agreement.
The former is the meta-argument that if a "Book of Rational Conduct"

can be written that gives me a strategic advice for every conceivable game in
strategic form, this advice must be to play a Nash equilibrium. This is the
"deductive’ argument in favor of the Nash concept.
The latter assumes the players engage in "pre-play" communication, and

reach a non committal agreement on what to play, followed by a complete break
up of communication.
Schelling’s rendez-vous game illustrates both interpretations.
If a game has multiple Nash equilibria we have a selection problem: under

either scenario above, it is often unclear how the players will be able to coor-
dinate on one of them. Then even if a Nash equilibrium is unique, it may be
challenged by other strategic choices that are safer or appear so.
On the other hand in dominance-solvable games, selecting the Nash outcome

by deduction (covert communication) is quite convincing, and our confidence in
the predictive power of the concept remains intact.

2.2.1 the selection problem

When several (perhaps an infinity of) Nash outcomes coexist, and the play-
ers’ preferences about them do not agree, they will try to force their preferred
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outcome by means of tactical commitment. This fundamental difficulty is illus-
trated by the two following celebrated games.

Example 12 crossing game (a.k.a. the Battle of the Sexes)
Each player must stop or go. The payoffs are as follows

stop 1, 1 1− ε, 2
go 2, 1− ε 0, 0

stop go

Each player would like to commit to go, so as to force the other to stop. There
is a mixed strategy equilibrium as well, but it has its own problems. See Section
3.3.

Example 13 Nash demand game
The two players share a dollar by the following procedure: each write the
amounts she demands in a sealed envelope. If the two demands sum to no
more than $1, they are honored. Otherwise nobody gets any money. In this
game the equal plit outcome stands out because it is fair, and this will suffice
in many cases to achieve coordination. However, a player will take advantage
of an opportunity to commit to a high demand.

In both above examples and in the next one the key strategic intuition is
that the opportunity to commit to a certain strategy by "burning the bridges"
allowing us to play anything else, is the winning move provided one does it first
and other players are sure to notice.
A game of timing takes the following form. Each one of the two players

must choose a time to stop the clock between t = 0 and t = 1. If player i stops
the clock first at time t, his payoff is ui = a(t), that of player j is uj = b(t). In
case of ties, each gets the payoff 1

2(a(t) + b(t)). An example is the noisy duel
of chapter 1, where a increases, b decreases, and they intersect at the optimal
stopping/shooting time (here optimality refers to the saddle point property for
this ordinally zero-sum game.

Example 14 war of attrition
This is a game of timing where both a and b are continuous and decreasing,

a(t) < b(t) for all t, and b(1) < a(0). There are two Nash equilibrium outcomes.
Setting t∗ as the time at which a(0) = b(t∗), one player commits to t∗ or more,
and the other concedes by stopping the clock immediately (at t = 0).

The selection problem can be solved by further arguments of Pareto domi-
nance, or risk dominance. Sometimes the selection problem is facilitated because
the players agree on the most favorable equilibrium: the Pareto dominance
argument. A simple example is any coordination game: if a single outcome
maximizes the common payoff it will be selected without explicit comunication.
When several outcomes are optimal, we may hope that one of them is more
salient, as in Schelling’s rendez-vous game.
Finally prudence may point to some particular equilibrium outcome. But

this criterion may conflict with Pareto dominance as in Kalai’s hat story, and
in the following important game.
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Example 15 coordination failure
This is an example of a public good provision game by voluntary contributions
(example 6), where individual contributions enter the common benefit function
as perfect complements:

ui(s) = min
j

sj − Ci(si)

Examples include the building of dykes or a vaccination program: the safety
provided by the dyke is only as good as that of its weakest link. Assume Ci is
convex and increasing, with Ci(0) = 0 and C0i(0) < 1, so that each player has
a stand alone optimal provision level s∗i maximizing z − Ci(z). Then the Nash
equilibria are the outcomes where si = λ for all i, and 0 ≤ λ ≤ mini s∗i . They are
Pareto ranked: the higher λ, the better for everyone. However the higher λ, the
more risky the equilibrium: if other players may make an error and fail to send
their contribution, it is prudent not to send anything (maxsi mins−i ui(s) = 0
is achieved with si = 0). Even if the probability of an error is very small,
a reinforcement effect will amplify the risk till the point where only the null
(prudent) equilibrium is sustainable.

2.2.2 dominance solvable games

Eliminating dominated strategies is the central coordination device performed
by independent deductions of completely informed agents.

Definition 32 In the game G = (N,Si, ui, i ∈ N), we say that player i’s strat-
egy si is weakly dominated by his strategy s0i (or simply dominated) if

ui(si, s−i) ≤ ui(s
0
i, s−i) for all s−i ∈ S−i

ui(si, s−i) < ui(s
0
i, s−i) for some s−i ∈ S−i

Given a subset of strategies Ti ⊂ Si we write WU i(TN ) for the set of player i’s
strategies in the restricted game (N,Ti, ui, i ∈ N) that are not dominated.

Definition 33 We say that the game G is dominance-solvable if the sequence
defined inductively by

wS0i = Si;
w St+1i =WU i(wStN ) for all i and t = 1, 2, · · ·

and called the successive elimination of dominated strategies, converges to a
single outcome s∗:

∩∞t=1wStN = {s∗}

If the strategy sets are finite, or compact with continuous payoff functions,
the set of weakly undominated strategies is non empty.
Notice an important difference between the elimination of strictly versus

weakly dominated strategies. The former never loses a Nash equilibrium in the
following sense (with the notations of Definition 28):

{s is a Nash equilibrium of G}⇒ s ∈ ∩∞t=1StN
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By contrast the elimination of weakly dominated strategies may loose some, or
even all, Nash equilibria along the way. Compare the two person game⎡⎣1, 0 2, 0 1, 5

6, 2 3, 7 0, 5
3, 1 2, 3 4, 0

⎤⎦
where the algorithm picks the unique equilibrium, to the following example⎡⎣1, 3 2, 0 3, 1

0, 2 2, 2 0, 2
3, 1 2, 0 1, 3

⎤⎦
where the algorithm may throw out the baby with the water!
Another difference between the two successive elimination algorithms is their

robustness with respect to partial elimination. Suppose, in the case where we
only drop strictly dominated strategies, that at each stage we choose St+1i as a
subset of Ui(StN ): then it is easy to check that the limit set ∩∞t=1StN is unaffected
(provided we eventually take all elimination opportunities)(exercise: prove this
claim). On the other hand when we only drop some weakly dominated strategies
at each stage, the result of the algorithm may well depend on the choice of
subsets wSt+1i in WU i(wStN ). Here is an example:⎡⎢⎢⎣

2, 3 2, 3
3, 2 1, 2
1, 1 0, 0
0, 0 1, 1

⎤⎥⎥⎦
Depending on which strategy player 1 eliminates first, we wend up at the (3, 2)
or the (2, 3) equilibrium. Despite the difficulty above, in many instances the
elimination algorithm in Definition 33 leads to a convincing equilibrium selec-
tion.

Example 16 the chair’s paradox
Three voters choose one of three candidates a, b, c. The rule is plurality with
the Chair, player 1, breaking ties. Hence each player i chooses from the set
Si = {a, b, c}, and the elected candidate for the profile of votes s is

s2 if s2 = s3; or s1 if s2 6= s3

Note that the Chair has a dominant strategy to vote for her top choice. The
two other players can only eliminate the vote for their bottom candidate.
Assume that the preferences of the voters exhibit the cyclical pattern known

as the Condorcet paradox, namely

u1(c) < u1(b) < u1(a)

u2(b) < u2(a) < u2(c)

u3(a) < u3(c) < u3(b)
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Writing this game in strategic form reveals that after the successive elimination
of dominated strategies, the single outcome s = (a, c, c) remains. This is a Nash
equilibrium outcome. The paradox is that the chair’s tie-breaking privilege
result in the election of her worst outcome!

Often a couple of rounds of elimination are enough to sielect a unique Nash
equilibrium, even though the elimination algorithm is stopped and the initial
game is not (weakly) dominance solvable.
Example 17 first price auction

The sealed bid first price auction is strategically equivalent to the Dutch de-
scending auction.An object is auctioned between n bidders who each submit a
sealed bid si. Bids are in round dollars (so Si = N). The highest bidder gets
the object and pays his bid. In case of a tie, a winner is selected at random
with uniform probability among the highest bidders.
Assume that the valuations of (willingness to pay for) the object are also

integers ui and that
u1 > ui for all i ≥ 2

At a Nash equilibrium of this game, the object is awarded to player 1 at a price
anywhere between u1 − 1 and u2. However after two rounds of elimination we
find a game where the only Nash equilibrium has player 1 paying u2 for the
object while one of the players i, i ≥ 2, such that ui = maxj 6=1 uj bids ui − 1.
Thus player 1 exploits his informational advantage to the full.

Example 18 Steinhaus cake division method
The referee runs a knife from the left end of the cake to its right end. Each one
of the two players can stop the knife at any moment. Whoever stops the knife
first gets the left piece,the other player gets the right piece. If both players have
identical preferences over the various pieces of the cake, this is a game of timing
structurally equivalent to the noisy duel, and its unique Nash equilibrium is that
they both stop the knife at the time t∗ when they are indifferent between the
two pieces. When preferences differ, call t∗i the time when player i is indifferent
between the two pieces, and assume t∗1 < t∗2. The Nash equilibrium outcomes
are those where player 1 stops the knife between t∗1 and t

∗
2 while player 2 is just

about to stop it herself: player 1 gets the left piece (worth more than the right
piece to him) and player 2 gets the right piece (worth more to her than the left
piece). However after two rounds of elimination of dominated strategies, we are
left with S21 = [t∗2 − ε, 1], S22 = [t∗2, 1]. Although the elimination process stops
there, the outcome of the remaining game1 is not in doubt: s∗1 = t∗2− ε, s∗2 = t∗2.

2.2.3 dominant strategy equilibrium

One case where the successive elimination of even weakly dominated strategies
is convincing is when each player has a dominant strategy. Put differently the
following is a compelling equilibrium selection.

1This game is an inessential game, as discussed in question a) of problem 18.
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Definition 34 In the game G = (N,Si, ui, i ∈ N), we say that player i’s strat-
egy s∗i is dominant if

ui(s
∗
i , s−i) ≥ ui(si, s−i) for all s−i ∈ S−i, all si ∈ Si

We say that s∗ is a dominant strategy equilibrium if for each player i, s∗i is a
dominant strategy.

There is a huge difference in the interpretation of a game where dominance
solvability (whether in the strict or weak form) identifies a Nash equilibrium,
versus one where a dominant strategy equilibrium exists. In the latter all a
player has to know are the strategy sets of other players; their preferences or
their actual strategic choices do not matter at all to pick his dominant strategy.
Information about other players’ payoffs or moves is worthless, as long as our
player is unable to influence their choices (for instance a threat of the kind "if
you do this I will do that" is not enforceable).
A game with an equilibrium in dominant strategies is weakly, but not nec-

essarily strictly, dominance-solvable.
The most famous example of such an equilibrium is the Prisonners Dilemna.

Example 19 Prisonners Dilemna
Each player chooses a selfless strategy C or a selfish strategy D. Choosing C
brings a benefit a to every other player and a cost of b to me. Playing D brings
neither benefit nor cost to anyone. It is a dominant strategy to play D if b > 0.
If furthermore b < (n−1)a, the dominant strategy equilibrium is Pareto inferior
to the unanimously selfless outcome.

Dominant strategy equilibria do not happen in very many games because the
strategic interaction is often morre complex. However they are so appealingly
simple that when we design a procedure to allocate resources, elect one of the
candidates to a job, or divide costs, we would like the corresponding strategic
game to have a dominant strategy equilibrium as often as possible. In this way
we are better able to predict the behavior of our participants. The two most
celebrated examples of such strategy-proof allocation mechanisms follow. In
both cases the game has a dominant strategy equilibrium in all cases, and the
corresponding outcome is efficient (Pareto optimal).

Example 20 Vickrey’s second price auction
An object is auctioned between n bidders who each submit a sealed bid si. Bids
are in round dollars (so Si = N). The highest bidder gets the object and pays the
second highest bid. In case of a tie, a winner is selected at random with uniform
probability among the highest bidders (and pays the highest bid). If player i’s
valuation of the object is ui, it is a dominant strategy to bid "sincerely", i.e.,
s∗i = ui. The corresponding outcome is the same as in the Nash equilibrium
that we selected by dominance-solvability in the first price auction (example
17). But to justify that outcome we needed to assume complete information, in
particular the highest valuation player must know precisely the second highest
valuation. By contrast in the Vickrey auction, each player knows what bid to
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slip in the envelope, whether or not she has any information about other players’
valuations, or even their number.
It is interesting to note that in the second price auction game, there is a dis-

tressing variety of Nash equilibrium outcomes and in particular any player, even
the one with the lowest valuation of all, receives the object in some equilibrium.

Example 21 voting under single-peaked preferences
The n players vote to choose an outcome x in [0, 1]. Assume for simplicity n is
odd. Each player submits a ballot si ∈ [0, 1], and the median outcome among
s1, · · · , sn is elected: this is the number x = si∗ such that more than half of the
ballots are no less than x, and more than half of the ballots are no more than
x. Preferences of player i over the outcomes are single-peaked with the peak at
vi: they are strictly increasing on [0, vi] and strictly decreasing on [vi, 1].
Here again, it is a dominant strategy to bid "sincerely", i.e., s∗i = vi. Again,

any outcome x in [0, 1] results from a Nash equilibrium, so the latter concept
has no predictive power at all in this game.

2.3 problems on chapter 2

Problem 1
In Schelling’s model (example 2) find examples of the functions a and b such
that the equilibrium is unique and strongly globally stable; such that it is unique
and weakly but not strongly globally stable.

Problem 2 games of timing
a) We have two players, a and b both increase, and a intersects b from below.
Perform the successive elimination of dominated strategies, and find all Nash
equilibria. Can they be Pareto improved?
b) We extend the war of attrition (example 14) to n players. If player i stops
the clock first at time t, his payoff is ui = a(t), that of all other players is
uj = b(t). Both a and b are continuous and decreasing, a(t) < b(t) for all t, and
b(1) < a(0). Answer the same questions as in a).
c) We have n players as in question b), but this time a increases, b decreases,
and they intersect.

Problem 3 examples of best reply dynamics
a) We have a symmetric two player game with Si = [0, 1] and the common best
reply function

br(s) = min{s+ 1
2
, 2− 2s}

Show that we have three Nash equilibria, all of them locally unstable, even for
the sequential dynamics.
b) We have three players, Si = R for all i, and the payoffs

u1(s) = −s21 + 2s1s2 − s22 + s1

u2(s) = −9s22 + 6s2s3 − s23 + s2

u3(s) = −16s21 − 9s22 − s23 + 24s1s2 − 6s2s3 + 8s1s3 + s3
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Show there is a unique Nash equilibrium and compute it. Show the sequential
best reply dynamics where players repeatedly take turns in the order 1, 2, 3 does
not converge to the equilibrium, whereas the dynamics where they repeatedly
take turns in the order 2, 1, 3 does converge from any initial point. What about
the myopic adjustment where each player uses his best reply at each turn?

Problem 4 ordinal potential games
Let σ be the sign function σ(0) = 0, σ(z) = 1 if z > 0,= −1 if z < 0. Call
a game G = (N,Si, ui, i ∈ N) an ordinal potential game if there exists a real
valued function P defined on SN such that for all i and s−i ∈ S−i we have

σ{ui(si, s−i)− ui(s
0
i, s−i)} = σ{P (si, s−i)− P (s0i, s−i)} for all si, s0i ∈ Si

a) Show that the search game (example 10) and the price competition (example
11) are ordinal potential games.
b)Show that the following Cournot oligopoly game is an ordinal potential game.
Firm i chooses a quantity si, and D−1 is the inverse demand function. Costs
are linear and identical:

ui(s) = siD
−1(sN )− csi for all i and all s

c) Show that Proposition 26 still holds for ordinal potential games.

Problem 5 third price auction
We have n bidders, n ≥ 3, and bidder i’s valuation of the object is ui. Bids are
independent and simultaneous. The object is awarded to the highest bidder at
the third highest price. Ties are resolved just like in the Vickrey auction, with
the winner still paying the third highest price. We assume for simplicity that
the profile of valuations is such that u1 > u2 > u3 ≥ ui for all i ≥ 4.
a) Find all Nash equilibria.
b) Find all dominated strategies of all players and all Nash equilibria in undom-
inated strategies.
c) Is the game dominance-solvable?

Problem 6 tragedy of the commons
A pasture produces 100 units of grass, and a cow transforms x units of grass

into x units of meat (worth $x), where 0 ≤ x ≤ 10, i.e., a cow eats at most 10
units of grass. It cost $2 to bring a cow to and from the pasture (the profit from
a cow that stays at home is $2). Economic efficiency requires to bring exactly
10 cows to the pasture, for a total profit of $80. A single farmer owning many
cows would do just that.
Our n farmers, each with a large herd of cows, can send any number of cows

to the commons. If farmer i sends si cows, sN cows will share the pasture and
each will eat min{100sN

, 10} units of grass.
a) Write the payoff functions and show that in any Nash equilibrium the

total number sN of cows on the commons is bounded as follows

50
n− 1
n
− 1 ≤ sN ≤ 50

n− 1
n

+ 1
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b) Deduce that the commons will be overgrazed by at least 150% and at most
400%, depending on n, and that almost the entire surplus will be dissipated in
equilibrium. (Hint: start by assuming that each farmer sends at most one cow).

Problem 7 a public good provision game
The common benefit function is b(s) = maxj sj : a single contributor is enough.
Examples include R&D, ballroom dancing (who will be the first to dance) and
dragon slaying (a lone knight must kill the dragon). Costs are quadratic, so the
payoff functions are

ui(s) = max
j

sj −
1

2λi
s2i

where λi is a positive parameter differentiating individual costs.
a) Show that in any Nash equilibrium, only one agent contributes.
b) Show that there are p such equilibria, where p is the number of players i such
that

λi ≥
1

2
max
j

λj

Show that each equilibrium is weakly locally stable.
c) Compute strictly dominated strategies for each player. For what profiles (λi)
is our game (strictly) dominance-solvable?

Problem 8 the lobbyist game
The two lobbyists choose an ’effort’ level si, i = 1, 2, measured in money ( the
amount of bribes distributed) and the indivisible prize worth $a is awarded ran-
domly to one of them with probabilities proportional to their respective efforts
(if the prize is divisible, no lottery is necessary). Hence the payoff functions

ui(s) = a
si

s1 + s2
− si if s1 + s2 > 0;ui(0, 0) = 0

a) Compute the best reply functions and show there is a unique Nash equilib-
rium.
b) Perform the successive elimination of strictly dominated strategies, and check
the game is not dominance-solvable. However, if we eliminate an arbitrarily
small interval [0, ε] from the strategy sets, the reduced game is dominance solv-
able.
c) Show that the Nash equilibrium (of the full game) is strongly globally stable.

Problem 9 more congestion games
We generalize the congestion games of example 7. Now each player chooses
among subsets of a fixed finite set S, so that si ⊂ 2S . The same congestion
function fx(m) applies to each element x in S. The payoff to player i is

ui(s) =
X
x∈si

fx(nx(s)) where nx(s) = |{j ∈ N |x ∈ sj}|

Interpretation: each commuter chooses a different route (origin and destination)
on a common road network represented by a non oriented graph. Her own delay
is the sum of the delays on all edges of the network.
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Show that this game is still a potential game.

Problem 10 price competition
The two firms have constant marginal cost ci, i = 1, 2 and no fixed cost. They
sell two substitutable commodities and compete by choosing a price si, i = 1, 2.
The resulting demands for the 2 goods are

Di(s) = (
sj
si
)αi

where αi > 0. Show that there is an equilibrium in dominant strategies and
discuss its stability.

Problem 11 Cournot duopoly with increasing or U-shaped returns
In all 3 questions the duopolists have identical cost functions C.
a) The inverse demand is D−1(q) = (150− q)+ and the cost is

C(q) = 120q − 2
3
q2 for q ≤ 90;= 5, 400 for q ≥ 90

Show that we have three equilibria, two of them strongly locally stable.
b) The inverse demand is D−1(q) = (130− q)+ and the cost is

C(q) = min{50q, 30q + 600}

Compute the equilibrium outcomes and discuss their (local) stability.
c)The inverse demand is D−1(q) = (150− q)+ and the cost is

C(q) = 2, 025 for q > 0;= 0 for q = 0

Show that we have three equilibria and discuss their (local) stability.

Problem 12 Cournot oligopoly with linear demand and costs
The inverse demand for total quantity q is

D−1(q) = p(1− q

q
)+

where p is the largest feasible price and q the supply at which the price falls to
zero. Each firm i has constant marginal cost ci and no fixed cost.
a) If all marginal costs ci are identical, show there is a unique Nash equilibrium,
where all n firms are active if p > c, and all are inactive otherwise.
b) If the marginal costs ci are arbitrary and c1 ≤ c2 ≤ · · · ≤ cn, let m be zero
if p ≤ c1 and otherwise be the largest integer such that

ci <
1

m+ 1
(p+

iX
1

ck)

Show that in a Nash equilibrium outcome, exactly m firms are active and they
are the lowest cost firms.

Problem 13 Hoteling competition
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The consumers are uniformly spread on [0, 1], and each wants to buy one unit.
Each firm charges the fixed price p and chooses its location si in the interval.
Once locations are fixed, each consumer shops in the nearest store (the tie-
breaking rule does not matter).
a) Show that with two competing stores, the unique Nash equilibrium is that
both locate in the center. Is the game dominance-solvable?
b) Show that with three competing stores, the game has no Nash equilibrium.
c) What is the situation with four stores?

Problem 14 price competition a la Hoteling
The 1000 consumers are uniformly spread on [0, 3] and each wants to buy one
unit and has a very large reservation price. The two firms produce costlessly
and set arbitrary prices si. Once these prices are set consumers shop from the
cheapest firm, taking into account the unit transportation cost t. A consumer
at distance di from firm i buys

from firm 1 if s1 + td1 < s2 + td2, from firm 2 if s1 + td1 > s2 + td2

(the tie-breaking rule does not matter)
a) If the firms are located at 0 and 3, show that there is a unique Nash equilib-
rium pair of prices. Analyze its stability properties.
b) If the firms are located at 1 and 2, show that there is no Nash equilibrium
(hint: check first that a pair of 2 different prices can’t be an equilibrium).

Problem 15 price war
Two duopolists (a la Bertrand) have zero marginal cost and capacity c. The
demand d is inelsatic, with reservation price p. Assume c < d < 2c. We also fix
a small positive constant ε (ε < p

10).
The game is defined as follows. Each firm chooses a price si, i = 1, 2 such

that 0 ≤ si ≤ p. If si ≤ sj − ε, firm i sells its full capacity at price si and firm j
sells d− c at price sj . If |si− sj | < ε the firms split the demand in half and sell
at their own price (thus ε can be interpreted as a transportation cost between
the two firms). To sum up

u1(s) = cs1 if s1 ≤ s2 − ε

= (d− c)s1 if s1 ≥ s2 + ε

=
d

2
s1 if s2 − ε < s1 < s2 + ε

with a symmetric expression for firm 2.
Set p∗ = d−c

c p and check that the best reply correspondence of firm 1 is

br1(s2) = p if s2 < p∗ + ε

= {p, p∗} if s2 = p∗ + ε

= s2 − ε if s2 > p∗ + ε

Show that the game has no Nash equilibrium, and that the sequential best reply
dynamics captures a cyclical price war.

37



Problem 16 Bertrand duopoly
The firms sell the same commodities and have the same cost function C(q), that
is continuous and increasing. They compete by setting prices si, i = 1, 2. The
demand function D is continuous and decreasing. The low price firm captures
the entire demand; if the 2 prices are equal, the demand is equally split between
the 2 firms. Hence the profit function for firm 1

u1(s) = s1D(s1)− C(D(s1)) if s1 < s2; = 0 if s1 > s2

=
1

2
s1D(s1)− C(

D(s1)

2
) if s1 = s2

and the symmetrical formula for firm 2.
a) Show that if s∗ is a Nash equilibrium, then s∗1 = s∗2 = p and

AC(
q

2
) ≤ p ≤ 2AC(q)−AC(

q

2
)

where q = D(p) and AC(q) = C(q)
q is the average cost function.

b) Assume increasing returns to scale, namely AC is (strictly) decreasing. Show
there is no Nash equilibrium s∗ = (p, p) where the corresponding production q
is positive. Find conditions on D and AC such that there is an equilibrium with
q = 0.
c) In this and the next question assume decreasing returns to scale, i.e., AC
is (strictly) increasing. Show that if s∗ = (p, p) is a Nash equilibrium, then
p− ≤ p ≤ p+ where p− and p+ are solutions of

p− = AC(
D(p−)

2
) and p+ = 2AC(D(p+))−AC(

D(p+)

2
)

Check that the firms have zero profit at (p−, p−) but make a positive profit at
(p+, p+) if p− < p+. Hint: draw on the same figure the graphs of D−1(q), AC(

q
2)and

2AC(q)−AC( q2).
d) To prove that the pair (p+, p+) found in question c) really is an equilibrium we
must check that the revenue function R(p) = pD(p)−C(D(p)) is non decreasing
on [0, p+]. In particular p+ should not be larger than the monopoly price.
Assume C(q) = q2, D(p) = (α− βp)+ and compute the set of Nash equilib-

rium outcomes, discussing according to the parameters α, β.

Problem 17 single crossing property (SCP)
Games exhibiting the SCP generalize games with non decreasing best reply
functions (section 2.1.3). Assume strategy sets are real intervals Si = [ai, bi]
and payoff functions ui are continuous. We say that ui exhibit the SCP if for
all i and all s, s0 ∈ SN such that s ≤ s0 we have

ui(s
0
i, s−i) > ui(si, s−i)⇒ ui(s

0
i, s

0
−i) > ui(si, s

0
−i) (1)

ui(s
0
i, s−i) ≥ ui(si, s−i)⇒ ui(s

0
i, s

0
−i) ≥ ui(si, s

0
−i)
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a) Define br−i and br
+
i to be respectively the smallest and largest element of the

best reply correspondence. Show that they are both non-decreasing. Define the
sequences st− and st+ as follows

s0− = a; st+1− = br−i (s
t
−); s

0
+ = b; st+1+ = br+i (s

t
+)

Show that st− is non decreasing while s
t
+ is non increasing. And that they

converge respectively to the smallest equilibrium s− and to the largest one s+.
Check that the successive elimination of strictly dominated strategies converges
to [s−, s+]. Thus Proposition 30 is essentially preserved for games with the SCP.
b) Show that if ui is twice differentiable the SCP holds if and only if

∂2ui
∂si∂sj

≥ 0 on [a, b].

c) Show that the search game (example 10) has the SCP without making any
assumption on ci.

Problem 18
In the game G = (N,Si, ui, i ∈ N) we write

αi = max
si
min
s−i

ui(si, s−i);βi = min
s−i

max
si

ui(si, s−i)

and assume the existence for each player of a prudent strategy si, namely αi =
mins−i ui(si, s−i).
a) Assume α = (αi)i∈N is a Pareto optimal utility profile: there exists es ∈ SN
such that

α = u(es) and for all s ∈ SN : {u(s) ≥ u(es)}⇒ u(s) = u(es)
Show that α = β and that any profile of prudent strategies is a Nash equilibrium.
b) Assume that the strategy sets Si are all finite, and β = (βi)i∈N is a Pareto
optimal utility profile. Show that if each function ui is one-to-one on SN then
the outcome es such that β = u(es) is a Nash equilibrium. Give an example of a
game with finite strategy sets (where payoffs are not one-to-one) such that β is
Pareto optimal and yet the game has no Nash equilibrium.

Problem 19
In the Cournot model of example 3 where we do not assume a large number of
agents and do not identify best reply behavior and competitive behavior, show
the Nash equilibrium is unique and describe it.

3 Existence results and mixed strategies

3.1 Nash’s theorem

Nash’s theorem generalizes Von Neumann’s theorem to n-person games.
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Theorem 35 (Nash) If in the game G = (N,Si, ui, i ∈ N) the sets Si are
convex and compact, and the functions ui are continuous over X and quasi-
concave in si, then the game has at least one Nash equilibrium.

For the proof we use the following mathematical preliminaries.
1) Upper hemi-continuity of correspondences
A correspondence f : A →→ Rm is called upper hemicontinuous at x ∈ A if
for any open set U such that f(x) ⊂ U ⊂ A there exists an open set V such
that x ∈ V ⊂ A and that for any y ∈ V we have f(y) ⊂ U . A correspondence
f : A →→ Rm is called upper hemicontinuous if it is upper hemicontinuous at
all x ∈ A.
Proposition
A correspondence f : A →→ Rm is upper hemicontinuous if and only if it has
a closed graph and the images of the compact sets are bounded (i.e. for any
compact B ⊂ A the set f(B) = {y ∈ Rm : y ∈ f(x) for some x ∈ B} is
bounded).
Note that if f(A) is bounded (compact), then the upper hemicontinuity is

equivalent to the closed graph condition. Thus to check that f : A →→ A
from the premises of Kakutani’s fixed point theorem is upper hemicontinuous
it is enough to check that it has closed graph. I.e., one needs to check that for
any xk ∈ A, xk → x ∈ A, and for any yk → y such that yk ∈ f(xk), we have
y ∈ f(x).
2) Two fixed point theorems
Theorem (Brouwer’s fixed point theorem)
Let A ⊂ Rn be a nonempty convex compact, and f : A → A be continuous.
Then f has a fixed point : there exists x ∈ A such that x = f(x).
Extension to correspondences:

Theorem (Kakutani’s fixed point theorem)
Let A ⊂ Rn be a nonempty convex compact and f : A →→ A be an upper

hemicontinuous convex-valued correspondence such that f(x) 6= ∅ for any x ∈
A. Then f has a fixed point: there exists x ∈ A such that x ∈ f(x).
Proof of Nash Theorem.

For each player i ∈ N define a best reply correspondence Ri : S−i →→ Si in
the following way: Ri(s−i) = argmax

σ∈Si
ui(σ, s−i). Consider next the best reply

correspondence R : S →→ S, where R(s) = R1(s−1)× ...× RN (s−N ). We will
check that R satisfies the premises of the Kakutani’s fixed point theorem.
First S = S1×...×SN is a nonempty convex compact as a Cartesian product

of finite number of nonempty convex compact subsets of Rp.
Second since ui are continuous and Si are compact there always existmax

σ∈Si
ui(σ, s−i).

Thus Ri(s−i) is nonempty for any s−i ∈ S−i and so R(s) is nonempty for any
s ∈ S.
Third R(s) = R1(s−1) × ... × RN (s−N ) is convex since Ri(s−i) are convex.

The last statement follows from the (quasi-) concavity of ui(·, s−i). Indeed if
si, ti ∈ Ri(s−i) = argmax

σ∈Si
ui(σ, s−i) then ui(λsi+(1−λ)ti, s−i) ≥ λui(si, s−i)+

(1− λ)ui(ti, s−i) = max
σ∈Si

ui(σ, s−i), and hence λsi + (1− λ)ti ∈ Ri(s−i).
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Finally given that S is compact to guarantee upper hemicontinuity of R we
only need to check that it has closed graph. Let sk ∈ S, sk → s ∈ S, and
tk → t be such that tk ∈ R(sk). Hence for any k and for any i = 1, ..., N we
have that ui(tk, sk−i) ≥ ui(σ, s

k
−i) for all σ ∈ Si. Given that (tk, sk−i)→ (t, s−i)

continuity of ui implies that ui(t, s−i) ≥ ui(σ, s−i) for all σ ∈ Si. Thus t ∈
argmax

σ∈Si
ui(σ, s−i) = R(s) and so R has closed graph.

Now, Kakutani’s fixed point theorem tells us that there exists s ∈ S =
S1 × ... × SN such that s = (s1, ..., sN ) ∈ R(s) = R1(s−1) × ... × RN (s−N ).
I.e. si ∈ R(s−i) for all players i. Hence, each strategy in s is a best reply to
the vector of strategies of other players and thus s is a Nash equilibrium of our
game.¥
A useful variant of the theorem is for symmetrical games.

Theorem 36 If in addition to the above assumptions, the game is symmetrical,
then there exists a symmetrical Nash equilibrium si = sj for all i, j.

The main application of Nash’s theorem is to finite games in strategic form
where the players use mixed strategies.
Consider a normal form game Γf = (N, (Ci)i∈N , (ui)i∈N ), where N is a

(finite) set of players, Ci is the (nonempty) finite set of pure strategies available
to the player i, and ui : C = C1× ...×CN → R is the payoff function for player
i. Let Si = ∆(Ci) be the set of all probability distributions on Ci (i.e., the set
of all mixed strategies of player i). We extend the payoff functions ui from C
to S = S1 × ...× SN by expected utility.
In the resulting game Si will be convex compact subsets of some finite-

dimensional vector space. Extended payoff functions ui : S → R will be contin-
uous on S, and ui(·, s−i) will be be concave (actually, linear) on Si. Thus we
can apply the theorem above to show that

Theorem 37 Γf always has a Nash equilibrium in mixed strategies.

Note that a Nash equilibrium of the initial game remains an equilibrium in
its extension to mixed strategies.

3.2 Von Neumann Morgenstern utility

the axiomatization of expected utility over lotteries

3.3 mixed strategy equilibrium

Here we discuss a number of examples to illustrate both the interpretation and
computation of mixed strategy equilibrium in n-person games. We start with
two-by-two games,namely where two players have two strategies each.

Example 1 crossing games
We revisit the example 12 from chapter 2
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stop 1, 1 1− ε, 2
go 2, 1− ε 0, 0

stop go

and compute the (unique) mixed strategy equilibrium

s∗1 = s∗2 =
1− ε

2− ε
stop+

1

2− ε
go

with corresponding utility 2−2ε
2−ε for each player. So an accident (both player

go) occur with probability slightly above 1
4 . Both players enjoy an expected

utility only slightly above their secure (guaranteed) payoff of 1 − ε. Under s∗1,
on the other hand, player 1 gets utility close to 1

2 about half the time: for a tiny
increase in the expected payoff, our player incur a large risk.
The point is stronger in the following variant of the crossing game

stop 1, 1 1 + ε, 2
go 2, 1 + ε 0, 0

stop go

where the (unique) mixed strategy equilibrium is

s∗1 = s∗2 =
1 + ε

2 + ε
stop+

1

2 + ε
go

and gives to each player exactly her guaranteed utility level in the mixed game.
Indeed a (mixed) prudent strategy of player 1 is

es1 = 2

2 + ε
stop+

ε

2 + ε
go

and it guarantees the expected utility 2+2ε
2+ε , which is also the mixed equilibrium

payoff. Now the case for playing the equilibrium strategy in lieu of the prudent
one is even weaker.

In general finite games computing the mixed equilibrium or equilibria follows
the same general approach as for two-person zero-sum games. The difficulty is
to identify the support of the equilibrium strategies, typically of equal sizes2 .
Once this is done we need to solve a linear system and check a few inequalities.
Unlike in two-person zero-sum games, we may have several mixed equilibria

with very different payoffs. A general theorem shows that for "most games",
the number of mixed or pure equilibria is odd.

Example 2 public good provision (Bliss and Nalebuff)
Each one of the n players can provide the public good (hosting a party, slaying
the dragon, or any other example where only one player can do the job) at a
cost c > 0. The benefit is b to every agent if the good is provided. We assume
b > c. They use the following mechanism: each player chooses to step forward

2 If a finite game has a mixed equilibrium with supports of different sizes, then an arbitrarily
small change in the payoffs will eliminate such "abnormal" equilibria.
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(volunteer) or not. If nobody volunteers, the good is not provided; if some
players volunteer, we choose one of them with uniform probability to provide
the good.
This game has no Nash equilibrium in pure strategies, and a unique symmet-

rical equilibrium in mixed strategies in which every player steps forward with
probability p∗, where p∗ solves

1

n

c

b
=

p(1− p)n−1

1− (1− p)n

For instance if n = 2, we get

p∗2 =
2(b− c)

2b− c
and ui(p

∗) =
2b(b− c)

2b− c

One checks that as n grows, p∗n goes to zero as
K
n where K is the solution of

c

b
=

K − e−K

1− e−K

therefore the probability that the good be provided goes to one, but not the
probability of volunteering.

Example 3 war of attrition (a.k.a. all-pay second price auction)
The n players compete for a prize worth $p by "hanging on" longer than everyone
else. Hanging on costs $1 per unit of time. Once a player is left alone, he wins
the prize without spending any more effort. The game in pure strategies is a
game of timing as in Example 14 chapter 2:

ui(s) = p−max
j 6=i

sj if si > max
j 6=i

sj ; = −si if si < max
j 6=i

sj ; =
p

K
−si if si = max

j 6=i
sj

where K is the number of largest bids.
In addition to the pure equilibria described in the previous chapter, we have

one symmetrical equilibrium in completely mixed strategies where each player
independently chooses si in [0,∞[ according to the cumulative distribution func-
tion

F (x) = (1− e−
x
p )

1
n−1

In particular the support of this distribution is [0,∞[ and for any B > 0 there
is a positive probability that a player bids above B. The payoff to each player
is zero so the mixed strategy is not better than the prudent one (zero bid)
payoffwise. It is also more risky.

Example 4 lobbying game (a.k.a. all-pay first price auction)
The n players compete for a prize of 1K and can spend $si on lobbying (bribing)
the relevant jury members. The largest bribe wins the prize; all the money spent
on bribes is lost to the players. Hence the payoff functions

ui(s) = p− si if si > max
j 6=i

sj ; = −si if si < max
j 6=i

sj ; =
p

K
− si if si = max

j 6=i
sj
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Here the symmetrical mixed Nash equilibrium has each player independently
choosing a bid in [0, p] according to the cumulative distribution function

F (x) = (
x

p
)

1
n−1

As in the above example the equilibrium payoff is zero, just like the guaranteed
payoff from a nul bid.

3.4 correlated equilibrium

definition and interpretation: a cooperative communication device
relation to learning algorithms
examples: crossing game, musical chairs

3.5 Problems for Chapter 3

Problem 1
a) In the two-by-two game

T 5, 5 4, 10
B 10, 4 0, 0

L R

Compute all Nash equilibria. Show that a slight increase in the (B,L) payoff
to the row player results in a decrease of his mixed equilibrium payoff.
b) Consider the crossing game of example 1

stop 1, 1 1− ε, 2
go 2, 1− ε 0, 0

stop go

and its variant where strategy "go" is more costly by the amount α, α > 0, to
the row player:

stop 1, 1 1− ε, 2
go 2− α, 1− ε −α, 0

stop go

Show that for α and ε small enough, row’s mixed equilibrium payoff is higher if
the go strategy is more costly.

Problem 2
Three plants dispose of their water in the lake. Each plant can send clean water
(si = 1) or polluted water (si = 0). The cost of sending clean water is c. If only
one firm pollutes the lake, there is no damage to anyone; if two or three firms
pollute, the damage is a to everyone, a > c.
Compute all Nash equilibria in pure and mixed strategies.

Problem 3
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Give an example of a two-by-two game where no player has two equivalent pure
strategies, and the set of Nash equilibria is infinite.

Problem 4
A two person game with finite strategy sets S1 = S2 = {1, · · · , p} is represented
by two p× p payoff matrices U1 and U2, where the row player is labeled 1 and
the column player is 2. The entry Ui(j, k) is player i’s payoff when row chooses
j and column chooses k. Assume that both matrices are invertible and denote
by |A| the determinant of the matrix A. Then write eUi(j, k) = (−1)j+k|Ui(j, k)|
the (j, k) cofactor of the matrix Ui, where Ui(j, k) is the (p−1)× (p−1) matrix
obtained from Ui by deleting the j row and the k column.
Show that if the game has a completely mixed Nash equilibrium, it gives to

player i the payoff
|Ui|P

1≤j,k≤p
eUi(j, k)

Problem 5
In this symmetric two-by-two-by-two (three-person) game, the mixed strategy
of player i takes the form (pi, 1−pi) over the two pure strategies. The resulting
payoff to player 1 is

u1(p1, p2, p3) = p1p2p3 + 3p1p2 + p1p3 + p2p3 − p1 − 2p2

Find the symmetric mixed equilibrium of the game. Are there any non sym-
metric equilibria (in pure or mixed strategies)?

Problem 6
Let({1, 2}, C1, C2, u1, u2) be a finite two person game and G = ({1, 2}, S1, S2, u1, u2)
be its mixed extension. Say that the set NE(G) of mixed Nash equilibrium out-
comes of G has the rectangularity property if we have for all s, s0 ∈ S1 × S2

s, s0 ∈ NE(G)⇒(s01, s2), (s1, s02) ∈ NE(G)

a) Prove that NE(G) has the rectangularity property if and only if it is a convex
subset of S1 × S2.
b) In this case, prove there exists a Pareto dominant mixed Nash equilibrium
s∗:

for all s ∈ NE(G)⇒u(s) ≤ u(s∗)

Problem 7 war of attrition
We have two players who value the prize respectively at a1 and a2. The payoff
are

ui(s1, s2) = ai − sj if sj < si; = −si if si < sj ; =
1

2
ai − si if sj = si;

For any two numbers b1, b2 in [0, 1] such that max{b1, b2} = 1, consider the
mixed strategy of player i with cumulative distribution function

Fi(x) = 1− bie
− x
aj , for x ≥ 0
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Show that the corresponding pair of mixed strategies (s1, s2) is an equilibrium
of the game.
Riley shows that these are the only mixed equilibria of the game.

Problem 8 all pay auction
We have two players who value the prize respectively at a1 and a2. The payoffs
are

ui(s1, s2) = ai − si if sj < si; = −si if si < sj ; =
1

2
ai − si if sj = si

Assume a1 ≥ a2. Show that the following is an equilibrium:
player 1 chooses in [0, a2] with uniform probability;
player 2 bids zero with probability 1− a2

a1
, and with probability a2

a1
he chooses

in [0, a2] with uniform probability.
Riley shows this is the unique equilibrium if a1 > a2.

Problem 9 first price auction
We have two players who value the prize respectively at a1 and a2. The payoffs
are

ui(s1, s2) = ai − si if sj < si; = 0 if si < sj ; =
1

2
(ai − si) if sj = si

a) Assume a1 = a2. Show that the only Nash equilibrium of the game in mixed
strategies is s1 = s2 = ai.
b) Assume a1 > a2. Show there is no equilibrium in pure strategies. Show that
in any equilibrium in mixed strategies
player 1 bids a2
player 2 chooses in [0, a2] according to some probability distribution π such

that for any interval [a2 − ε, a2] we have π([a2 − ε, a2]) ≥ ε
a2−a1 .

Give an example of such an equilibrium.

Problem 10 a location game
Two shopowners choose the location of their shop in [0, 1]. The demand is
inelastic; player 1 captures the whole demand if he locates where player 2 is,
and player 2’s share increases linearly up to a cap of 23 when he moves away from
player 1. The sets of pure strategies are Ci = [0, 1] and the payoff functions are:

u1(x1, x2) = 1− |x1 − x2|

u2(x1, x2) = min{|x1 − x2|,
2

3
}

a) Show that there is no Nash equilibrium in pure strategies.
b) Show that the following pair of mixed strategies is an equilibrium of the
mixed game:

s1 =
1

3
δ0 +

1

6
δ 1
3
+
1

6
δ 2
3
+
1

3
δ1

s2 =
1

2
δ0 +

1

2
δ1
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and check that by using such a strategy, a player makes the other one indifferent
between all his possible moves.
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