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1 Two person zero sum games

1.1 Introduction: strategic interdependency

In this section we study games with only two players. We also restrict attention
to the case where the interests of the players are completely antagonistic: at the
end of the game, one player gains some amount, while the other loses the same
amount. These games are called �two person zero sum games�.
While in most economics situations the interests of the players are neither

in strong con�ict nor in complete identity, this speci�c class of games provides
important insights into the notion of "optimal play". In some 2-person zero-
sum games,each player has a well de�ned �optimal� strategy, which does not
depend on her adversary decision (strategy choice). In other games, no such
optimal strategy exists. Finally, the founding result of Game Theory, known as
the minimax theorem, says that optimal strategies exist when our players can
randomize over a �nite set of deterministic strategies.

1.2 Two-person zero-sum games in strategic form

A two-person zero-sum game in strategic form is a triple G = (S; T; u), where
S is a set of strategies available to the player 1, T is a set of strategies available
to the player 2; and u : S � T ! R is the payo¤ function of the game G; i.e.,
u(s; t) is the resulting gain for player 1 and the resulting loss for player 2, if they
choose to play s and t respectively. Thus, player 1 tries to maximize u; while
player 2 tries to minimize it. We call any strategy choice (s; t) an outcome of
the game G.
When the strategy sets S and T are �nite, the game G can be represented

by an n by m matrix A; where n = jSj; m = jT j; and aij = u(si; tj):
The secure utility level for player 1 (the minimal gain he can guarantee him-

self, no matter what player 2 does) is given by

m = max
s2S

min
t2T

u(s; t) = max
i
min
j
aij :

A strategy s� for player 1 is called prudent, if it realizes this secure max-min
gain, i.e., if min

t2T
u(s�; t) = m:
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The secure utility level for player 2 (the maximal loss she can guarantee
herself, no matter what player 1 does) is given by

m = min
t2T

max
s2S

u(s; t) = min
j
max
i
aij :

A strategy t� for player 2 is called prudent, if it realizes this secure min-max
loss, i.e., if max

s2S
u(s; t�) = m:

The secure utility level is what a player can get for sure, even if the other
player behaves in the worst possible way. For each strategy of a player we
calculate what could be his or her worst payo¤, resulting from using this strategy
(depending on the strategy choice of another player). A prudent strategy is one
for which this worst possible result is the best. Thus, by a prudent choice of
strategies, player 1 can guarantee that he will gain at least m, while player 2
can guarantee that she will loose at most m. Given this, we should expect that
m � m: Indeed:

Lemma 1 For all two-person zero-sum games, m � m:

Proof : m = max
s2S

min
t2T

u(s; t) = min
t2T

u(s�; t) � u(s�; t�) � max
s2S

u(s; t�) =

min
t2T

max
s2S

u(s; t) = m:

De�nition 2 If m = m; then m = m = m is called the value of the game G.
If m < m, we say that G has no value.
An outcome (s�; t�) 2 S � T is called a saddle point of the payo¤ function

u, if u(s; t�) � u(s�; t�) � u(s�; t) for all s 2 S and for all t 2 T .

Remark 3 Equivalently, we can write that (s�; t�) 2 S � T is a saddle point if
max
s2S

u(s; t�) � u(s�; t�) � min
t2T

u(s�; t)

When the game is represented by a matrix A, (s�; t�) will be a saddle point,
if and only if as�t� is the largest entry in its column and the smallest entry in
its row.
A game has a value if and only if it has a saddle point:

Theorem 4 If the game G has a value m, then an outcome (s�; t�) is a saddle
point if and only if s� and t� are prudent. In this case, u(s�; t�) = m: If G has
no value, then it has no saddle point either.

Proof :
Suppose that m = m = m; and s� and t� are prudent strategies of players 1

and 2 respectively. Then by the de�nition of prudent strategies

max
s2S

u(s; t�) = m = m = m = min
t2T

u(s�; t):

In particular, u(s�; t�) � m � u(s�; t�); hence, u(s�; t�) = m:
Thus, max

s2S
u(s; t�) = u(s�; t�) = min

t2T
u(s�; t); and so (s�; t�) is a saddle point.
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Conversely, suppose that (s�; t�) is a saddle point of the game, i.e.,max
s2S

u(s; t�) �
u(s�; t�) � min

t2T
u(s�; t): Then, in particular, max

s2S
u(s; t�) � min

t2T
u(s�; t):

But by the de�nition of m as max
s2S

min
t2T

u(s; t) we have min
t2T

u(s�; t) � m; and
by the de�nition of m as min

t2T
max
s2S

u(s; t) we have max
s2S

u(s; t�) � m: Hence, using
Lemma 1 above, we obtain that min

t2T
u(s�; t) � m � m � max

s2S
u(s; t�):

It follows that m = max
s2S

u(s; t�) = u(s�; t�) = min
t2T

u(s�; t) = m. Thus, G

has a value m = m = m; and s� and t� are prudent strategies.�
Examples:

� matching pennies is the simplest game with no value: each player chooses
Left or Right; player 1 wins +1 if their choices coincide, loses 1 otherwise.

� The noisy gun�ght is a simple game with a value. The two players walk
toward each other, with a single bullet in their gun. Let ai(t); i = 1; 2,
be the probability that player i hits player j if he shoots at thime t. At
t = 0, they are far apart so ai(0) = 0; at time t = 1, they are so close that
ai(1) = 1; �nally ai is a continuous and increasing function of t. When
player i shoots, one of 2 things happens: if j is hit, , player iwins $1 from
j and the game stops (j cannot shoot any more); if i misses, j hears the
shot, and realizes that i cannot shoot any more so j waits until t = 1,
hits i for sure and collects $1from him. Note that the silent version of the
gun�ght model (in the problem set below) has no value.

In a game with a value, prudent strategies are optimal� using them, player
1 can guarantee to get at least m; while player 2 can guarantee to loose at most
m.
In order to �nd a prudent strategy:
�player 1 solves the program max

s2S
m1(s), where m1(s) = min

t2T
u(s; t) (max-

imize the minimal possible gain);
�player 2 solves the program min

t2T
m2(t), where m2(t) = max

s2S
u(s; t) (mini-

mize the maximal possible loss).
We can always �nd such strategies when the sets S and T are �nite.

Remark 5 (In�nite strategy sets) When S and T are compact (i.e. closed
and bounded) subsets of Rk; and u is a continuous function, prudent strategies
always exist, due to the fact that any continuous function, de�ned on a compact
set, reaches on it its maximum and its minimum.

In a game without a value, we cannot deterministically predict the outcome
of the game, played by rational players. Each player will try to guess his/her
opponent�s strategy choice. Recall matching pennies.
Here are several facts about two-person zero-sum games in normal form.
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Lemma 6 (rectangularity property) A two-person zero-sum games in normal
form has at most one value, but it can have several saddle points, and each
player can have several prudent (and even several optimal) strategies. Moreover,
if (s1; t1) and (s2; t2) are saddle points of the game, then (s1; t2) and (s1; t2) are
also saddle points.

A two-person zero-sum games in normal form is called symmetric if S = T;
and u(s; t) = �u(t; s) for all s; t: When S; T are �nite, symmetric games are
those which can be represented by a square matrix A; for which aij = �aji for
all i; j (in particular, aii = 0 for all i).

Lemma 7 If a symmetric game has a value then this value is zero. Moreover,
if s is an optimal strategy for one player, then it is also optimal for another one.

Proof: Say the game (S; T; u) has a value v, then we have

v = max
s
min
t
u(s; t) = max

s
f�max

t
u(t; s)g = �min

s
max
t
u(t; s) = �v

so v = 0. The proof of the 2d statement is equally easy.

1.3 Two-person zero-sum games in extensive form

A game in extensive form models a situation where the outcome depends on
the consecutive actions of several involved agents (�players�). There is a precise
sequence of individual moves, at each of which one of the players chooses an
action from a set of potential possibilities. Among those, there could be chance,
or random moves, where the choice is made by some mechanical random device
rather than a player (sometimes referred to as �nature�moves).
When a player is to make the move, she is often unaware of the actual choices

of other players (including nature), even if they were made earlier. Thus, a
player has to choose an action, keeping in mind that she is at one of the several
possible actual positions in the game, and she cannot distinguish which one is
realized: an example is bridge, or any other card game.
At the end of the game, all players get some payo¤s (which we will measure

in monetary terms). The payo¤ to each player depends on the whole vector of
individual choices, made by all game participants.
The most convenient representation of such a situation is by a game tree,

where to non terminal nodes are attached the name of the player who has the
move, and to terminal nodes are attached payo¤s for each player. We must also
specify what information is available of a player at each node of the tree where
she has to move.
A strategy is a full plan to play a game (for a particular player), prepared in

advance. It is a complete speci�cation of what move to choose in any potential
situation which could arise in the game. One could think about a strategy
as a set of instructions that a player who cannot physically participate in the
game (but who still wants to be the one who makes all the decisions) gives
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to her "agent". When the game is actually played, each time the agent is to
choose a move, he looks at the instruction and chooses according to it. The
representative, thus, does not make any decision himself!
Note that the reduction operator just described does not work equally well

for games with n -players with multiple stages of decisions.
Each player only cares about her �nal payo¤ in the game. When the set

of all available strategies for each player is well de�ned, the only relevant in-
formation is the pro�le of �nal payo¤s for each pro�le of strategies chosen by
the players. Thus to each game in extensive form is attached a reduced game in
strategic form. In two-person zero sum games, this reduction is not conceptually
problematic, however for more general n-person games, it does not capture the
dynamic character of a game in extensive form, and for this we need to develop
new equilibrium concepts: see Chapter 5.
In this section we discuss games in extensive form with perfect information.
Examples:

� Gale�s chomp game: the player take turns to destroy a n�m rectangular
grid, with the convention that if player i kills entry (p; q), all entries (p0; q0)
such that (p0; q0) � (p; q) are destroyed as well. When a player moves, he
must destroy one of the remaining entries.The player who kills entry (1; 1)
loses. In this game player 1 who moves �rst has an optimal strategy that
guarantees he wins. This strategy is easy to compute if n = m, not so if
n 6= m.

� Chess and Zermelo�s theorem: the game of Chess has three payo¤s, +1;�1; 0.
Although we do which one, one of these 3 numbers is the value of the game,
i.e., either Win can guarantee a win, or Black can, or both can secure a
draw.

De�nition 8 A �nite game in extensive form with perfect information is given
by
1) a tree, with a particular node taken as the origin;
2) for each non-terminal node, a speci�cation of who has the move;
3) for each terminal node, a payo¤ attached to it.

Formally, a tree is a pair � = (N;�) where N is the �nite set of nodes, and
� : N ! N [ ; associates to each node its predecessor. A (unique) node n0
with no predecessors (i.e., �(n0) = ;) is the origin of the tree. Terminal nodes
are those which are not predecessors of any node. Denote by T (N) the set of
terminal nodes. For any non-terminal node r; the set fn 2 N : �(n) = rg is the
set of successors of r: The maximal possible number of edges in a path from the
origin to some terminal node is called the length of the tree �.
Given a tree �, a two-person zero-sum game with perfect information is

de�ned by a partition of N as N = T (N)[N1 [N2 into three disjoint sets and
a payo¤ function de�ned over the set of terminal nodes u : T (N)! R:
For each non-terminal node n; n 2 Ni (i = 1; 2) means that player i has

the move at this node. A move consists of picking a successor to this node.

5



The game starts at the origin n0 of the tree and continues until some terminal
node nt is reached. Then the payo¤ u(nt) attached to this node is realized (i.e.,
player 1 gains u(nt) and player 2 looses u(nt)).
We do not necessary assume that n0 2 N1. We even do not assume that if

a player i has a move at a node n; then it is his or her opponent who moves
at its successor nodes (if the same player has a move at a node and some of its
successors, we can reduce the game and eliminate this anomaly).
The term �perfect information� refers to the fact that, when a player has

to move, he or she is perfectly informed about his or her position in the tree.
If chance moves occur later or before this move, their outccome is revealed to
every player.
Recall that a strategy for player i is a complete speci�cation of what move

to choose at each and every node from Ni: We denote their set as S; or T; as
above.

Theorem 9 (Kuhn) Every �nite two-person zero-sum game in extensive form
with perfect information has a value. Each player has at least one optimal
(prudent) strategy in such a game.

Proof :
The proof is by induction in the length l of the tree �. For l = 1 the theorem

holds trivially, since it is a one-person one-move game (say, player 1 is to choose
a move at n0; and any of his moves leads to a terminal node). Thus, a prudent
strategy for the player 1 is a move which gives him the highest payo¤, and this
payo¤ is the value of the game.
Assume now that the theorem holds for all games of length at most l � 1;

and consider a game G of length l: Without loss of generality, n0 2 N1; i.e.,
player 1 has a move at the origin.
Let fn1; :::; nkg be the set of successors of the origin n0. Each subtree �i;

with the origin ni; is of length l�1 at most. Hence, by the induction hypothesis,
any subgame Gi associated with a �i has a value, say, mi. We claim that the
value of the original game G is m = max

1�i�k
mi.

Indeed, by moving �rst to ni and then playing optimally at Gi; player 1 can
guarantee himself at least mi. Thus, player 1 can guarantee that he will gain at
least m in our game G. But, by playing optimally in each game Gi; player 2 can
guarantee herself the loss of not more than mi. Hence, player 2 can guarantee
that she will lose at mostm in our game G. Thus max-min and min-max payo¤s
coincide and m is the value of the game G.�
The value of a �nite two-person zero-sum game in extensive form, as well as

optimal strategies for the players, are easily found by solving the game backward.
We start by any non-terminal node n, such that all its successors are terminal.
An optimal choice for the player i who has a move at n is clearly one which
leads to a terminal node with the best payo¤ for him/her (the max payo¤ if
i = 1, or the min payo¤ if i = 2). We can write down this optimal move for
the player i at the node n; then delete all subtree which originates at n; except
the node n itself, and �nally assign to n the best payo¤ player i can get. Thus,
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the node n becomes the terminal node of so reduced game tree. After a �nite
number of such steps, the original game will reduce to one node n0, and the
payo¤ assigned to it will be the value of the initial game. The optimal strategies
of the players are given by their optimal moves at each node, which we wrote
down when reducing the game.

Remark 10 Consider the simple case, where all payo¤s are either +1 or �1
(a player either �wins� or �looses�), and where whenever a player has a move
at some node, his/her opponent is the one who has a move at all its successors.
An example is Gale�s chomp game above. When we solve this game backward,
all payo¤s which we attach to non-terminal nodes in this process are +1 or �1
(we can simply write �+�or ���). Now look at the original game tree with �+�
or ��� attached to each its node according to this procedure. A �+� sign at a
node n means that this node (or �this position�) is �winning�<for player 1>,
in a sense that if the player 1 would have a move at this node he would surely
win, if he would play optimally. A ��� sign at a node n means that this node
(or �this position�) is �loosing�<for player 1>, in a sense that if the player 1
would have a move at this node he would surely lose, if his opponent would play
optimally. It is easy to see that �winning� nodes are those which have at least
one �loosing� successor, while �loosing� nodes are those whose all successors
are �winning�. A number of the problems below are about computing the set of
winning and losing positions.

1.4 Mixed strategies

Motivating examples:

Matching pennies: the matrix
�

1 �1
�1 1

�
; has no saddle point. Moreover,

for this game m = �1 and m = 1 (the worst possible outcomes), i.e., a prudent
strategy does not provide any of two players with any minimal guarantee. Here
a player�s payo¤depends completely on how well he or she can predict the choice
of the other player. Thus, the best way to play is to be unpredictable, i.e. to
choose a strategy (one of the two available) completely random. It is easy to see
that if each player chooses either strategy with probability 1=2 according to the
realization of some random device (and so without any predictable pattern),
then �on average� (after playing this game many times) they both will get
zero. In other words, under such strategy choice the �expected payo¤�for each
player will be zero. Moreover, we show below that this randomized strategy is
also optimal in the mixed extension of the deterministic game.
Blu¢ ng in Poker When optimal play involves some blu¢ ng, the blu¢ ng

behavior needs to be unpredictable. This can be guaranteed by delegating a
choice of when to blu¤ to some (carefully chosen!) random device. Then even
the player herself would not be able to predict in advance when she will be
blu¢ ng. So the opponents will certainly not be able to guess whether she is
blu¢ ng. See the blu¢ ng game (problem 17) below.
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Schelling�s toy safe. Ann has 2 safes, one at her o¢ ce which is hard to crack,
another "toy" fake at home which any thief can open with a coat-hanger (as in
the movies). She must keep her necklace, worth $10,000, eithe at home or at
the o¢ ce. Bob must decide which safe to visit (he has only one visit at only one
safe). If he chooses to visit the o¢ ce, he has a 20% chance of opening the safe.
If he goes to ann�s home, he is sure to be able to open the safe. The point of
this example is that the presence of the toy safe helps Ann, who should actually
use it to hide the necklace with a positive probability.

Even when using mixed strategies is clearly warranted, it remains to deter-
mine which mixed strategy to choose (how often to blu¤, and on what hands?).
The player should choose the probabilities of each deterministic choice (i.e. on
how she would like to program the random device she uses). Since the player
herself cannot predict the actual move she will make during the game, the pay-
o¤ she will get is uncertain. For example, a player may decide that she will
use one strategy with probability 1=3, another one with probability 1=6; and
yet another one with probability 1=2. When the time to make her move in
the game comes, this player would need some random device to determine her
�nal strategy choice, according to the pre-selected probabilities. In our exam-
ple, such device should have three outcomes, corresponding to three potential
choices, relative chances of these outcomes being 2 : 1 : 3. If this game is played
many times, the player should expect that she will play 1-st strategy roughly
1=3 of the time, 2-nd one roughly 1=6 of the time, and 3-d one roughly 1=2 of
the time. She will then get �on average� 1=3 (of payo¤ if using 1-st strategy)
+1=6 (of payo¤ if using 2-nd strategy) +1=2 (of payo¤ if using 3-d strategy).
Note that, though this player�s opponent cannot predict what her actual

move would be, he can still evaluate relative chances of each choice, and this will
a¤ect his decision. Thus a rational opponent will, in general, react di¤erently
to di¤erent mixed strategies.
What is the rational behavior of our players when payo¤s become uncertain?

The simplest and most common hypothesis is that they try to maximize their
expected (or average) payo¤ in the game, i.e., they evaluate random payo¤s
simply by their expected value. Thus the cardinal values of the deterministic
payo¤s now matter very much, unlike in the previous sections where the ordinal
ranking of the outcomes is all that matters to the equilibrium analysis. We give
in Chapter 2 some axiomatic justi�cations for this crucial assumption.
The expected payo¤ is de�ned as the weighted sum of all possible payo¤s

in the game, each payo¤ being multiplied by the probability that this payo¤
is realized. In matching pennies, when each player chooses a �mixed strategy�
(0:5; 0:5) (meaning that 1-st strategy is chosen with probability 0.5, and 2-
nd strategy is chosen with probability 0.5), the chances that the game will
end up in each particular square (i; j); i.e., the chances that the 1-st player
will play his i-th strategy and the 2-nd player will play her j-th strategy, are
0:5 � 0:5 = 0:25: So the expected payo¤ for this game under such strategies is
1� 0:25 + (�1)� 0:25 + 1� 0:25 + (�1)� 0:25 = 0:
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De�nition
Consider a general �nite game G = (S; T; u), represented by an n by m

matrix A; where n = jSj; m = jT j: The elements of the strategy sets S and T
(�sure� strategy choices, which do not involve randomization) are called pure
or deterministic strategies. A mixed strategy for the player is a probability
distribution over his or her deterministic strategies, i.e. a vector of probabilities
for each deterministic strategy which can be chosen during the actual game
playing. Thus, the set of all mixed strategies for player 1 is X = f(s1; :::; sn) :Pn

i=1 si = 1; si � 0g; while for player 2 it is Y = f(y1; :::; ym) :
Pm

i=1 yj =
1; yj � 0g:

Claim 11 When player 1 chooses s 2 X and player 2 chooses y 2 Y; the
expected payo¤ of the game is equal to sTAy.

Proof: sTAy = (s1; :::; sn)

0@ a11 ::: a1m
::: ::: :::
an1 ::: anm

1A0@ y1
:::
ym

1A =
nP
i=1

mP
j=1

siaijyj ,

and each element of this double sum is siaijyj = aijsiyj =
aij�Pro[1 chooses i]�Pro[2 chooses j] = aij�Pro[1 chooses i and 2 chooses j]:�
We de�ne the secure utility level for player 1<2> (the minimal gain he can

guarantee himself, no matter what player 2<1> does) in the same spirit as
before. The only change is that it is now the �expected�utility level, and that
the strategy sets available to the players are much bigger now: X and Y , instead
of S and T .
Let v1(s) = min

y2Y
sTAy be the minimum payo¤ player 1 can get if he chooses

to play s. Then v1 = max
s2X

v1(s) = max
s2X

min
y2Y

sTAy is the secure utility level for

player 1.
Similarly, we de�ne v2(y) = max

s2X
sTAy; and v2 = min

y2Y
v2(y) = min

y2Y
max
s2X

sTAy,

the secure utility level for player 2.

Claim 12 The number sTAy can be viewed as a weighted average of the expected
payo¤s for player 1 when he uses s against player�s 2 pure strategies (where
weights are probabilities that player 2 will use these pure strategies).

Proof:

sTAy = sT

0@ a11 ::: a1m
::: ::: :::
an1 ::: anm

1A0@ y1
:::
ym

1A = sT [y1A�1 + :::+ ymA�m] =

= y1
�
sTA�1

�
+ :::+ ym

�
sTA�m

�
= y1

�
sTAe1

�
+ :::+ ym

�
sTAem

�
:

Here A�j is j-th column of the matrix A; and ej = (0; :::; 0; 1; 0; :::; 0) is
the (m-dimensional) vector, whose all coordinates are zero, except that its j-
th coordinate is 1, which represents the pure strategy j of player 2. Recall
A�j = Ae

j :
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Now, sTAej is the expected payo¤ to player 1, when he uses (mixed) strategy

s and player 2 uses (pure) strategy ej . Hence, sTAy =
mP
j=1

yj
�
sTAej

�
is a

weighted average of player 1�s payo¤s against pure strategies of player 2 (when
player 1 uses strategy s). In this weighted sum, weights yj are equal to the
probabilities that player 2 would choose these pure strategies ej .
Given this claim, v1(s) = min

y2Y
sTAy, the minimum of sTAy; will be attained

at some pure strategy j (i.e., at some ej 2 Y ). Indeed, if sTAej > v1(s) for all
j; then we would have sTAy =

P
yj
�
sTAej

�
> v1(s) for all y 2 Y .

Hence, v1(s) = min
j
sTA�j , and v1 = max

s2X
min
j
sTA�j . Similarly, v2(y) =

max
i
Ai�y, where Ai� is the i-th row of the matrix A, and v2 = min

y2Y
max
i
Ai�y.

As with pure strategies, the secure utility level player 1 can guarantee himself
(minimal amount he could gain) cannot exceed the secure utility level payer 2
can guarantee herself (maximal amount she could lose): v1 � v2. This follows
from Lemma 1.
Such prudent mixed strategies s and y are called maximin strategy (for

player 1) and minimax strategy (for player 2) respectively.

Theorem 13 (The Minimax Theorem) v1 = v2 = v: Thus, if players can use
mixed strategies, any game with �nite strategy sets has a value.

Proof. Let n�m matrix A be the matrix of a two person zero sum game.
The set of all mixed strategies for player 1 is X = f(s1; :::; sn) :

Pn
i=1 si =

1; si � 0g; while for player 2 it is Y = f(y1; :::; ym) :
Pm

i=1 yj = 1; yj � 0g:
Let v1(s) = min

y2Y
s �Ay be the smallest payo¤ player 1 can get if he chooses to

play s. Then v1 = max
s2X

v1(s) = max
s2X

min
y2Y

s�Ay is the secure utility level for player
1. Similarly, we de�ne v2(y) = max

s2X
s �Ay; and v2 = min

y2Y
v2(y) = min

y2Y
max
s2X

s �Ay
is the secure utility level for player 2. We know that v1 � v2:
Consider the following closed convex sets in Rn:

� L = fz 2 Rn : z = Ay for some y 2 Y g is a convex set, since Ay =
y1A�1 + :::+ ymA�m, where A�j is j-th column of the matrix A; and hence
L is the set of all convex combinations of columns of A; i.e., the convex
hull of the columns of A. Moreover, since it is a convex hull of m points,
L is a convex polytope in Rn with m vertices (extreme points), and thus
it is also closed and bounded.

� Cones Kv = fz 2 Rn : zi � v for all i = 1; :::; ng are obviously convex and
closed for any v 2 R. Further, it is easy to see thatKv = fz 2 Rn : s�z � v
for all s 2 Xg:

Geometrically, when v is very small, the cone Kv lies far from the bounded
set L; and they do not intersect. Thus, they can be separated by a hyperplane.
When v increases, the cone Kv enlarges in the direction (1; :::; 1), being �below�
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the set L; until the moment when Kv will �touch�the set L for the �rst time.
Hence, v; the maximal value of v for which Kv still can be separated from L; is
reached when the cone Kv �rst �touches�the set L: Moreover, Kv and L have
at least one common point z, at which they �touch�. Let y 2 Y be such that
Ay = z 2 L \Kv:
Assume that Kv and L are separated by a hyperplane H = fz 2 Rn : s � z =

cg; where
Pn

i=1 si = 1. It means that s � z � c for all z 2 Kv, s � z � c for all
z 2 L; and hence s � z = c. Geometrically, since Kv lies �below�the hyperplane
H, all coordinates si of the vector s must be nonnegative, and thus s 2 X.
Moreover, since Kv = fz 2 Rn : s � z � v for all s 2 Xg, s 2 X and z 2 Kv,

we obtain that c = s � z � v. But since vector (v; :::; v) 2 Kv we also obtain that
c � s � (v; :::; v) = v

Pn
i=1 si = v. It follows that c = v.

Now, v1 = max
s2X

min
y2Y

s �Ay � min
y2Y

s �Ay � v (since s � z � c = v for all z 2 L;
i.e. for all z = Ay, where y 2 Y ).
Next, v2 = min

y2Y
max
s2X

s � Ay � max
s2X

s � Ay = max
s2X

s � z = max
i=1;��� ;n

zi � v (since
z 2 Kv).
We obtain that v2 � v � v1. Together with the fact that v1 � v2; it gives us

v2 = v = v1; the desired statement.
Note also, that the maximal value of v1(s) is reached at s; while the minimal

value of v2(y) is reached at y: Thus, s and y constructed in the proof are optimal
strategies for players 1 and 2 respectively.

1.5 Computation of optimal strategies

How can we �nd the maximin (mixed)strategy s, the minimax (mixed) strategy
y; and the value v of a given game?
If the game with deterministic strategies (the original game) has a saddle

point, then v = m, and the maximin and minimax strategies are deterministic.
Finding them amounts to �nd an entry aij of the matrix A which is both the
maximum entry in its column and the minimum entry in its row.
When the original game has no value, the key to computing optimal mixed

strategies is to know their supports, namely the set of strategies used with
strictly positive probability. Let s; y be a pair of optimal strategies, and v =
sTAy. Since for all j we have that sTAej � min

y2Y
sTAy = v1(s) = v1 = v, it

follows that v = sTAy = y1
�
sTAe1

�
+ ::: + ym

�
sTAem

�
� y1v + ::: + ymv =

v (y1 + :::+ ym) = v, and the equality implies sTA�j = sTAej = v for all j
such that yj 6= 0. Thus, player 2 receives her minimax value v2 = v by playing
against s any pure strategy j which is used with a positive probability in her
minimax strategy y (i.e. any strategy j; such that yj 6= 0).
Similarly, player 1 receives his maximin value v1 = v by playing against y

any pure strategy i which is used with a positive probability in his maximin
strategy s (i.e. any strategy i; such that si 6= 0). Setting S� = fijsi > 0g and
T � = fjjyj > 0g, we see that s; y solve the following system with unknown s; y

sTA�j = v for all j 2 T �;Ai:y = v for all i 2 S�

11



nX
i=1

si = 1; si � 0;
mX
i=1

yj = 1; yj � 0

The di¢ culty is to �nd the supports S�; T �, because there are 2n+m possible
choices, and no systematic way to guess!
However we can often simplify the task of computing the supports of optimal

mixed strategies by successively eliminating dominated rows and columns.

De�nition 14 We say that i-th row of a matrix A dominates its k-th row, if
aij � akj for all j and aij > akj for at least one j. Similarly, we say that
j-th column of a matrix A dominates its l-th column, if aij � ail for all i and
aij > ail for at least one i.

In other words, a pure strategy (represented by a row or a column of A)
dominates another pure strategy if the choice of the �rst (dominating) strategy
is at least as good as the choice of the second (dominated) strategy, and in some
cases it is strictly better. A player can always �nd an optimal mixed strategy
using only undominated strategies.

Proposition 15 If rows i1; :::; ik of a matrix A are dominated, then player 1
has an optimal strategy s such that si1 = ::: = sik = 0; moreover, any optimal
strategy for the game obtained by removing dominated rows from A will also
be an optimal strategy for the original game. The same is true for dominated
columns and player 2.

Given this, we can proceed as follows. Removing dominated rows of A gives
a smaller matrix A1: Removing dominated columns of A1 leaves us with a yet
smaller matrix A2: We continue by removing dominated rows of A2; etc., until
we obtain a matrix which does not contain dominated rows or columns. The
optimal strategies and the value for the game with this reduced matrix will still
be the optimal strategies and the value for the initial game represented by A.
This process is called �iterative elimination of dominated strategies�. See the
problems for examples of application of this technique.

1.5.1 2� 2 games

Suppose that A =

�
a11 a12
a21 a22

�
and this game does not have saddle point.

In this case, a pure strategy cannot be optimal for either player (check it!). It
follows that optimal strategies (s1; s2) and (y1; y2) must have all components
positive. Let us repeat the argument above for the 2� 2 case.
We have v = sTAy = a11s1y1 + a12s1y2 + a21s2y1 + a22s2y2, or

s1(a11y1 + a12y2) + s2(a21y1 + a22y2) = v:

But a11y1 + a12y2 � v and a21y1 + a22y2 � v (these are the losses of player 2
against 1-st and 2-nd pure strategies of player 1; but since y is player�s 2 optimal
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strategy, she cannot lose more then v in any case). Hence, s1(a11y1 + a12y2) +
s2(a21y1 + a22y2) � s1v + s2v = v.
Since s1 > 0 and s2 > 0; the equality is only possible when a11y1+a12y2 = v

and a21y1 + a22y2 = v:
Similarly, it can be seen that a11s1 + a21s2 = v and a12s1 + a22s2 = v:
We also know that s1 + s2 = 1 and y1 + y2 = 1.
We thus have the linear system with 6 equations and 5 variables s1; s2; y1; y2

and v: Minimax theorem guarantees us that this system has a solution with
s1; s2; y1; y2 � 0: One of these 6 equations is actually redundant. The system has
a unique solution provided the original game has no saddle point. In particular

v =
a11a22 � a12a21

a11 + a22 � a12 � a21

1.5.2 2�n games

By �ocusing on the player who has two strategies, one computes the value as
the solution of a tractable liner program. See the examples in class.

1.5.3 Symmetric games

The game with matrix A is symmetric if A = �AT (Exercise:check this). Like
in a general 2 person zero-sum game, the value of a symmetric game is zero.
Moreover, if s is an optimal strategy for player 1, then it is also optimal for
player 2.

1.6 in�nite games

When the sets of pure strategies are in�nite, mixed strategies can still be de�ned
as probability distributions over these sets, but the existence of a value for the
game in mixed strategies is no longer guaranteed.

Example: a silly game
Each player chooses an integer in f1; 2; � � � ; n; � � � g. The one who choooses the
largest integer wins $1 from the other, unless they choose the same number, in
which case no money changes hands. A mixed strategy is a probability distri-
bution x = (x1; x2; � � � ; xn; � � � ); xi � 0;

P1
1 xi = 1. Given any such strategy

chosen by the opponent, and any positive ", there exists n such that
P1

n xi � ",
therefore playing n guarantees a win with probability no less than 1 � ". It
follows that in the game in mixed strategies, max

x2X
min
y2Y

u(x; y) = �1 < +1 =

min
y2Y

max
x2X

u(x; y).

An important result, known as Glicksberg Theorem, states that it will if
the sets of pure strategies S; T are convex compact subsets of some euclidian
space, and the payo¤ function u is continuous on S � T , then the game in
mixed strategies (where each player uses a probability distribution over pure
strategies) has a value. However, knowing that a value exists does not help
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much to identify optimal mixed strategies, because the support of these mixed
strategies can now vary in a very large set!
An example where Glicksberg Theorem applies is the subject of Problem 13.
A typical case where Glicksberg Theorem does not apply is when S; T are

convex compacts, yet the payo¤ function u is discontinuous. Below are two
such examples: in the �rst one the game nevertheless has a value and optimal
strategies, in the second it does not.

Example: Mixed strategies in the silent gun�ght
In the silent gun�ght (Problem 5; see also the noisy version in section 1.2), we
assume a(t) = b(t) = t, so that the game is symmetric, and its value (if it exists)
is 0. The payo¤ function is

u(s; t) = s� t(1� s) if s < t
u(s; t) = �t+ s(1� t) if t < s
u(s; t) = 0 if s = t

It is enough to look for a symmetric equilibrium. Note that shooting near s = 0
makes no sense, as it guarantees a negative payo¤ to player 1. We guess that
the support of an optimal mixed strategy will be [a; 1], for some a � 0, and
that the optimal strategy has a density f(t) over [a; 1]. We compute player 1�s
expected payo¤ from the pure strategy s; a � s � 1, against the strategy f by
player 2

u(s; f) =

Z s

a

(s(1� t)� t)f(t)dt+
Z 1

s

(s(1 + t)� t)f(t)dt

The equilibrium condition is that u(s; f) = 0 for all s 2 [a; 1]. This equality is
rearranged as

s� (1 + s)f
Z s

a

tf(t)dtg � (1� s)f
Z 1

s

tf(t)dtg = 0

Setting H(s) =
R 1
s
tf(t)dt, this writes

s = (1 + s)(H(a)�H(s)) + (1� s)H(s), H(s) = H(a)
1 + s

2s
� 1
2

Taking H(1) = 0 into account gives H(a) = 1
2 , then

H(s) =
1� s
4s

) f(s) =
1

4s3

Finally we �nd a from

1 =

Z 1

a

f(t)dt) a =
1

3

Example Campaign funding
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Each player divides his $1 campaign budget between two states A and B. The
challenger (player 1) wins the overall game (for a payo¤$1) if he wins (strictly) in
one state, where the winner in state A is whomever spends the most money, but
in state B the incumbent (player 2) has an advantage of $0:5 so the challenger
only wins if his budget there exceeds that of the incumbent by more than $0:5.
Here is the normal form of the game:

S = T = [0; 1] s (resp. t) is spent by player 1 (resp. 2) in state A

u(s; t) = +1 if t < s or s+
1

2
< t

u(s; t) = �1 if s < t < s+ 1
2

u(s; t) = 0 if s = t or s+
1

2
= t

Clearly in the pure strategy game max
s
min
t
u(s; t) = �1 < +1 = min

t
max
s
u(s; t).

We claim that in the mixed strategy game we have

max
x2X

min
y2Y

u(x; y) =
1

3
<
3

7
= min

y2Y
max
x2X

u(x; y) (1)

Suppose �rst that player 2�s mixed strategy y guarantees

sup
s2[0;1]

u(s; y) <
3

7
(2)

Applying (2) at s = 1 gives y(1) > 4
7 , and at s = 0

y(]
1

2
; 1])� y(]0; 1

2
[) <

3

7
(3)

Applying (2) at s = 1
2 � ", and letting " go to zero, gives

y([0;
1

2
[) + y(1)� y([1

2
; 1[) � 3

7

Summing the latter two inequalities yields

2y(1) + y(0)� y(1
2
) � 6

7

Combined with y(1) > 4
7 , this implies y(

1
2 ) �

2
7 , and (3) gives similarly y(]0;

1
2 [) >

1
7 . This is a contradiction as y(1) + y(

1
2 ) + y(]0;

1
2 [) � 1, hence inequality (2) is

after all impossible.
Next one checks easily that player 2�s strategy

y� =
1

7
� 1
4
+
2

7
� 1
2
+
4

7
�1
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guarantees sup[0;1] u(s; y
�) = 3

7 .
To prove the other half of property (1), we assume the mixed strategy x is

such that
inf

t2[0;1]
u(x; t) >

1

3

and apply this successively to t = 1 and t = 1
2 � ", letting " go to zero. We get

x([0;
1

2
[)� x(]1

2
; 1[) >

1

3
and � x([0; 1

2
[) + x([

1

2
; 1]) � 1

3

Summming these two inequalities x( 12 )+x(1) >
2
3 , a contradiction of x([0;

1
2 [) >

1
3 . Finally player 1�s strategy

x� =
1

3
�0 +

1

3
� 1
2
+
1

3
�1

guarantees inf [0;1] u(x�; t) =
1
3 .

1.7 Von Neumann�s Theorem

It generalizes the minimax theorem. It follows from the more general Nash
Theorem in Chapter 4.

Theorem 16 The game (S; T; u) has a value and optimal strategies if S; T are
convex compact subsets of some euclidian spaces, the payo¤ function u is con-
tinuous on S � T , and for all s 2 S; all t 2 T

t0 ! u(s; t0) is quasi-convex in t0; s0 ! u(s0; t) is quasi-concave in s0

Example: Borel�s model of poker.
Each player bids $1, then receives a hand mi 2 [0; 1]. Hands are independently
and uniformly distributed on [0; 1]:Each player observes only his hand.Player 1
moves �rst, by either folding or bidding an additional $5. If 1 folds, the game is
over and player 2 collects the pot. If 1 bids, player 2 can either fold (in which
case 1 collects the pot) or bid $5 more to see: then the hands are revealed and
the highest one wins the pot.
A strategy of player i can be any mapping from [0; 1] into fF;Bg, however it

is enough to consider the following simple threshold strategies si : fold whenever
mi � si; bid whenever mi > si. Notice that for player 2, actual bidding only
occur if player 1 bids before him. Compute the probability �(s1; s2) that m1 >
m2 given that si � mi � 1 :

�(s1; s2) =
1 + s1 � 2s2
2(1� s2)

if s2 � s1

=
1� s2
2(1� s1)

if s1 � s2

16



from which the payo¤ function is easily derived:

u(s1; s2) = �6s21 + 5s1s2 + 5s1 � 5s2 if s2 � s1

= 6s22 � 7s1s2 + 5s1 � 5s2 if s1 � s2
The Von Neumann theorem applies, and the utility function is continuously
di¤erentiable. Thus the saddle point can be found by solving the system
@u
@si
(s) = 0; i = 1; 2. This leads to

s�1 = (
5

7
)2 = 0:51; s�2 =

5

7
= 0:71

and the value �0:51: player 2 earns on average 51 cents.
Two more simplistic models of poker are in the problems below.

1.8 Problems for two person zero-sum games

1.8.1 Pure strategies

Problem 1
Ten thousands students formed a square. In each row, the tallest student is
chosen and Mary is the shortest one among those. In each column, a shortest
student is chosen, and John is the tallest one among those. Who is taller� John
or Mary?

Problem 2
Compute m = minmax and m = maxmin values for the following matrices:

2 4 6 3
6 2 4 3
4 6 2 3

3 2 2 1
2 3 2 1
2 2 3 1

Find all saddle points.

Problem 3. Gale�s roulette
a)Each wheel has an equal probability to stop on any of its numbers. Player 1
chooses a wheel and spins it. Player 2 chooses one of the 2 remaining wheels
(while the wheel chosen by 1 is still spinning), and spins it. The winner is the
player whose wheel stops on the higher score. He gets $1 from the loser.
Numbers on wheel #1: 2,4,9; on wheel #2: 3,5,7; on wheel #3: 1,6,8

Find the value and optimal strategies of this game
b) Variant: the winner with a score of s gets $s from the loser.

Problem 4 Land division game.
The land consists of 3 contiguous pieces: the unit square with corners
(0; 0); (1; 0); (0; 1); (1; 1), the triangle with corners (0; 1); (1; 1); (0; 2), the trian-
gle with corners (1; 0); (1; 1); (2; 1): Player 1 chooses a vertical line L with 1st
coordinate in [0; 1]: Player 2 chooses an horizontal line M with 2d coordinate
in [0; 1]. Then player 1 gets all the land above M and to the left of L; as well
as the land below M and to the right of L. Player 2 gets the rest. Both players
want to maximize the area of their land. Find the value and optimal strategies.
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Problem 5 Silent gun�ght
Now the duellists cannot hear when the other player shoots. Payo¤s are com-
puted in the same way. If v is the value of the noisy gun�ght, show that in
the silent version, the values m = minmax and m = maxmin are such that
m < v < m.

Problem 6.1
Two players move in turn and the one who cannot move loses. Find the winner
(1-st or 2-nd player) and the winning strategy.
In questions a) and b), both players move the same piece.

a) A castle stays on the square a1 of the 8�8 chess board. A move consists in
moving the castle according to the chess rules, but only in the directions up or
to the right.
b) The same game, but with a knight instead of a castle.
In questions c) and d), a move consists of adding a new piece on the board.

c) A move consists in placing a castle on the 8 by 8 chess board in such a way,
that it does not threatens any of the castles already present.
d) The same game, but bishops are to be placed instead of castles.

Problem 6.2
Two players move in turn and the one who cannot move loses. Find the winner
(1-st or 2-nd player) and the winning strategy.
a) The initial position is 111111101111110111101, where a 1 is a match and 0 an
empty space. Players successively remove one match or three adjacent matches.
Who wins if the player removing the last match loses ? if the player removing
the last match wins?
b) 20 coins are placed on the table in a chain (such that they touch each other),
so that they form either a straight line, or a circle. A move consists in taking
either one or two adjacent (touching) coins. Two versions: whoever removes
the last coin wins, or that person loses.
c) The game starts with two piles, of respectively 20 and 21 coins. A move
consists in taking one pile away and dividing the other into two nonempty piles.
Two versions: the position 1,1 is losing; or it is winning. Generalization: now
the two piles are of sizes n and m.
d) From a pile of n coins, the players take turns to remove one or four coins.
Solve the same two versions as above.
h) From two piles of sizes n and m, the players take turns removing either one
or two coins from a pile of their choice. Solve the usual two versions.

Problem 6.3
Dominos can be placed on a m � n board so as to cover two squares exactly.
Two players alternate placing dominos. The �rst one who is unable to place a
domino is the loser.
a) Show that one of the two players, First or Second Mover, can guarantee a
win.
b) Who wins in the following cases:

� n = 2;m = 4
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� n = 3;m = 3

� n = 4;m = 4

� n and m even

� n even, m odd

Problem 7
Show that, if a 2�3 matrix has a saddle point, then either one row domi-
nates another, or one column dominates another (or possibly both). Show by a
counter-example that this is not true for 3�3 matrices.
Problem 8 Shapley�s criterion

Consider a game (S; T; u) with �nite strategy sets such that for every subsets
S0 � S; T0 � T with 2 elements each, the 2 � 2 game (S0; T0; u) has a value.
Show that the original game has a value.

1.8.2 Mixed strategies

Problem 9
In each question you must check that the game in deterministic strategies (given
in the matrix form) has no value, then �nd the value and optimal mixed strate-
gies. Results in section 1.5 will prove useful.

a) A =

�
2 3 1 5
4 1 6 0

�

b) A =

0BBBB@
12 0
0 12
10 6
8 10
9 7

1CCCCA
c) A =

0@ 2 0 1 4
1 2 5 3
4 1 3 2

1A
d) A =

0@ 1 6 0
2 0 3
3 2 4

1A
e) A =

0@ 0 1 �2
�1 0 3
2 �3 0

1A
f) A =

0@ 8 4 2
0 2 4
0 4 2

1A ; A =
0@ 5 4 2
0 2 4
0 4 2

1A
g) A =

0@ 2 4 6 3
6 2 4 3
4 6 2 3

1A
Problem 10 Stone, Paper, Scissors and Well
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The paper is cut by (loses to) the scissors, it wraps (beats) the stone and closes
(beats) the well. The scissors break on the stone and fall into the well (loses to
both). The stone falls into the well.
Solve the game where both chose one of these 4 strategies simultaneously and
the loser pays $1 to the winner. Discuss pure and mixed strategies.

Problem 11 Picking an entry

a) Player 1 chooses either a row or a column of the matrix
�
2 1
4 5

�
: Player 2

chooses an entry of this matrix. If the entry chosen by 2 is in the row or column
chosen by 1, player 1 receives the amount of this entry from player 2. Otherwise
no money changes hands. Find the value and optimal strategies.
b) Same strategies but this time if player 2 chooses entry s and this entry is not
in the row or column chosen by 1, player 2 gets $s from player 1; if it is in the
row or column chosen by 1, player 1 gets $s from player 2 as before.

Problem 12 Guessing a number
Player 2 chooses one of the three numbers 1,2 or 5. Call s2 that choice. One of
the two numbers not selected by Player 2 is selected at random (equal probability
1/2 for each) and shown to Player 1. Player 1 now guesses Player 2�s choice: if
his guess is correct, he receives $s2 form Player 2, otherwise no money changes
hand.
Solve this game: value and optimal strategies.
Hint: drawing the full normal form of this game is cumbersome; describe instead
the strategy of player 1 by three numbers q1; q2; q5. The number q1 tells what
player 1 does if he is shown number 1: he guesses 2 with probability q1 and 5
with proba. 1� q1; and so on.

Problem 13 Catch me
Player 1 chooses a location x in [0; 1] and player 2 chooses simultaneously a
location y. Player1 is trying to be as far as possible from player 2, and player 2
has the opposite preferences. The payo¤ (to player 1)is u(x; y) = (x� y)2.
Show the game in pure strategies has no value.
Find the value and optimal strategies for the game in mixed strategies.

Problem 14 Hiding a number
Fix an increasing sequence of positive numbers a1 � a2 � a3 � � � � � ap � � � � .
Each player chooses an integer, the choices being independent. If they both
choose the same number p; player 1 receives $p from player 2. Otherwise, no
money changes hand.
a) Assume �rst

1X
p=1

1

ap
<1

and show that each player has a unique optimal mixed strategy.
b) In the case where

1X
p=1

1

ap
=1
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show that the value is zero, that every strategy of player 1 is optimal, whereas
player 2 has only ""-optimal" strategies, i.e., strategies guaranteeing a payo¤
not larger than ", for arbitrarily small ".

Problem 15
Asume that both players choose optimal (mixed) strategies x and y and thus the
resulting payo¤ in the game is v. We know that player 1 would get v if against
player 2�s choice y he would play any pure strategy with positive probability in
x (i.e. any pure strategy i; such that si > 0), and he would get less then v if
he would play any pure strategy i; such that xi = 0: Explain why a rational
player 1, who assumes that his opponent is also rational, should not choose a
pure strategy i such that xi > 0 instead of x.

Problem 16
In a two-person zero-sum game in normal form with a �nite number of pure
strategies, show that the set of all mixed strategies of player 1 which are part of
some equilibrium of the game, is a convex subset of the set of player 1�s mixed
strategies.

Problem 17 Blu¢ ng game
At the beginning, players 1 and 2 each put $1 in the pot. Next, player 1 draws a
card from a shu­ ed deck with equal number of black and red cards in it. Player
1 looks at his card (he does not show it to player 2) and decides whether to raise
or fold. If he folds, the card is revealed to player 2, and the pot goes to player
1 if it is red, to player 2 if it is black. If player 1 raises, he must add $1 to the
pot, then player 2 must meet or pass. If she passes the game ends and player 1
takes the pot. If she meets, she puts $� in the pot. Then the card is revealed
and, again, the pot goes to player 1 if it is red, to player 2 if it is black..
Draw the matrix form of this game. Find its value and optimal strategies as
a function of the parameter �. Is blu¢ ng part of the equilibrium strategy of
player 1?

Problem 18 Another poker game
There are 3 cards, of value Low, Medium and High. Each player antes $1 to
the pot and Ann is dealt a card face down, with equal probability for each card.
After seeing her card, Ann announces "Hi" or "Lo". To go Hi costs her $2 to
the pot, and Lo costs her $1. Next Bill is dealt one of the remaining cards (with
equal probability) face down. he looks at his card and can then Fold or See. If
he folds the pot goes to Ann. If he sees he must match Ann�s contribution to
the pot; then the pot goes to the holder of the higher card if Ann called Hi, or
to the holder of the lower card if she called Lo.
Solve this game: how much would you pay, or want to be paid to play this game
as Ann? How would you then play?

2 Nash equilibrium

In a general n-person game in strategic form, interests of the players are neither
identical nor completely opposed. As in the previous chapter information about
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other players�preferences and behavior will in�uence my behavior. The novelty
is that this information may sometime be used cooperatively, i.e., to our mutual
advantage.
We discuss in this chapter the two most important scenarios justifying the

Nash equilibrium concept as the consequence of rational behavior by the players:

� the decentralized scenarios where mutual information is minimal, to the
extent that a player may not even know how many other players are in
the game or what their individual preferences look like;

� the coordinated scenarios where players know a lot about each other�s
strategic opportunities (strategy sets) and payo¤s (preferences), and use
either deductive reasoning or non binding comunication to coordinate their
choices of strategies.

Decentralized scenarios are well suited to games involving a large number
of players, each one with a relatively small in�uence on the overall outcome
(competitive context). Coordination scenarios are more natural in games with
a small number of participants.
This chapter is long on examples and short on abstract proofs (next chapter

is just the opposite).

De�nition 17 A game in strategic form is a list G = (N;Si; ui; i 2 N), where
N is the set of players, Si is player i�s strategy set and ui is his payo¤, a
mapping from SN =

Y
i2N

Si into R, which player i seeks to maximize.

An important class of games consists of those where the roles of all players
are fully interchangeable.

De�nition 18 A game in strategic form G = (N;Si; ui; i 2 N) is symmetri-
cal if Si = Sj for all i; j, and the mapping s ! u(s) from SjN j into RjN j is
symmetrical.

In a symmetrical game if two players exchange strategies, their payo¤s are
exchanged and those of other players remain una¤ected.

De�nition 19 A Nash equilibrium of the game G = (N;Si; ui; i 2 N) is a
pro�le of strategies s� 2 SN such that

ui(s
�) � ui(si; s��i) for all i and all si 2 Si

Note that the above de�nition uses only the ordinal preferences represented
by the utility functions ui. We use the cardinal representation as payo¤ (utility)
simply for convenience. When we speak of mixed strategies in the next chapter,
the choice of a cardinal utility will matter.
The following inequality provides a useful necessary condition for the exis-

tence of at least one Nash equilibrium in a given game G.
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Lemma 20 If s� is a Nash equilibrium of the game G = (N;Si; ui; i 2 N), we
have for all i

ui(s
�) � min

s�i2S�i
max
si2Si

ui(si; s�i)

Example duopoly a la Hoteling
The two competitors sell identical goods at �xed prices p1; p2 such that p1 < p2.
The consumers are uniformly spread on [0; 1], each with a unit demand. Firms
incur no costs. Firms choose independently where to locate a store on the
interval [0; 1], then consumers buy from the cheapest store, taking into account
a transportation cost of $s if s is the distance to the store. Assume p2�p1 = 1

4 .
Check that

min
S2
max
S1

u1 = p1;min
S1
max
S2

u2 =
p2
8

where the minS2 maxS1 u1 obtains from the copycat strategy s1 = s2 by player
1, and the minS1 maxS2 u2 is achieved by s1 =

1
2 , and s2 = 0 or 1. Observe now

that the payo¤ pro�le (p1;
p2
8 ) is not feasible, therefore the game has no Nash

equilibrium.

2.1 Decentralized behavior and dynamic stability

In this section we interpret a Nash equilibrium as the resting point of a dynami-
cal system. The players behave in a simple myopic fashion, and learn about the
game by exploring their strategic options over time. Their behavior is compati-
ble with total ignorance about the existence and characteristics of other players,
and what their behavior could be.
Think of Adam Smith�s invisible hand paradigm: the price signal I receive

from the market looks to me as an exogenous parameter on which my own
behavior has no e¤ect. I do not know how many other participants are involved
in the market, and what they could be doing. I simply react to the price by
maximizing my utility, without making assumptions about its origin.
The analog of the competitive behavior in the context of strategic games is

the best reply behavior. Take the pro�le of strategies s�i chosen by other players
as an exogeneous parameter, then pick a strategy si maximizing your own utility
ui, under the assumption that this choice will not a¤ect the parameter s�i.
The deep insight of the invisible hand paradigm is that decentralized price

taking behavior will result in an e¢ cient allocation of resources (a Pareto e¢ -
cient outcome of the economy). This holds true under some speci�c microeco-
nomic assumptions in the Arrow-Debreu model, and consists of two statements.
First the invisible hand behavior will converge to a competitive equilibrium; sec-
ond, this equilibrium is e¢ cient. (The second statement is much more robust
than the �rst).
In the much more general strategic game model, the limit points of the best

reply behavior are the Nash equilibrium outcomes. Both statements, the best
reply behavior converges, the limit point is an e¢ cient outcome, are problem-
atic. The examples below show that not only the best reply behavior may
not converge at all, or if it converges, the limit equilibrium outcome may well
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be ine¢ cient (Pareto inferior). Decentralized behavior may diverge, or it may
converge toward a socially suboptimal outcome.

De�nition 21 Given the game in strategic form G = (N;Si; ui; i 2 N), the
best-reply correspondence of player i is the (possibly multivalued) mapping bri
from S�i =

Y
j2N�fig

Sj into Si de�ned as follows

si 2 bri(s�i), ui(si; s�i) � ui(s0i; s�i) for all s0i 2 Si

De�nition 22 We say that the sequence st 2 SN ; t = 0; 1; 2; � � � , is a best reply
dynamics if for all t � 1 and all i, we have

sti 2 fst�1i g [ bri(st�1�i ) for all t � 1

and sti 2 bri(st�1�i ) for in�nitely many values of t

We say that st is a sequential best reply dynamics, also called an improvement
path, if in addition at each step at most one player is changing her strategy.

The best reply dynamics is very general, in that it does not require the
successive adjustments of the players to be synchronized. If all players use a
best reply at all times, we speak of myopic adjustment; if our players take turn
to adjust, we speak of sequential adjustment. For instance with two players the
latter dynamics is:

if t is even: st1 2 bri(st�12 ); st2 = s
t�1
2

if t is odd: st2 2 bri(st�11 ); st1 = s
t�1
1

But the de�nition allows much more complicated dynamics, where the timing
of best reply adjustments varies accross players. An important requirement is
that at any date t, every player will be using his best reply adjustment some
time in the future. The �rst observation is an elementary result.

Proposition 23 Assume the strategy sets Si of each player are compact and the
payo¤ functions ui are continuous. If the best reply dynamics (st)t2N converges
to s� 2 SN , then s� is a Nash equilibrium.

Proof. Pick any " > 0. As ui is uniformly continuous on SN , there exists
T such that

for all i; j 2 N and t � T : jui(stj ; s�j)� ui(s�j ; s�j)j �
"

n
for all s�j 2 S�j

Fix an agent i. By de�nition of the b.r. dynamics, there is a date t � T such
that st+1i 2 bri(st�i). This implies for any si 2 Si

ui(s
�) + " � ui(st+1i ; st�i) � ui(si; st�i) � ui(si; s��i)�

n� 1
n

"
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where the left and right inequality follow by repeated application of uniform
continuity. Letting " go to zero ends the proof.

Observe that a limit point s� of the best reply dynamics (st)t2N is typically
not a Nash equilibrium!
Note that the topological assumptions in the Proposition hold true if the

strategy sets are �nite.

De�nition 24 We call a Nash equilibrium s strongly globally stable if any
best reply dynamics (starting form any initial pro�le of strategies in SN ) con-
verges to s. Such an equilibrium must be the unique equilibrium.
We call a Nash equilibrium strongly locally stable if for any neighborhood

N of s in SN there is a sub-neighborhood M of s such that any best reply
dynamics starting inM stays in N .
We call a Nash equilibrium weakly globally stable if any sequential best

reply dynamics (starting form any initial pro�le of strategies in SN ) converges
to it. Such an equilibrium must be the unique equilibrium.
We call a Nash equilibrium weakly locally stable if for any neighborhood

N of s in SN there is a sub-neighborhood M of s such that any sequential best
reply dynamics starting inM stays in N .

Note that if strategy sets are �nite, the concept of local stability (in both
versions) has no bite (every equilibrium is strongly locally stable).

2.1.1 stable and unstable equilibria

We give a series of examples illustrating these de�nitions. The actual analysis
of each game is done in class.

Example 1: two-person zero sum games
Here a Nash equilibrium is precisely a saddle point. In the following game, a
saddle point exists and is globally stable244 3 5

5 2 0
2 1 6

35
Check that 3 is the value of the game. To check stability check that from the
entry with payo¤ 1, any b.r. dynamics converges to the saddle point; then the
same is true from the entry with payo¤ 6; then also from the entry with payo¤
0, and so on.
In the next game, a saddle point exists but is not even weakly stable:244 1 0

3 2 3
0 1 4

35
Stability in �nite a (not necessarily zero-sum) two person game (S1; S2; u1; u2)

is easy to analyze. De�ne f = br2 � br1 the composition of the two best reply
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correspondences. A �xed point of f is s2 2 S2 such that s2 2 f(s2), and a
cycle of length T is a sequence of distinct elements st2; t = 1; � � � ; T such that
st+12 2 f(st2) for all t = 1; � � � ; T � 1; and s12 2 f(sT2 ).

Proposition 25 The Nash equilibrium s� of the �nite game (S1; S2; u1; u2) is
strongly stable if and only if it is weakly stable, and this happens if and only if
f has a unique �xed point and no cycle of length 2 or more.

Proof: Assume both br1 and br2 are single-valued. If s� is weakly stable,
any best reply dynamics starting from s 2 fbr1(S2)�S2g[fS1� br2(S2)g must
converge to s�; clearly any best reply dynamics reaches this set in one step,
therefore s� is globally stable. Details of the proof are the subject of problem
2.1.
Example 2 price cycles in the Cournot oligopoly

The demand function and its inverse are

D(p) = (a� bp)+ , D�1(q) =
(a� q)+

b

Firm i incurs the cost Ci(qi) =
q2i
2ci

therefore its competitive supply given the
price p is Oi(p) = cip, and total supply is O(p) = (

P
N ci)p. Assume there

are many agents, each one small w.r.t. the total market size (i.e., each ci is
small w.r.t.

P
N cj), so that the competitive price-taking behavior is a good

approximation of the best reply behavior. Strategies here are the quantities qi
produced by the �rms, and utilities are

ui(q) = D
�1(
X
N

qj)qi � Ci(qi)

The equilibrium is unique, at the intersection of the O and D curves. If bc > 1 it
is strongly globally stable; if bc < 1 it is not strongly stable yet weakly globally
stable.

Example 3: Schelling�s model of binary choices
Each player has a binary choice, Si = f0; 1g, and the game is symmetrical,
therefore it is represented by two functions a(:); b(:) as follows

ui(s) = a(
1

n

X
N

si) if si = 1

= b(
1

n

X
N

si) if si = 0

Several possible interpretations. Vaccination: strategy 1 is to take the vaccine,
strategy 0 to avoid it. If 1

n

P
N si is very small, a > b, as the risk of catching

the disease is much larger than the risk of complications from the vaccine; this
inequality is reversed when 1

n

P
N si is close to 1. Tra¢ c game: each player

chooses to use the bus (si = 1) or his own car (si = 0); for a given congestion
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level 1n
P

N si, tra¢ c is equally slow in either vehicle, but more comfortable in
the car, so a(t) < b(t) for all t; however a and b both increase in t, as more
people riding the bus decreases congestion.
Assuming a large number of agents, we can draw a; b as continuous functions

and check that the Nash equilibrium outcomes are at the intersections of the 2
graphs, at s = (0; � � � ; 0) if a(0) � b(0), and at s = (1; � � � ; 1) if a(1) � b(1). If
the equilibrium is unique it is weakly (globally) stable but not strongly stable.
The strategy sets are �nite so local stability has no bite. However when the

number of agents is large we can measure the deviation from an equilibrium by
the number of agents who are not playing the equilibrium strategy. This leads
to the concept of local stability in population. For a Nash equilibrium s� this
requires that for any parameter �; 0 < � < 1 there exists �; 0 < � < 1; such that
if a fraction not larger than � of the agents change strategies, any sequential
b.r. dynamics converges to an equlibrium where at most � fo the players have
changed from the original equilibrium.
In example 3, an equlibrium is locally stable in population if a cuts b from

above, and unstable if a cuts b from below.

2.1.2 potential games

We introduce in the next three subsections three classes of games where some
form of stability is guaranteed. Potential games generalize the pure coordination
games where all players have the same payo¤ functions. As shown in example
2 above, in such games strong stability is problematic but weak stability is not.

De�nition 26 A game in strategic form G = (N;Si; ui; i 2 N) is a potential
game if there exists a real valued function P de�ned on SN such that for all i
and s�i 2 S�i we have

ui(si; s�i)� ui(s0i; s�i) = P (si; s�i)� P (s0i; s�i) for all si; s0i 2 Si

or equivalently there exists P and for all i a real valued function hi de�ned
on SN�fig such that

ui(s) = P (s) + hi(s�i) for all s 2 SN

The original game G = (N;Si; ui; i 2 N), and the game P = (N;Si; P; i 2 N)
with the same strategy sets as G and identical payo¤s P for all players, have
the same best reply correspondences therefore the same Nash equilibria. Call
s� a coordinate-wise maximum of P if for all i, si ! P (si; s

�
�i) reaches its

maximum at s�i . Clearly s is a Nash equilibiurm (of G and P) if and only if it
is a coordinate-wise maximum of P .
If P reaches its global maximum on SN at s, this outcome is a Nash equi-

librium of P and therefore of G. Thus potential games with continuous payo¤
functions and compact strategy sets always have at least a Nash equilibrium.
Moreover, the best reply dynamics has very appealing stability properties.
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Proposition 27 Let G = (N;Si; ui; i 2 N) be a potential game where the sets
Si are compact and the payo¤ functions ui are continuous.
i) If there is a unique Nash equilibrium, it is weakly globally stable.
ii) If a Nash equilibrium of G is a local maximum, locally unique, of the

potential P , this equilibrium is weakly locally stable.

The simplest examples of a potential game are the coordination games, where
the potential is the common utility. Our next example shows why, even in this
simple case, strong stability is out of reach.

Example 4 a simple coordination game
The game is symmetrical and the common strategy space is Si = [0; 1]; the

payo¤s are identical for all n players

ui(s) = g(

nX
i=1

si)

where g is a continuous function on [0; n].
Suppose �rst that g has a unique maximum z� and no other local maxima (g is
single-peaked). All s such that

Pn
i=1 si = z

� are Nash equilibria, therefore none
is globally stable, even weakly. The single exceptions are z� = 0 or 1, because
then the Nash equilibrium is unique, and globally stable. For an arbitrary z�,
we can still say that the game is weakly globally stable in utilities, because along
any best reply dynamics, the common utility increases and converges to g(z�).
However, even in the restricted sense of convergence in utilities, the game is not
globally stable, because myopic best reply sequences cycle around z� without
reaching it.

Example 5 public good provision by voluntary contributions
Each player i contributes an amount of input si toward the production of a
public good, at a cost Ci(si). The resulting level of public good is B(

P
i si) =

B(sN ). Hence the payo¤ functions

ui = B(sN )� Ci(si) for i = 1; � � � ; n

The potential function is

P (s) = B(sN )�
X
i

Ci(si)

therefore existence of a Nash equilibrium is guaranteed if B;Ci are continuous
and the potential is bounded over RN+ .
The public good provision model is a simple and compelling argument in

favor of centralized control of the production of pure public goods. To see
that in equilibrium the level of production is grossly ine¢ cient, assume for
simplicity identical cost functions Ci(si) = 1

2s
2
i and B(z) = z. The unique Nash

equilibrium is s�i = 1 for all i, yielding total utilityX
i

ui(s
�) = nB(s�N )�

X
i

Ci(s
�
i ) = n

2 � n
2
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whereas the outcome maximizing total utility is esi = n, bringingPi ui(es) = n3

2 ,
so each individual equilibrium utility is less than 2

n of its "utilitarian" level.
The much more general version of the game where the common bene�t is

an arbitrary function B(s) = B(s1; � � � ; sn), remains a potential game for P =
B �

P
i Ci; therefore existence of a Nash equilibrium is still guaranteed. See

example 15 and problem 7 for two alternative choices of B.

Example 6 congestion games
These games generalize both examples 3 and 4. Each player i chooses from

the same strategy set and her payo¤ only depends upon the number of other
players making the same choice. Examples include choosing a travel path be-
tween a source and a sink when delay is the only consideration, choosing a club
for the evening if crowding is the only criteria and so on.
Si = S for all i; ui(s) = fsi(nsi(s)) where nx(s) = jfj 2 N jsj = xgj and fx

is arbitrary. If f is decreasing, we have a negative congestion externality, as in
tra¢ c examples. If f is increasing we have the opposite e¤ect where we want
more players to choose the same strategy as our own, as in the club example.
It is easy to think of examples where f is single-peaked, as when we choose a
restaurant.
Here the potential function is

P (s) =
X
x2S

nx(s)X
m=1

fx(m)

Example 7: the Braess paradox
There are two roads to go from A to B, and 6 commuters want to do just that.
The upper road goes through C, the lower road goes through D. The 2 roads
only meet at A and B. On each of the four legs, AC;CB;AD;DB, the travel
time depends upon the number of users m in the following way:
on AC and DB : 50 +m, on CB and AD : 10m

Every player must choose a road to travel, and seeks to minimize his travel time.
The Nash equilibria of the game are all outcomes with 3 users on each road,
and they all give the same disutility 83 to each player. We now add one more
link on the road network, directly between C and D, with travel time 10 +m.
In the new Nash equilibrium outcomes, we have two commuters on each of the
paths ACB;ADB;ADCB, and their disutility is 92. Thus the new road results
in a net increase of the congestion!
In view of example 6, these two games are potential games. One checks

that the potential function has a unique coordinate-wise maximum, so that this
unique Nash equilibrium is weakly globally stable.

2.1.3 strictly dominance-solvable games

De�nition 28 In the game in strategic form G = (N;Si; ui; i 2 N), we say that
player i�s strategy si is strictly dominated by his strategy s0i if

ui(si; s�i) < ui(s
0
i; s�i) for all s�i 2 S�i
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Given a subset of strategies Ti � Si we write Ui(TN ) for the set of player i�s
strategies in the restricted game G(TN ) = (N;Ti; ui; i 2 N) that are not strictly
dominated.

De�nition 29 We say that the game G is strictly dominance-solvable if the
sequence de�ned inductively by

S0i = Si;S
t+1
i = Ui(StN ) for all i and t = 1; 2; � � �

and called the successive elimination of strictly dominated strategies, converges
to a single outcome s�:

\1t=1StN = fs�g

Proposition 30 Under this assumption, s� is the single Nash equilibrium out-
come of the game, and it is strongly globally stable.

Even if the successive elimination of strictly dominated strategies does not
converge to a singleton, it does simplify the search for Nash equilibria, because
of the following important fact, of which the easy proof is omittted:

the set \1t=1 StN contains all Nash equilibria of the game

and all limit points of the best reply dynamics

The computation of the limit set \1t=1StN is often simpli�ed by the fact that
if we perform successive rounds of partial elimination of strictly dominated
strategies, for instance by eliminating only the strictly dominated strategies of
a single player, we reach eventually the same limit set \1t=1StN (provided the
initial strategy sets are �nite). We discuss this property in section 2.2.2, where it
is contrasted with the lack of robustness of the successive elimination of weakly
dominated strategies.

Example 8 Guessing game
Each one of the n players chooses an integer si between 1 and 1000: Compute
the average response

s =
1

n

X
i

si

Each player receives a prize that strictly decreases with the distance of its own
strategy si to 2

3s

ui(s) = �f(jsi �
2

3
sj)

This game is strictly dominance solvable and

\1t=1StN = f(1; � � � ; 1)g

Observe that for any t = 0; 1; � � � ; if Sti � f1; � � � ; pg for some integer p, then
St+1i � f1; � � � ; d 23peg. To prove this claim we check that player i�s strategy
s�i = d 23pe strictly dominates any strategy si such that si � s�i + 1. Assume
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player i uses s�i and denote by es the average strategy of players other than i, so
that s = 1

ns
�
i +

n�1
n es. Simple computations give

es � p) s�i �
2

3
s and s�i �

2

3
s < si �

2

3
(
1

n
si +

n� 1
n

es)
so s�i is strictly closer to es than si. We can now apply the upper bound on St+1i

repeatedly:
S1i � f1; � � � ; 667g; S2i � f1; � � � ; 445g; � � � ; S8i � f1; � � � ; 40g; � � � ; S16i �

f1; 2g. Finally if the game is reduced to the strategies 1 and 2 for everyone,
check that strategy 2 is at least 2

3 away from
2
3s, while strategy 1 is at most

1
3

away from 2
3s.

The guessing game has been widely tested in the lab, where the participants�
limited strategic sophistication lead them to perform only a couple (typically
two or three) of rounds of elimination. When playing the guessing game with
inexperienced opponents, it is therefore a good idea to choose a number between
( 23 )

250 and ( 23 )
350.

Example 9 Cournot duopoly
Firm i produces si units of output, at a unit cost of ci. The price at which the
total supply s1 + s2 clears is [A� (s1 + s2)]+. Hence the pro�t functions:

ui = [A� (s1 + s2)]+si � cisi for i = 1; 2

This game is strictly dominance-solvable.

2.1.4 games with increasing best reply

A class of games closely related to dominance-solvable games consist of those
where the best reply functions (or correspondences) are non decreasing. By way
of illustration consider a symmetric game where Si = [0; 1] and the (symmetric)
best reply function s! br(s; � � � ; s) is non decreasing. This function must cross
the diagonal; it provides a simple illustration of the �rst statement in the next
result.

Proposition 31 Let the strategy sets Si be either �nite, or real intervals [ai; bi],
and the utility functions ui be continuous. Assume the best reply functions in
the game G = (N;Si; ui; i 2 N) are single valued and non decreasing

s�i � s0�i ) bri(s�i) � bri(s0�i) for all i and s�i 2 S�i

Then the game has a smallest Nash equilibrium outcome s� and s+ a largest
one s+. Any best reply dynamics starting from a converges to s�; any best reply
dynamics starting form b converges to s+.

Proposition 32 Say that the payo¤ functions ui satisfy the single crossing
property if for all i and all s; s0 2 SN such that s � s0 we have

ui(s
0
i; s�i) > ui(si; s�i)) ui(s

0
i; s

0
�i) > ui(si; s

0
�i)
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ui(s
0
i; s�i) � ui(si; s�i)) ui(s

0
i; s

0
�i) � ui(si; s0�i)

Under the SC property, de�ne br�i and br+i to be respectively the smallest and
largest element of the best reply correspondence. They are both non-decreasing.
The sequences st� and s

t
+ de�ned as

s0� = a; s
t+1
� = br�i (s

t
�); s

0
+ = b; s

t+1
+ = br+i (s

t
+)

are respectively non decreasing and non increasing, and they converge respec-
tively to the smallest Nash equilibrium s� and to the largest one s+. Finally the
successive elimination of strictly dominated strategies converges to [s�; s+]

\1t=1StN = [s�; s+]

In particular if the game has a unique equilibrium outcome, it is strictly dominance-
solvable.

Note that if ui is twice di¤erentiable the SCP holds if and only if

@2ui
@si@sj

� 0 on [a; b].

Example 5 Voluntary contribution to a public good (continued)
In Example 5 we assume that B is convex. Then the game has the SC prtoperty,
therefore all the properties spelled above apply. As the game is also a potential
game, we conclude that it is strictly dominance solvable if the potential function
P (s) = B(sN )�

P
i Ci(si) has a unique coordinate-wise maximum.

Example 10 A search game
Each player exerts e¤ort searching for new partners. The probability that player
i �nds any other player is si; 0 � si � 1, and when i and j meet, they derive
the bene�ts �i and �j respectively. The cost of the e¤ort is Ci(si). Hence the
payo¤ functions

ui(s) = �isisN�fi) � Ci(si) for all i

Assuming only that Ci is increasing, we �nd that the game satis�es the single
crossing property. The strategy pro�le s� = 0 is always an equilibrium, and the
largest equilibrium s+ is Pareto superior.
Example 11 price competition

Each �rm has a linear cost production (set to zero without loss of generality)
and chooses a non negative price pi. The resulting demand and net payo¤ for
�rm i are

Di(p) = (Ai �
�i
3
p2i +

X
j 6=i

�jpj)+ and ui(p) = piDi(p)

The game has increasing best reply functions. In the symmetric case its equi-
librium is unique hence the game is dominance-solvable.
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2.2 coordination and Nash equilibrium

We now consider games in strategic form involving only a few players who use
their knowledge about other players strategic options to form expectations about
the choices of these players, which in turn in�uence their own choices. In the
simplest version of this analysis, each player knows the entire strategic form
of the game, including strategy sets and individual preferences (payo¤s). Yet
at the time they make their strategic decision, they act independently of one
another, and cannot observe the choice of any other player.
The two main interpretations of the Nash equilibrium are then the self ful-

�lling prophecy and the self enforcing agreement.
The former is the meta-argument that if a "Book of Rational Conduct"

can be written that gives me a strategic advice for every conceivable game in
strategic form, this advice must be to play a Nash equilibrium. This is the
"deductive�argument in favor of the Nash concept.
The latter assumes the players engage in "pre-play" communication, and

reach a non committal agreement on what to play, followed by a complete break
up of communication.
Schelling�s rendez-vous game illustrates both interpretations.
If a game has multiple Nash equilibria we have a selection problem: under

either scenario above, it is often unclear how the players will be able to coor-
dinate on one of them. Then even if a Nash equilibrium is unique, it may be
challenged by other strategic choices that are safer or appear so.
On the other hand in dominance-solvable games, selecting the Nash outcome

by deduction (covert communication) is quite convincing, and our con�dence in
the predictive power of the concept remains intact.

2.2.1 the selection problem

When several (perhaps an in�nity of) Nash outcomes coexist, and the play-
ers�preferences about them do not agree, they will try to force their preferred
outcome by means of tactical commitment. This fundamental di¢ culty is illus-
trated by the two following celebrated games.

Example 12 crossing game (a.k.a. the Battle of the Sexes)
Each player must stop or go. The payo¤s are as follows

stop 1; 1 1� "; 2
go 2; 1� " 0; 0

stop go

Each player would like to commit to go, so as to force the other to stop. There
is a mixed strategy equilibrium as well, but it has its own problems. See Section
3.3.

Example 13 Nash demand game
The two players share a dollar by the following procedure: each write the
amounts she demands in a sealed envelope. If the two demands sum to no
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more than $1, they are honored. Otherwise nobody gets any money. In this
game the equal plit outcome stands out because it is fair, and this will su¢ ce
in many cases to achieve coordination. However, a player will take advantage
of an opportunity to commit to a high demand.

In both above examples and in the next one the key strategic intuition is
that the opportunity to commit to a certain strategy by "burning the bridges"
allowing us to play anything else, is the winning move provided one does it �rst
and other players are sure to notice.
A game of timing takes the following form. Each one of the two players

must choose a time to stop the clock between t = 0 and t = 1. If player i stops
the clock �rst at time t, his payo¤ is ui = a(t), that of player j is uj = b(t). In
case of ties, each gets the payo¤ 1

2 (a(t) + b(t)). An example is the noisy duel
of chapter 1, where a increases, b decreases, and they intersect at the optimal
stopping/shooting time (here optimality refers to the saddle point property for
this ordinally zero-sum game.

Example 14 war of attrition
This is a game of timing where both a and b are continuous and decreasing,

a(t) < b(t) for all t, and b(1) < a(0). There are two Nash equilibrium outcomes.
Setting t� as the time at which a(0) = b(t�), one player commits to t� or more,
and the other concedes by stopping the clock immediately (at t = 0).

The selection problem can be solved by further arguments of Pareto domi-
nance, or risk dominance. Sometimes the selection problem is facilitated because
the players agree on the most favorable equilibrium: the Pareto dominance
argument. A simple example is any coordination game: if a single outcome
maximizes the common payo¤ it will be selected without explicit comunication.
When several outcomes are optimal, we may hope that one of them is more
salient, as in Schelling�s rendez-vous game.
Finally prudence may point to some particular equilibrium outcome. But

this criterion may con�ict with Pareto dominance as in Kalai�s hat story, and
in the following important game.

Example 15 coordination failure
This is an example of a public good provision game by voluntary contributions
(example 6), where individual contributions enter the common bene�t function
as perfect complements:

ui(s) = min
j
sj � Ci(si)

Examples include the building of dykes or a vaccination program: the safety
provided by the dyke is only as good as that of its weakest link. Assume Ci is
convex and increasing, with Ci(0) = 0 and C 0i(0) < 1, so that each player has
a stand alone optimal provision level s�i maximizing z � Ci(z). Then the Nash
equilibria are the outcomes where si = � for all i, and 0 � � � mini s�i . They are
Pareto ranked: the higher �, the better for everyone. However the higher �, the
more risky the equilibrium: if other players may make an error and fail to send
their contribution, it is prudent not to send anything (maxsi mins�i ui(s) = 0
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is achieved with si = 0). Even if the probability of an error is very small,
a reinforcement e¤ect will amplify the risk till the point where only the null
(prudent) equilibrium is sustainable.

2.2.2 dominance solvable games

Eliminating dominated strategies is the central coordination device performed
by independent deductions of completely informed agents.

De�nition 33 In the game G = (N;Si; ui; i 2 N), we say that player i�s strat-
egy si is weakly dominated by his strategy s0i (or simply dominated) if

ui(si; s�i) � ui(s
0
i; s�i) for all s�i 2 S�i

ui(si; s�i) < ui(s
0
i; s�i) for some s�i 2 S�i

Given a subset of strategies Ti � Si we write WU i(TN ) for the set of player i�s
strategies in the restricted game (N;Ti; ui; i 2 N) that are not dominated.

De�nition 34 We say that the game G is dominance-solvable if the sequence
de�ned inductively by

wS0i = Si;
w St+1i =WU i(wStN ) for all i and t = 1; 2; � � �

and called the successive elimination of dominated strategies, converges to a
single outcome s�:

\1t=1wStN = fs�g

If the strategy sets are �nite, or compact with continuous payo¤ functions,
the set of weakly undominated strategies is non empty.
Notice an important di¤erence between the elimination of strictly versus

weakly dominated strategies. As noted in section 2.1.3, the elimination of
strictly dominated strategies never "loses" a Nash equilibrium:

fs is a Nash equilibrium of Gg ) s 2 \1t=1StN

By contrast the elimination of weakly dominated strategies may loose some, or
even all, Nash equilibria along the way. Compare the two person game241; 0 2; 0 1; 5

6; 2 3; 7 0; 5
3; 1 2; 3 4; 0

35
where the algorithm picks the unique equilibrium, to the following example241; 3 2; 0 3; 1

0; 2 2; 2 0; 2
3; 1 2; 0 1; 3

35
where the algorithm may throw out the baby with the water!
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On the other hand if the game reduced to the strategy space \1t=1wStN has
a Nash equilibrium, this outcome is an equilibrium of the original game as well
(exercise: prove this fact).
Another di¤erence between the two successive elimination algorithms, based

on strict or weak domination, is their robustness with respect to partial elimi-
nation. Suppose, in the case where we only drop strictly dominated strategies,
that at each stage we choose St+1i as a subset of Ui(StN ): then it is easy to
check that the limit set \1t=1StN is una¤ected (provided we eventually take all
elimination opportunities)(exercise: prove this claim). On the other hand when
we only drop some weakly dominated strategies at each stage, the result of the
algorithm may well depend on the choice of subsets wSt+1i in WU i(wStN ). Here
is an example: 2664

2; 3 2; 3
3; 2 1; 2
1; 1 0; 0
0; 0 1; 1

3775
Depending on which strategy player 1 eliminates �rst, we wend up at the (3; 2)
or the (2; 3) equilibrium. Despite the di¢ culty above, in many instances the
elimination algorithm in De�nition 33 leads to a convincing equilibrium selec-
tion.
In our next example, dominance solvability leads to a mildly paradoxical

result.

Example 16 the chair�s paradox
Three voters choose one of three candidates a; b; c. The rule is plurality with
the Chair, player 1, breaking ties. Hence each player i chooses from the set
Si = fa; b; cg, and the elected candidate for the pro�le of votes s is

s2 if s2 = s3; or s1 if s2 6= s3

Note that the Chair has a dominant strategy to vote for her top choice. The
two other players can only eliminate the vote for their bottom candidate.
Assume that the preferences of the voters exhibit the cyclical pattern known

as the Condorcet paradox, namely

u1(c) < u1(b) < u1(a)

u2(b) < u2(a) < u2(c)

u3(a) < u3(c) < u3(b)

Writing this game in strategic form reveals that after the successive elimination
of dominated strategies, the single outcome s = (a; c; c) remains. This is a Nash
equilibrium outcome. The paradox is that the chair�s tie-breaking privilege
result in the election of her worst outcome!

Often a couple of rounds of elimination are enough to select a unique Nash
equilibrium, even though the elimination algorithm is stopped and the initial
game is not (weakly) dominance solvable.
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Example 17 �rst price auction
The sealed bid �rst price auction is strategically equivalent to the Dutch de-
scending auction.An object is auctioned between n bidders who each submit a
sealed bid si. Bids are in round dollars (so Si = N). The highest bidder gets
the object and pays his bid. In case of a tie, a winner is selected at random
with uniform probability among the highest bidders.
Assume that the valuations of (willingness to pay for) the object are also

integers ui and that
u1 > ui for all i � 2

At a Nash equilibrium of this game, the object is awarded to player 1 at a price
anywhere between u1 � 1 and u2. However after two rounds of elimination we
�nd a game where the only Nash equilibrium has player 1 paying u2 for the
object while one of the players i, i � 2, such that ui = maxj 6=1 uj bids ui � 1.
Thus player 1 exploits his informational advantage to the full.

Example 18 Steinhaus cake division method
The referee runs a knife from the left end of the cake to its right end. Each one
of the two players can stop the knife at any moment. Whoever stops the knife
�rst gets the left piece,the other player gets the right piece. If both players have
identical preferences over the various pieces of the cake, this is a game of timing
structurally equivalent to the noisy duel, and its unique Nash equilibrium is that
they both stop the knife at the time t� when they are indi¤erent between the
two pieces. When preferences di¤er, call t�i the time when player i is indi¤erent
between the two pieces, and assume t�1 < t�2. The Nash equilibrium outcomes
are those where player 1 stops the knife between t�1 and t

�
2 while player 2 is just

about to stop it herself: player 1 gets the left piece (worth more than the right
piece to him) and player 2 gets the right piece (worth more to her than the left
piece). However after two rounds of elimination of dominated strategies, we are
left with S21 = [t�2 � "; 1]; S22 = [t�2; 1]. Although the elimination process stops
there, the outcome of the remaining game1 is not in doubt: s�1 = t

�
2� "; s�2 = t�2.

2.2.3 dominant strategy equilibrium

One case where the successive elimination of even weakly dominated strategies
is convincing is when each player has a dominant strategy. Put di¤erently the
following is a compelling equilibrium selection.

De�nition 35 In the game G = (N;Si; ui; i 2 N), we say that player i�s strat-
egy s�i is dominant if

ui(s
�
i ; s�i) � ui(si; s�i) for all s�i 2 S�i, all si 2 Si

We say that s� is a dominant strategy equilibrium if for each player i, s�i is a
dominant strategy.

1This game is an inessential game, as discussed in question a) of problem 18.
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There is a huge di¤erence in the interpretation of a game where dominance
solvability (whether in the strict or weak form) identi�es a Nash equilibrium,
versus one where a dominant strategy equilibrium exists. In the latter all a
player has to know are the strategy sets of other players; their preferences or
their actual strategic choices do not matter at all to pick his dominant strategy.
Information about other players�payo¤s or moves is worthless, as long as our
player is unable to in�uence their choices (for instance a threat of the kind "if
you do this I will do that" is not enforceable).
A game with an equilibrium in dominant strategies is weakly, but not nec-

essarily strictly, dominance-solvable.
A very famous game illustrates the fact that an equilibrium in dominant

strategies may not be Pareto optimal:

Example 19 Prisonners Dilemna
Each player chooses a sel�ess strategy C or a sel�sh strategy D. Choosing

C brings a bene�t a to every other player and a cost of b to me. Playing D
brings neither bene�t nor cost to anyone. It is a dominant strategy to play D if
b > 0. If furthermore b < (n� 1)a, the dominant strategy equilibrium is Pareto
inferior to the unanimously sel�ess outcome.

Dominant strategy equilibria do not happen in very many games because the
strategic interaction is often more complex. However they are so appealingly
simple that when we design a procedure to allocate resources, elect one of the
candidates to a job, or divide costs, we would like the corresponding strategic
game to have a dominant strategy equilibrium as often as possible. In this way
we are better able to predict the behavior of our participants. The two most
celebrated examples of such strategy-proof allocation mechanisms follow. In
both cases the game has a dominant strategy equilibrium in all cases, and the
corresponding outcome is e¢ cient (Pareto optimal).

Example 20 Vickrey�s second price auction
An object is auctioned between n bidders who each submit a sealed bid si. Bids
are in round dollars (so Si = N). The highest bidder gets the object and pays the
second highest bid. In case of a tie, a winner is selected at random with uniform
probability among the highest bidders (and pays the highest bid). If player i�s
valuation of the object is ui, it is a dominant strategy to bid "sincerely", i.e.,
s�i = ui. The corresponding outcome is the same as in the Nash equilibrium
that we selected by dominance-solvability in the �rst price auction (example
17). But to justify that outcome we needed to assume complete information, in
particular the highest valuation player must know precisely the second highest
valuation. By contrast in the Vickrey auction, each player knows what bid to
slip in the envelope, whether or not she has any information about other players�
valuations, or even their number.
It is interesting to note that in the second price auction game, there is a

distressing variety of Nash equilibrium outcomes and in particular any player,
even the one with the lowest valuation of all, receives the object in some equi-
librium. More precisely, it is easy to check that for any player i and for any
price p, 0 < p < ai there is a Nash equilibrium where player i gets the object
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and pays p.

Example 21 voting under single-peaked preferences
The n players vote to choose an outcome x in [0; 1]. Assume for simplicity n is
odd. Each player submits a ballot si 2 [0; 1], and the median outcome among
s1; � � � ; sn is elected: this is the number x = si� such that more than half of the
ballots are no less than x, and more than half of the ballots are no more than
x. Preferences of player i over the outcomes are single-peaked with the peak at
vi: they are strictly increasing on [0; vi] and strictly decreasing on [vi; 1].
Here again, it is a dominant strategy to bid "sincerely", i.e., s�i = vi. Again,

any outcome x in [0; 1] results from a Nash equilibrium, so the latter concept
has no predictive power at all in this game.

2.3 problems on chapter 2

Problem 1
In Schelling�s model (example 3) �nd examples of the functions a and b such
that the equilibrium is unique and strongly globally stable; such that it is unique
and weakly but not strongly globally stable.

Problem 2.1 Example 2 continued
Assume the function g has a local maximum at z�, to be precise z� is the unique
maximum of g over the interval [n�1n z�; n�1n z� + 1]. Show that z� is a Nash
equilibrium outcome, and that each corresponding Nash equilibrium strategy
pro�le s� is weakly locally stable but not strongly locally stable.

Problem 2.2
Complete the proof of Proposition 25, in particular by dealing with the case
where the best reply correspondence can be multivalued.

Problem 3 games of timing
a) We have two players, a and b both increase, and a intersects b from below.
Perform the successive elimination of dominated strategies, and �nd all Nash
equilibria. Can they be Pareto improved?
b) We extend the war of attrition (example 14) to n players. If player i stops
the clock �rst at time t, his payo¤ is ui = a(t), that of all other players is
uj = b(t). Both a and b are continuous and decreasing, a(t) < b(t) for all t, and
b(1) < a(0). Answer the same questions as in a).
c) We have n players as in question b), but this time a increases, b decreases,
and they intersect.

Problem 4 Example 18 continued
The interval [0; 1] is a nonhomogeneous cake to be divided between two players.
The utility of player 1 for a share A � [0; 1] is v1(A) =

R
A

�
3
2 � x

�
dx: The

utility of player 2 for a share B � [0; 1] is v2(B) =
R
B

�
1
2 + x

�
dx: When time

runs from t = 0 to t = 1; a knife is moved at the speed 1 from x = 0 to x = 1.
Each player can stop it at any time. If the knife is stopped at time t by player
i; this player gets the share [0; t], while the other player gets the share [t; 1].
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What strategic advice would you give to each player? Discuss the cases where
a player knows his opponent�s utility and that where she does not.

Problem 5
One hundred people live in the village, of whom 51 support conservative candi-
date and 49 support liberal candidate. A villager gets payo¤+10 if her candidate
wins and -10 if her candidate looses. But since voting process is time-consuming,
a villager gets -1 simply from the fact that she votes.
a) Why it is not Nash equilibrium for everybody to vote?
b) Why it is not Nash equilibrium for nobody to vote?
c) Find a Nash equilibrium where all conservatives use the same strategy, and
all liberals use the same strategy.
d) What can you say about other possible Nash equilibria of this game?

Problem 6 examples of best reply dynamics
a) We have a symmetric two player game with Si = [0; 1] and the common best
reply function

br(s) = minfs+ 1
2
; 2� 2sg

Show that we have three Nash equilibria, all of them locally unstable, even for
the sequential dynamics.
b) We have three players, Si = R for all i, and the payo¤s

u1(s) = �s21 + 2s1s2 � s22

u2(s) = �9s22 + 6s2s3 � s23
u3(s) = �16s21 � 9s22 � s23 + 24s1s2 � 6s2s3 + 8s1s3

Show there is a unique Nash equilibrium and compute it. Show the sequential
best reply dynamics where players repeatedly take turns in the order 1; 2; 3 does
not converge to the equilibrium, whereas the dynamics where they repeatedly
take turns in the order 2; 1; 3 does converge from any initial point. What about
the myopic adjustment where each player uses his best reply at each turn?

Problem 7 stability analysis in two symmetric games
a) This symmetrical n-person game has the strategy set Si = [0;+1[ for all i
and the payo¤ function

u1(s) = s2s3 � � � sn(s1e�(s1+s2+���+sn) � 1)

(other payo¤s deduced by the symmetry of the game).
Find all dominated strategies if any, and all Nash equilibria (symmetric or not)
in pure strategies. Is this a potential game? Discuss the stability of the best
reply dynamics in this game.
b) Answer the same questions as in a) for the following symmetric game with
the same strategy sets:

u1(s) = s2s3 � � � sn(2e�(s1+s2+���+sn) + s1)

Problem 8

40



Consider the following N players game. The set of pure strategies for each
player is Ci = f1; :::; Ng, thus the game consists in each player announcing
(simultaneously and independently) an integer between 1 and N . To each pair
of players i; j corresponds a number vij(= vji); interpreted as the utility both
players could derive from being together (note that vij can be negative). Players
are together if and only if they announce the same number. Thus, the payo¤
to each player i is the sum of vij over all players j who announced the same
number as i: Prove that this game is a potential game. Find the potential and
Nash equilibria of this game.

Problem 9 ordinal potential games
Let � be the sign function �(0) = 0; �(z) = 1 if z > 0;= �1 if z < 0. Call
a game G = (N;Si; ui; i 2 N) an ordinal potential game if there exists a real
valued function P de�ned on SN such that for all i and s�i 2 S�i we have

�fui(si; s�i)� ui(s0i; s�i)g = �fP (si; s�i)� P (s0i; s�i)g for all si; s0i 2 Si

a) Show that the search game (example 10) and the symmetric case of the price
competition (example 11) are ordinal potential games.
b)Show that the following Cournot oligopoly game is an ordinal potential game.
Firm i chooses a quantity si, and D�1 is the inverse demand function. Costs
are linear and identical:

ui(s) = siD
�1(sN )� csi for all i and all s

c) Show that Proposition 27 still holds for ordinal potential games.

Problem 10 third price auction
We have n bidders, n � 3, and bidder i�s valuation of the object is ui. Bids are
independent and simultaneous. The object is awarded to the highest bidder at
the third highest price. Ties are resolved just like in the Vickrey auction, with
the winner still paying the third highest price. We assume for simplicity that
the pro�le of valuations is such that u1 > u2 > u3 � ui for all i � 4.
a) Find all Nash equilibria.
b) Find all dominated strategies of all players and all Nash equilibria in undom-
inated strategies.
c) Is the game dominance-solvable?

Problem 11 tragedy of the commons
A pasture produces 100 units of grass, and a cow transforms x units of grass

into x units of meat (worth $x), where 0 � x � 10, i.e., a cow eats at most 10
units of grass. It cost $2 to bring a cow to and from the pasture (the pro�t from
a cow that stays at home is $2). Economic e¢ ciency requires to bring exactly
10 cows to the pasture, for a total pro�t of $80. A single farmer owning many
cows would do just that.
Our n farmers, each with a large herd of cows, can send any number of cows

to the commons. If farmer i sends si cows, sN cows will share the pasture and
each will eat minf 100sN ; 10g units of grass.
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a) Write the payo¤ functions and show that in any Nash equilibrium the
total number sN of cows on the commons is bounded as follows

50
n� 1
n

� 1 � sN � 50
n� 1
n

+ 1

b) Deduce that the commons will be overgrazed by at least 150% and at most
400%, depending on n, and that almost the entire surplus will be dissipated in
equilibrium. (Hint: start by assuming that each farmer sends at most one cow).

Problem 12 a public good provision game
The common bene�t function is b(s) = maxj sj : a single contributor is enough.
Examples include R&D, ballroom dancing (who will be the �rst to dance) and
dragon slaying (a lone knight must kill the dragon). Costs are quadratic, so the
payo¤ functions are

ui(s) = max
j
sj �

1

2�i
s2i

where �i is a positive parameter di¤erentiating individual costs.
a) Show that in any Nash equilibrium, only one agent contributes.
b) Show that there are p such equilibria, where p is the number of players i such
that

�i �
1

2
max
j
�j

Show that each equilibrium is weakly locally stable.
c) Compute strictly dominated strategies for each player. For what pro�les (�i)
is our game (strictly) dominance-solvable?
Problem 13 the lobbyist game

The two lobbyists choose an �e¤ort�level si; i = 1; 2, measured in money ( the
amount of bribes distributed) and the indivisible prize worth $a is awarded ran-
domly to one of them with probabilities proportional to their respective e¤orts
(if the prize is divisible, no lottery is necessary). Hence the payo¤ functions

ui(s) = a
si

s1 + s2
� si if s1 + s2 > 0;ui(0; 0) = 0

a) Compute the best reply functions and show there is a unique Nash equilib-
rium.
b) Perform the successive elimination of strictly dominated strategies, and check
the game is not dominance-solvable. However, if we eliminate an arbitrarily
small interval [0; "] from the strategy sets, the reduced game is dominance solv-
able.
c) Show that the Nash equilibrium (of the full game) is strongly globally stable.
Problem 14 more congestion games

We generalize the congestion games of example 7. Now each player chooses
among subsets of a �xed �nite set S, so that si � 2S . The same congestion
function fx(m) applies to each element x in S. The payo¤ to player i is

ui(s) =
X
x2si

fx(nx(s)) where nx(s) = jfj 2 N jx 2 sjgj
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Interpretation: each commuter chooses a di¤erent route (origin and destination)
on a common road network represented by a non oriented graph. Her own delay
is the sum of the delays on all edges of the network.
Show that this game is still a potential game.

Problem 15 A di¤erent congestion game
There aremmen and n women who must choose independently which one of two
discos to visit. Let na; nb be the number of women choosing to visit respectively
disco A and disco B, and de�ne similarly ma;mb. Each player only cares about
the number of visitors of the opposite gender at the disco he or she visits.
a) Assume �rst the following payo¤ functions:

ui = nx if i is a man choosing disco X; vj = mx if j is a woman choosing disco X

Discuss the Nash equilibria of the game and their stability (strong and weak).
It will help to show �rst that this game is a potential game.
b) Now the strategies of the m+ n players are the same but the payo¤s are:

ui = nx if i is a man choosing disco X; vj = �mx if j is a woman choosing disco X

In other words men want to be in the disco with more women, while women
seek the disco with fewer men (remember this is a theoretical example).
Discuss the Nash equilibria of the game and their stability (strong and weak).
Show that this game is not a potential game.
Problem 16

There are 10 locations with values 0 < a1 < a2 < ::: < a: Player i (i = 1:2) has
ni < 10 soldiers and must allocate them among the locations (no more then one
soldier per location). The payo¤ at location p is ap to the player whose soldier
is unchallenged, and �ap to his opponent; if they both have a soldier at location
p, or no one does, the payo¤ is 0. The total payo¤ of the game is the sum of all
locational payo¤s.
Show that this game has a unique equilibrium in dominant strategies. What if
some ap are equal?

Problem 17 price competition
The two �rms have constant marginal cost ci; i = 1; 2 and no �xed cost. They
sell two substitutable commodities and compete by choosing a price si; i = 1; 2.
The resulting demands for the 2 goods are

Di(s) = (
sj
si
)�i

where �i > 0. Show that there is an equilibrium in dominant strategies and
discuss its stability.

Problem 18 Cournot duopoly with increasing or U-shaped returns
In all 3 questions the duopolists have identical cost functions C.
a) The inverse demand is D�1(q) = (150� q)+ and the cost is

C(q) = 120q � 2
3
q2 for q � 90;= 5; 400 for q � 90
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Show that we have three equilibria, two of them strongly locally stable.
b) The inverse demand is D�1(q) = (130� q)+ and the cost is

C(q) = minf50q; 30q + 600g

Compute the equilibrium outcomes and discuss their (local) stability.
c)The inverse demand is D�1(q) = (150� q)+ and the cost is

C(q) = 2; 025 for q > 0;= 0 for q = 0

Show that we have three equilibria and discuss their (local) stability.

Problem 19 Cournot oligopoly with linear demand and costs
The inverse demand for total quantity q is

D�1(q) = p(1� q
q
)+

where p is the largest feasible price and q the supply at which the price falls to
zero. Each �rm i has constant marginal cost ci and no �xed cost.
a) If all marginal costs ci are identical, show there is a unique Nash equilibrium,
where all n �rms are active if p > c, and all are inactive otherwise.
b) If the marginal costs ci are arbitrary and c1 � c2 � � � � � cn, let m be zero
if p � c1 and otherwise be the largest integer such that

ci <
1

m+ 1
(p+

iX
1

ck)

Show that in a Nash equilibrium outcome, exactly m �rms are active and they
are the lowest cost �rms.

Problem 20 Hoteling competition in location
The consumers are uniformly spread on [0; 1], and each wants to buy one unit.
Each �rm charges the �xed price p and chooses its location si in the interval.
Production is costless. Once locations are �xed, each consumer shops in the
nearest store (the tie-breaking rule does not matter).
a) Show that with two competing stores, the unique Nash equilibrium is that
both locate in the center. Is the game dominance-solvable?
b) Show that with three competing stores, the game has no Nash equilibrium.
c) Show that with four competing stores, the game has a Nash equilibrium. Is
it unique?
d) What is the situation with �ve stores?

Problem 21 Hoteling competition in location: probabilistic choice
a) Two stores choose a location on the interval [0; 100]. Customers are uniformly
distributed on this interval, with at most a unit demand, and will shop from
the nearest store if at all. If the distance between a customer and the store is
t, he will buy with probability p(t) = 2p

t+4
. Thus if a store is located at 0 and
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is the closest store to all customers in the interval [0; x], it will get from these
customers the revenue

r(x) =

Z x

0

p(t)dt = 4
p
x+ 4� 8

Stores maximize their revenues. Analyze the competition between the two stores
and compute their equilibrium locations. Compare them to the collusive out-
come, namely the choice of locations maximizing the total revenue of the two
stores.
b) Generalize the model of question a). Now p(t) is unspeci�ed and so is its
primitive r(t). We assume that p is continuous, strictly positive, and strictly
decreasing from p(0) = 1.
Under what condition on p do both stores locate at the midpoint in the Nash
equilibrium of the game?
Show that if in equilibrium the stores choose di¤erent locations, they will never
locate on [0; 25] or [75; 100].

Problem 22 Hoteling competition in prices: two �rms
The 1000 consumers are uniformly spread on [0; 3] and each wants to buy one
unit and has a very large reservation price. The two �rms produce costlessly
and set arbitrary prices si. Once these prices are set consumers shop from the
cheapest �rm, taking into account the unit transportation cost t. A consumer
at distance di from �rm i buys

from �rm 1 if s1 + td1 < s2 + td2, from �rm 2 if s1 + td1 > s2 + td2

(the tie-breaking rule does not matter)
a) If the �rms are located at 0 and 3, show that there is a unique Nash equilib-
rium pair of prices. Analyze its stability properties.
b) If the �rms are located at 1 and 2, show that there is no Nash equilibrium
(hint: check �rst that a pair of 2 di¤erent prices can�t be an equilibrium).

Problem 23 Hoteling competition in prices: three �rms
The consumers are uniformly spread over the interval [0; 3] and each wants to
buy one unit of the identical good produced by the three �rms. The �rms are
located respectively at 0; 1 and 3 and they produce costlessly. The transporta-
tion cost is 1 per unit. As usual consumers shop at the �rm where the sum of
the price and the transportation cost is smallest.
a) Write the strategic form of the game where the 3 �rms choose the prices
s1; s2; s3 respectively.
b) Show that the game has a unique Nash equilibrium and compute it.
c) Discuss the stability of the equilibrium computed in b).

Problem 24 price war
Two duopolists (a la Bertrand) have zero marginal cost and capacity c. The
demand d is inelsatic, with reservation price p. Assume c < d < 2c. We also �x
a small positive constant " (" < p

10 ).
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The game is de�ned as follows. Each �rm chooses a price si; i = 1; 2 such that
0 � si � p. If si � sj � ", �rm i sells its full capacity at price si and �rm j sells
d � c at price sj . If jsi � sj j < " the �rms split the demand in half and sell at
their own price (thus " can be interpreted as a transportation cost between the
two �rms). To sum up

u1(s) = cs1 if s1 � s2 � "
= (d� c)s1 if s1 � s2 + "

=
d

2
s1 if s2 � " < s1 < s2 + "

with a symmetric expression for �rm 2.
Set p� = d�c

c p and check that the best reply correspondence of �rm 1 is

br1(s2) = p if s2 < p� + "

= fp; p�g if s2 = p� + "
= s2 � " if s2 > p� + "

Show that the game has no Nash equilibrium, and that the sequential best reply
dynamics captures a cyclical price war.

Problem 25 Bertrand duopoly
The �rms sell the same commodities and have the same cost function C(q), that
is continuous and increasing. They compete by setting prices si; i = 1; 2. The
demand function D is continuous and decreasing. The low price �rm captures
the entire demand; if the 2 prices are equal, the demand is equally split between
the 2 �rms. Hence the pro�t function for �rm 1

u1(s) = s1D(s1)� C(D(s1)) if s1 < s2; = 0 if s1 > s2

=
1

2
s1D(s1)� C(

D(s1)

2
) if s1 = s2

and the symmetrical formula for �rm 2.
a) Show that if s� is a Nash equilibrium, then s�1 = s

�
2 = p and

AC(
q

2
) � p � 2AC(q)�AC(q

2
)

where q = D(p) and AC(q) = C(q)
q is the average cost function.

b) Assume increasing returns to scale, namely AC is (strictly) decreasing. Show
there is no Nash equilibrium s� = (p; p) where the corresponding production q
is positive. Find conditions on D and AC such that there is an equilibrium with
q = 0.
c) In this and the next question assume decreasing returns to scale, i.e., AC
is (strictly) increasing. Show that if s� = (p; p) is a Nash equilibrium, then
p� � p � p+ where p� and p+ are solutions of

p� = AC(
D(p�)

2
) and p+ = 2AC(D(p+))�AC(

D(p+)

2
)
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Check that the �rms have zero pro�t at (p�; p�) but make a positive pro�t at
(p+; p+) if p� < p+. Hint: draw on the same �gure the graphs of D�1(q); AC( q2 )and
2AC(q)�AC( q2 ).
d) To prove that the pair (p+; p+) found in question c) really is an equilibrium we
must check that the revenue function R(p) = pD(p)�C(D(p)) is non decreasing
on [0; p+]. In particular p+ should not be larger than the monopoly price.
Assume C(q) = q2, D(p) = (�� �p)+ and compute the set of Nash equilib-

rium outcomes, discussing according to the parameters �; �.

Problem 26
In the game G = (N;Si; ui; i 2 N) we write

�i = max
si
min
s�i

ui(si; s�i);�i = min
s�i

max
si
ui(si; s�i)

and assume the existence for each player of a prudent strategy si, namely �i =
mins�i ui(si; s�i).
a) Assume � = (�i)i2N is a Pareto optimal utility pro�le: there exists es 2 SN
such that

� = u(es) and for all s 2 SN : fu(s) � u(es)g ) u(s) = u(es)
Show that � = � and that any pro�le of prudent strategies is a Nash equilibrium.
b) Assume that the strategy sets Si are all �nite, and � = (�i)i2N is a Pareto
optimal utility pro�le. Show that if each function ui is one-to-one on SN then
the outcome es such that � = u(es) is a Nash equilibrium. Give an example of a
game with �nite strategy sets (where payo¤s are not one-to-one) such that � is
Pareto optimal and yet the game has no Nash equilibrium.

Problem 27
In the Cournot model of example 3 where we do not assume a large number of
agents and do not identify best reply behavior and competitive behavior, show
the Nash equilibrium is unique and describe it.

3 Existence results and mixed strategies

3.1 Nash�s theorem

Nash�s theorem generalizes Von Neumann�s theorem to n-person games.

Theorem 36 (Nash) If in the game G = (N;Si; ui; i 2 N) the sets Si are
convex and compact, and the functions ui are continuous over X and quasi-
concave in si, then the game has at least one Nash equilibrium.

For the proof we use the following mathematical preliminaries.
1) Upper hemi-continuity of correspondences
A correspondence f : A !! Rm is called upper hemicontinuous at x 2 A if
for any open set U such that f(x) � U � A there exists an open set V such
that x 2 V � A and that for any y 2 V we have f(y) � U . A correspondence
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f : A !! Rm is called upper hemicontinuous if it is upper hemicontinuous at
all x 2 A.
Note that for a single-valued function f , this de�nition is just the continuity

of f .
Proposition
A correspondence f : A !! Rm is upper hemicontinuous if and only if it has
a closed graph and the images of the compact sets are bounded (i.e. for any
compact B � A the set f(B) = fy 2 Rm : y 2 f(x) for some x 2 Bg is
bounded).
Note that if f(A) is bounded (compact), then the upper hemicontinuity is

equivalent to the closed graph condition. Thus to check that f : A !! A
from the premises of Kakutani�s �xed point theorem is upper hemicontinuous
it is enough to check that it has closed graph. I.e., one needs to check that for
any xk 2 A, xk ! x 2 A, and for any yk ! y such that yk 2 f(xk), we have
y 2 f(x).
2) Two �xed point theorems
Theorem (Brouwer�s �xed point theorem)
Let A � Rn be a nonempty convex compact, and f : A! A be single-valued and
continuous. Then f has a �xed point : there exists x 2 A such that x = f(x).
Extension to correspondences:

Theorem (Kakutani�s �xed point theorem)
Let A � Rn be a nonempty convex compact and f : A !! A be an upper

hemicontinuous convex-valued correspondence such that f(x) 6= ? for any x 2
A. Then f has a �xed point: there exists x 2 A such that x 2 f(x).
Proof of Nash Theorem.

For each player i 2 N de�ne a best reply correspondence Ri : S�i !! Si in
the following way: Ri(s�i) = argmax

�2Si
ui(�; s�i). Consider next the best reply

correspondence R : S !! S; where R(s) = R1(s�1)� :::� RN (s�N ). We will
check that R satis�es the premises of the Kakutani�s �xed point theorem.
First S = S1�:::�SN is a nonempty convex compact as a Cartesian product

of �nite number of nonempty convex compact subsets of Rp.
Second since ui are continuous and Si are compact there always existmax

�2Si
ui(�; s�i).

Thus Ri(s�i) is nonempty for any s�i 2 S�i and so R(s) is nonempty for any
s 2 S:
Third R(s) = R1(s�1) � ::: � RN (s�N ) is convex since Ri(s�i) are convex.

The last statement follows from the (quasi-) concavity of ui(�; s�i). Indeed if
si; ti 2 Ri(s�i) = argmax

�2Si
ui(�; s�i) then ui(�si+(1��)ti; s�i) � �ui(si; s�i)+

(1� �)ui(ti; s�i) = max
�2Si

ui(�; s�i), and hence �si + (1� �)ti 2 Ri(s�i).
Finally given that S is compact to guarantee upper hemicontinuity of R we

only need to check that it has closed graph. Let sk 2 S, sk ! s 2 S, and
tk ! t be such that tk 2 R(sk). Hence for any k and for any i = 1; :::; N we
have that ui(tk; sk�i) � ui(�; sk�i) for all � 2 Si. Given that (tk; sk�i)! (t; s�i)
continuity of ui implies that ui(t; s�i) � ui(�; s�i) for all � 2 Si. Thus t 2
argmax

�2Si
ui(�; s�i) = R(s) and so R has closed graph.
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Now, Kakutani�s �xed point theorem tells us that there exists s 2 S =
S1 � ::: � SN such that s = (s1; :::; sN ) 2 R(s) = R1(s�1) � ::: � RN (s�N ).
I.e. si 2 R(s�i) for all players i. Hence, each strategy in s is a best reply to
the vector of strategies of other players and thus s is a Nash equilibrium of our
game.�
A useful variant of the theorem is for symmetrical games.

Theorem 37 If in addition to the above assumptions, the game is symmetrical,
then there exists a symmetrical Nash equilibrium si = sj for all i; j.

Proof: The game is (N;S0; u) with S0 the common strategy set, and u : S0�
S
N�f1g
0 ! R its common payo¤ function. Check that we can apply Kakutani�s
theorem to the mapping R0 from S0 into itself:

R0(s0) == arg max
�2S0

ui(�; s0; s0; � � � ; s0)

A �xed point of R0 is a symmetric Nash equilibrium.
The main application of Nash�s theorem is to �nite games in strategic form

where the players use mixed strategies.
Consider a normal form game �f = (N; (Ci)i2N ; (ui)i2N ), where N is a

(�nite) set of players, Ci is the (nonempty) �nite set of pure strategies available
to the player i, and ui : C = C1� :::�CN ! R is the payo¤ function for player
i. Let Si = �(Ci) be the set of all probability distributions on Ci (i.e., the set
of all mixed strategies of player i). We extend the payo¤ functions ui from C
to S = S1 � :::� SN by expected utility.
In the resulting game Si will be convex compact subsets of some �nite-

dimensional vector space. Extended payo¤ functions ui : S ! R will be contin-
uous on S, and ui(�; s�i) will be be concave (actually, linear) on Si: Thus we
can apply the theorem above to show that

Theorem 38 �f always has a Nash equilibrium in mixed strategies.

Note that a Nash equilibrium of the initial game remains an equilibrium in
its extension to mixed strategies.

3.2 Von Neumann Morgenstern utility

We axiomatize expected utility over random outcomes.
Notation:
C is the �nite set of outcomes (consequences), C = fc1; � � � ; cmg
� is the set of lotteries on C with generic element L = (p1; � � � ; pm); pj � 0

for all j and
Pm

1 pj = 1
De�nition: compound lottery
Given K (simple) lotteries Lk 2 �; k = 1; � � � ;K, and a probability dis-

tribution � = (�1; � � � ; �K), the compound lottery (Lk; k = 1; � � � ;K;�) is the
random choice of an outcome in C where we pick �rst a lottery Lk according
to �, then an outcome in C according to Lk.
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The simple lottery L =
PK

1 �kLk give the same ultimate probability dis-
tribution over outcomes as the compound lottery (Lk; k = 1; � � � ;K;�), yet it
is not unreasonable to distinguish these two objects from a decision-theoretic
viewpoint.
Consequentialist axiom: the preferences of our decision maker over a com-
pound lottery do not distinguish it from the associated simple lottery.
In view of this axiom, the preferences of our agent over the random outcomes

in C, obtained via compuond lotteries of arbitrary order, are represented by a
rational preference (complete, transitive) � over �.
Continuity axiom: upper and lower contour sets of � are closed in �.
By the classic Debreu theorem, the continuity axiom implies that these pref-

erences can be represented by a continuous utility function.
Independence axiom: for all L;L0; L00 2 �, for all � 2 [0; 1]

L � L0 , �L+ (1� �)L00 � �L0 + (1� �)L00

The independence axiom is very intuitive given consequentialism, and yet
extremely powerful. It is the mathematical engine driving th VNM theorem.
De�nition: the utility function U : �! R has the Von Neumann Morgenstern
expected utility form if there exists real numbers u1; � � � ; um such that

U(L) =
mX
j=1

ujpj for all L = (p1; � � � ; pm) 2 �

An equivalent de�nition is that the function U is a¢ ne on �, namely

U(�L+ (1� �)L0) = �U(L) + (1� �)U(L0) for all L;L0 2 �, and all � 2 [0; 1]

An important invariance property of the VNM representation of a preference
relation on �: if U has the VNM form and represents �, so does �U + 
 for
any numbers � > 0 and 
 2 R. Conversely, such utility functions are the only
alternative VNM representations of �.
A consequence of this invariance is that di¤erences in cardinal utilities have

meaning:

u1 � u2 > u3 � u4 ,
1

2
u1 +

1

2
u4 >

1

2
u2 +

1

2
u3

Theorem: (Von Neumann and Morgenstern)
The preferences � over � meet the Continuity and Independence axioms if and
only if they are representable in the expected utility form.

Critique of the independence axiom: the Allais paradox
Consider three outcomes

� c1: win a prize of 800K

� c2: win a prize of 500K

� c3: no prize.
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Now consider the two choices between two pairs of lotteries

L1 = (0; 1; 0) versus L01 = (0:1; 0:89; 0:01)

L2 = (0; 0:11; 0:89) versus L02 = (0:1; 0; 0:9)

A common observation is the following preferences:

L1 � L01, L02 � L2

but these preferences are not compatible with VNM expected utility!

3.3 mixed strategy equilibrium

Here we discuss a number of examples to illustrate both the interpretation and
computation of mixed strategy equilibrium in n-person games. We start with
two-by-two games,namely where two players have two strategies each.

Example 1 crossing games
We revisit the example 12 from chapter 2

stop 1; 1 1� "; 2
go 2; 1� " 0; 0

stop go

and compute the (unique) mixed strategy equilibrium

s�1 = s
�
2 =

1� "
2� " stop+

1

2� "go

with corresponding utility 2�2"
2�" for each player. So an accident (both player

go) occur with probability slightly above 1
4 . Both players enjoy an expected

utility only slightly above their secure (guaranteed) payo¤ of 1 � ". Under s�1,
on the other hand, player 1 gets utility close to 1

2 about half the time: for a tiny
increase in the expected payo¤, our player incur a large risk.
The point is stronger in the following variant of the crossing game

stop 1; 1 1 + "; 2
go 2; 1 + " 0; 0

stop go

where the (unique) mixed strategy equilibrium is

s�1 = s
�
2 =

1 + "

2 + "
stop+

1

2 + "
go

and gives to each player exactly her guaranteed utility level in the mixed game.
Indeed a (mixed) prudent strategy of player 1 is

es1 = 2

2 + "
stop+

"

2 + "
go
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and it guarantees the expected utility 2+2"
2+" , which is also the mixed equilibrium

payo¤. Now the case for playing the equilibrium strategy in lieu of the prudent
one is even weaker.

In general �nite games computing the mixed equilibrium or equilibria follows
the same general approach as for two-person zero-sum games. The di¢ culty is
to identify the support of the equilibrium strategies, typically of equal sizes2 .
Once this is done we need to solve a linear system and check a few inequalities.
Unlike in two-person zero-sum games, we may have several mixed equilibria

with very di¤erent payo¤s. A general theorem shows that for "most games",
the number of mixed or pure equilibria is odd.

Example 2 public good provision (Bliss and Nalebu¤ )
Each one of the n players can provide the public good (hosting a party, slaying
the dragon, or any other example where only one player can do the job) at a
cost c > 0. The bene�t is b to every agent if the good is provided. We assume
c < nb: the social bene�t justi�es providing the good. The palyers can divide
the burden of providing the good by the following use of lotteries. Each player
chooses to step forward (volunteer) or not. If nobody volunteers, the good is
not provided; if some players volunteer, we choose one of them with uniform
probability to provide the good.
If b < c, the game in pure strategies is a classic Prisoner�s Dilemna (section

2.2.3) . If b > c, it resembles the war of attrition (sectione 2.2.1) in that we have
n pure strategy equilibria where one player provides the good and the other free
ride.
If there is a symmetrical equilibrium in mixed strategies in which every

player steps forward with probability p�, then p� solves

nb

c
p =

1� (1� p)n
(1� p)n�1 = f(p)

Notice that f is convex, increasing, from f(0) = 0 to f(1) =1, and f 0(0) = n.
Therefore if b < c, the only solution of the equation above is p = 0 and we are
back to the Prisoner�s Dilemna. But if b > c, there is a unique equilibrium in
mixed strategies. For instance if n = 2, we get

p�2 =
2(b� c)
2b� c and ui(p�) =

2b(b� c)
2b� c

One checks that as n grows, p�n goes to zero as
K
n where K is the solution of

c

b
=

KeK

1� e�K

therefore the probability that the good be provided goes to 1 � e�K , but the
probability of volunteering of each player goes to zero.

2 If a �nite game has a mixed equilibrium with supports of di¤erent sizes, then an arbitrarily
small change in the payo¤s will eliminate such "abnormal" equilibria.

52



Example 3 war of attrition (a.k.a. all-pay second price auction)
The n players compete for a prize worth $p by "hanging on" longer than everyone
else. Hanging on costs $1 per unit of time. Once a player is left alone, he wins
the prize without spending any more e¤ort. The game in pure strategies is a
game of timing as in Example 14 chapter 2:

ui(s) = p�max
j 6=i

sj if si > max
j 6=i

sj ; = �si if si < max
j 6=i

sj ; =
p

K
� si if si = max

j 6=i
sj

where K is the number of largest bids.
In addition to the pure equilibria described in the previous chapter, we have

one symmetrical equilibrium in completely mixed strategies where each player
independently chooses si in [0;1[ according to the cumulative distribution func-
tion

F (x) = (1� e�
x
p )

1
n�1

In particular the support of this distribution is [0;1[ and for any B > 0 there
is a positive probability that a player bids above B. The payo¤ to each player
is zero so the mixed strategy is not better than the prudent one (zero bid)
payo¤wise. It is also more risky.

Example 4 lobbying game (a.k.a. all-pay �rst price auction)
The n players compete for a prize of $p and can spend $si on lobbying (bribing)
the relevant jury members. The largest bribe wins the prize; all the money
spent on bribes is lost to the players. Hence the payo¤ functions

ui(s) = p� si if si > max
j 6=i

sj ; = �si if si < max
j 6=i

sj ; =
p

K
� si if si = max

j 6=i
sj

The game has no equilibrium in pure strategies. In the symmetrical mixed Nash
equilibrium each player independently chooses a bid in [0; p] according to the
cumulative distribution function

F (x) = (
x

p
)

1
n�1

As in the above example the equilibrium payo¤ is zero, just like the guaranteed
payo¤ from a null bid.

3.4 correlated equilibrium

Given a �nite n-players game in strategic form � = (N; (Ci)i2N ; (ui)i2N ), a
correlation device is a lottery L over the set C = C1 � ::: � Cn of strategy
pro�les. The interpretation is that the lottery itself is a non binding agreement
to play according to its outcome. Thus the lottery is built jointly by the players
(much like we say that the players jointly reach an agreement to play a certain
Nash equilibrium), and once it draws an outcome x 2 C, the players are supposed
to play accordingly, namely player i chooses xi in Ci.
If the outcome of the lottery is publicly known, the agreement will be self

enforcing if and only if the support of the lottery consists of Nash equilibrium
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outcomes (in pure strategies). Then the lottery is a simple coordination device
over a set of equilibria in pure strategies. This is a useful coordination device,
for instance to achieve a fair compromise between asymetric equil;ibria in a
symmetric game. In the crossing game of example 1, tossing a fair coin between
the two equilibria yields a payo¤ of 1:5� ", much better than the payo¤ of the
only symmetric equilibrium, in mixed strategies. We can interpret a red light
as achieving precisely this kind of coordination when two lines of tra¢ c cross.
More interesting is the scenario where the distribution L is known to every-

one, but the outcome of the lottery is only partially revealed to each player.
Speci�cally player i learns the i-th coordinate of the outcome x, but no more:
then she evaluates the random strategies chosen by other players according to
the conditional probability of L given xi. If other players are indeed following
the recommendation of the correlation device, this evaluation is correct. Now
the equilibrium (self-enforcing) property of the lottery L states that player i�s
best reply to any recommendation xi is to comply.
Given a lottery L 2 �(C) we write its support [L] � C and the projection

of the support on Ci as projif[L]g. This set contains the strategies of player
i that the device recommends to play with positive probability. For any i and
xi 2 Ci, we denote by L(xi) the corresponding conditional probability of L on
CN�fig. Thus if Lx denotes the probability that L selects outcome x, we have

L(xi)x�i =
L(xi;x�i)P

y�i2CN�fig
L(xi;y�i)

for all xi 2 projif[L]g all x�i 2 CN�fig

De�nition A lottery L 2 �(C) is a correlated equilibrium of the game
(N; (Ci)i2N ; (ui)i2N ) if for all i 2 N we have

ui(xi; L(xi)) � ui(yi; L(xi)) for all yi 2 Ci and all xi 2 projif[L]g

,
X

y�i2CN�fig

ui(xi; y�i)L(xi;y�i) �
X

y�i2CN�fig

ui(yi; y�i)L(xi;y�i) for all yi; xi 2 Ci

If s 2 �(C1)� :::��(Cn) is an equilibrium in mixed strategies, then the lottery
L = s1 � s2 � � � � � sn is a correlated equilibrium. This remark establishes that
a correlated equilibrium always exists in a �nite game.
The most important feature of the set C of correlated equilibria is that it

is a convex, compact subset of �(C). Indeed C is de�ned by a �nite set of
linear inequalities in �(C). Thus it contains all convex combinations of Nash
equilibria, pure and mixed.
In some games, that is all. For instance suppose each player has a strictly

dominant strategy: then the unique Nash equilibrium is also the unique corre-
lated equilibrium. Furthermore the support of any correlated equilibrium must
resist the successive elimination of strictly dominated strategies, and there is
always one correlated equilibrium of which the support resists the successive
elimination of weakly dominated strategies.
On the other hand in some cases correlation allows a considerable improve-

ment upon the Nash equilibrium outcomes.
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Example 5 another Battle of the Sexes
home 10; 10 5; 13
theater 13; 5 0; 0

home theater
One of the spouses must stay home, lest they are both very unhappy to call
for a baby sitter. Both would prefer to go to the theater if the other stays
home. Each must commit to one of the two strategies before returning home,
and without the possibility to communicate with each other.
There are two equilibria in pure strategies, and a mixed equilibrium where each
player goes out with probability 3

8 . The expected payo¤ of the latter is 8:1 for
each. Tossing a fair coin before leaving to work between the two equilibria yields
the payo¤ 9 for each spouse.
There is a better correlated equilibrium, choosing (theater, home) and (home,
theater) each with probability 3

11 , and (home,home) with probability
5
11 . The

expected payo¤ is now 9:45 for each.

Example 6 musical chairs
We have n players and 2 "chairs" (locations), with n � 5. The game is symet-
rical. Each player chooses a chair. His payo¤ is +4 if he is alone to make this
choice, 1 if one other player (exactly) makes the same choice, and 0 otherwise
(i.e., if his choice is shared by at least 2 other players).
In a pure strategy equlibria of the game, each chair is �lled by two or more

players and all such outcomes are equilibria. The total payo¤ is 2 or 0. In the
symmetric mixed equilibrium each player chooses a chair with probability 0:5,
and the resulting expected payo¤ is

4
1

2n

�
n

1

�
+ 2

1

2n

�
n

2

�
=
n(n+ 3)

2n
� 2

(there are no other mixed equilibria)
The best symmetric correlated equilibrium (i.e., the one giving the highest

total payo¤) selects with probability � = 2
n�3 a distribution where one player

sits alone (and chooses with uniform probability among all such distributions),
and with probability 1�� = n�5

n�3 it picks a distribution where two players share
one chair (and chooses with uniform probability among all such distributions).
The total payo¤ is 2 + 12

n�3 .

3.5 games of incomplete information

A game in Bayesian form(or Bayesian game) speci�es

� the set N of players

� the set of pure strategies Xi for each player i

� the set of types Ti of each player i

� the set of beliefs of each player i, represented by a probability distribution
�i(�jti) over TN�fig: one distribution for each possible type of player i
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� the payo¤ function ui(x; t) for each player i, where x 2 XN and t 2 TN .

A Bayesian equilibrium is decribed by a mixed strategy for each player,
conditional on his type: si(ti) 2 �(Xi). The equilibrium property is

8i; ti 2 Ti;8s0i 2 �(Xi) :X
t�i2TN�fig

�i(t�ijti)ui(s(t); t) �
X

t�i2TN�fig

�i(t�ijti)ui(s0i; s�i(t�i); t)

where we use the notation

s(t) 2 �i2N�(Xi); s�i(t�i) 2 �j2N�fig�(Xj) : sj(t) = sj(tj)

It is enough in the equilibrium property to consider deviations to pure strategies
xi 2 Xi. Therefore the number of inequalities characterizing the equilibrium isP

i jTijjXij.
Theorem: If the sets Xi and Ti are �nite, the game possesses at least one

Bayesian equilibrium.

This is a direct consequence of Nash�s theorem, after observing that a Bayesian
equilibrium is a Nash equilibrium (in pure strategies) of the game with N =
�iTi, strategy set �(Xi) for each player (i; ti) 2 N and payo¤s

eu(i;ti)(s) = X
t�i2TN�fig

�i(t�ijti)ui(s(i;ti); s(j;tj) j 2 N�fig)

This game meets all the assumptions of Nash�s Theorem (in particular utility
is linear in own strategy).
The common prior, common knowledge assumption

In most examples , the individual beliefs are consistent, they are derived from a
common prior, namely a probability distribution � over TN , such that �i(�jti) =
�(�jti) is simply the conditional probability induced by � once a player learns
his type. This distribution � is common knowledge, which means that player
i knows it, i knows that player j knows it, j knows that player i knows that
player j knows it, and so on. More generally, for any sequence i; j; k; � � � ; l of
players (possibly with repetition): i knows that j knows that k knows that � � �
that l knows it.
The classic story of the 40 villagers illustrates the subtle role of the common
knowledge assumption.
In a Bayesian game where the beliefs are not consistent, the interpretation

of the equilibrium notion is more di¢ cult.

Example 7:
Two players, player 1�s type is known, that of player 2 is t1 with probability
0:6, t2 with probability 0:4:

T 1; 2 0; 1
B 0; 4 1; 3
t1 L R

T 1; 3 0; 4
B 0; 1 1; 2
t2 L R
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Note that player 2 has a dominant strategy, hence the unique equilibrium is

x1 = T ;x2 = L if t1, = R if t2

Note that this is not the same as playing the unique B equlibrium in each matrix
separately.
Another example with the same information structure:

T 0; 2 2; 0
B 2; 0 0; 2
t1 L R

T 1; 1 5; 0
B 0; 5 3; 3
t2 L R

Here the game under t1 is essentially matching pennies, and under t2 player 2
has a dominant strategy to play L. There is no pure strategy equilibrium, as
the sequences of best replies are: LL ! B ! RL ! T ! LL, and RR ! T ,
LR ! B. In the unique Bayesian equilibrium player 1 mixed strategy is the
optimal play for matching pennies, because under t2 player 2 plays L for sure:

s1 =
1

2
T +

1

2
B; s2 =

2

3
L+

1

3
R if t1, = L if t2

Another example with the same information structure:
T 0; 2 2; 0
B 2; 0 0; 2
t1 L R

T 2; 0 1; 2
B 0; 3 2; 0
t2 L R

Here again we have no pure strategy equilibrium, as the best reply sequence
is T ! LR ! B ! RL ! T . In the unique B equilibrium, player 1�s mixed
strategy neutralizes player 2 in one but not both of the two 2x2 matrix games.
One computes:

s1 =
1

2
T +

1

2
B; s2 =

5

6
L+

1

6
R if t1, = L if t2

Example 8 a two-person zero sum betting game
Bob (column player) draws a card High or Low with equal probability 1

2 . Ann
(row player) has a Medium card (a fact known to Bob). Bob can raise (R) or
stay put (P ). After seeing Bob�s mover, Ann can see (S) or fold (F ). Payo¤s
are as follows

S �10; 10 �4; 4
F �1; 1 1;�1

High R P

S 10;�10 4;�4
F �1; 1 1;�1
Low R P

Here Ann has 4 pure strategies denoted XY for do X if Bob raises, do Y if
he stays; Bob�s strategy depends on his type, and is written similarly XY for
do X if High, do Y if Low.
Check �rst there is no pure strategy equilibrium, as the sequence of best

replies is

RR! SS ! RP ! FS ! RR; PR! SF ! RP ! � � � ; PP ! FF ! RP ! � � �

Bob has a dominant strategy to raise if his card is high; thus his P strategy
reveals to Ann that he is Low, in which case she wants to see. Therefore the
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Bayesian equilibrium takes the form

Ann: p�S + p
0�F if Bob raises; S if Bob stays put

Bob: R if High; q�R + q0�P if Low

The equilibrium conditions are

for Ann:
1

1 + q
(�10) + q

1 + q
(10) = �1) q =

9

11

for Bob: p(�10) + p0(1) = �4) p =
5

11

In equilibrium Ann expects to pay $ 611 to Bob: private information is more
valuable than second move.

Example 9: �rst price auction (Vickrey)
Each player draws a valuation in the [0; 100] interval. The draws are IID with
cumulative distribution function F . We asume that F is continuous: the un-
derlying distribution has no atoms.
The symmetrical equilibrium has player i bid x(ti) where ti is his (privately

known) valuation.The expected payo¤ to player i from bidding y, given that
other players use the equilibrium strategy x(�) is

ui(yjti) = (ti � y)�fx(tj) < y for all j 6= ig

Assuming x(�) is increasing and continuous (this can be shown to hold true if
x(�) is an equilibrium), player i must choose his bid y = x(t) so as to maximize
(ti�x(t))Fn�1(t). The equilibrium property is that t = ti is such a maximizer.
Di¤erentiating:

x0(t)Fn�1(t)� (t� x(t))fFn�1(t)g0 = 0

The boundary condition is x(0) = 0. A zero valuation player does not want to
bid any positive amount. The di¤erential equation writes

fx(t)Fn�1(t)g0 = tfFn�1(t)g0; x(0) = 0

Therefore

x(t) =

R t
0
zdFn�1(z)

Fn�1(t)
= E[t(2)jt(1) = t]

where t(k) is the k-th order statistics of the n variables ti. To check the second
equality, observe that for all a; t; a < t

�ft(2) = ajt(1) = tg = �ft�1 � ajt�1 � t; t1 = tg = �ft�1 � ajt�1 � tg =
Fn�1(a)

Fn�1(t)

The equilibrium bid is the expected value of the second highest bid, conditional
on your own bid winning the object.
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For instance if F is the uniform distribution on [0; 100], x(t) = n�1
n t and the

expected highest bid (revenue of the seller) is E[x(t(1))] =
n�1
n E[t(1)] =

n�1
n+1100

while the expected joint surplus to the seller and bidders is E[t(1)] =
n
n+1100,

because the e¢ cient buyer (the one with the highest valuation) gets the object.
This leaves only an expected gain of 1

n(n+1)100 per bidder!
Interestingly this sharing of the surplus between buyers and the seller is the

same as in Vickrey�s second price auction, because there the revenue of the seller
is

E[t(2)] =

Z 100

0

E[t(2)jt(1) = t]dFn(t) =
Z 100

0

x(t)dFn(t) = E[x(t(1))]

Example 10 bilateral trade (Myerson and Satterthwaite)
The object is worth a to the seller, b to the buyer. Both a and b are IID on
[0; 300] with uniform distribution. They play the sealed bid double auction game:
they independently and simulatneously send an ask price x (seller) and an o¤er
price y (buyer). If x > y, no trade takes place; if x � y, trade takes place at
price p = x+y

2 .
One checks �rst that x(a) = a; y(b) = b is not an equilibrium. Then we

compute the linear equilibrium, i.e., each player uses a bid function that is
linear in own valuation

x(a) = �a+ �; y(b) = 
b+ �

There is a unique linear equilibrium

x(a) =
2

3
a+ 75; y(b) =

2

3
b+ 25

Actually there are many other non linear equilibria. See problem 15 for an
example. Computing them all is an open problem.

3.6 Problems for Chapter 3

Problem 1
a) In the two-by-two game

T 5; 5 4; 10
B 10; 4 0; 0

L R

Compute all Nash equilibria. Show that a slight increase in the (B;L) payo¤
to the row player results in a decrease of his mixed equilibrium payo¤.
b) Consider the crossing game of example 1

stop 1; 1 1� "; 2
go 2; 1� " 0; 0

stop go
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and its variant where strategy "go" is more costly by the amount �; � > 0, to
the row player:

stop 1; 1 1� "; 2
go 2� �; 1� " ��; 0

stop go

Show that for � and " small enough, row�s mixed equilibrium payo¤ is higher if
the go strategy is more costly.

Problem 2
Three plants dispose of their water in the lake. Each plant can send clean water
(si = 1) or polluted water (si = 0). The cost of sending clean water is c. If only
one �rm pollutes the lake, there is no damage to anyone; if two or three �rms
pollute, the damage is a to everyone, a > c.
Compute all Nash equilibria in pure and mixed strategies.

Problem 3
Give an example of a two-by-two game where no player has two equivalent pure
strategies, and the set of Nash equilibria is in�nite.

Problem 4
A two person game with �nite strategy sets S1 = S2 = f1; � � � ; pg is represented
by two p� p payo¤ matrices U1 and U2, where the row player is labeled 1 and
the column player is 2. The entry Ui(j; k) is player i�s payo¤ when row chooses
j and column chooses k. Assume that both matrices are invertible and denote
by jAj the determinant of the matrix A. Then write eUi(j; k) = (�1)j+kjUi(j; k)j
the (j; k) cofactor of the matrix Ui, where Ui(j; k) is the (p�1)� (p�1) matrix
obtained from Ui by deleting the j row and the k column.
Show that if the game has a completely mixed Nash equilibrium, it gives to

player i the payo¤
jUijP

1�j;k�p
eUi(j; k)

Problem 5
In this symmetric two-by-two-by-two (three-person) game, the mixed strategy
of player i takes the form (pi; 1�pi) over the two pure strategies. The resulting
payo¤ to player 1 is

u1(p1; p2; p3) = p1p2p3 � 3p1(p2 + p3) + p2p3 � p1 � 2(p2 + p3)

Find the symmetric mixed equilibrium of the game. Are there any non sym-
metric equilibria (in pure or mixed strategies)?

Problem 6
Let(f1; 2g; C1; C2; u1; u2) be a �nite two person game and G = (f1; 2g; S1; S2; u1; u2)
be its mixed extension. Say that the set NE(G) of mixed Nash equilibrium out-
comes of G has the rectangularity property if we have for all s; s0 2 S1 � S2

s; s0 2 NE(G))(s01; s2); (s1; s02) 2 NE(G)
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a) Prove that NE(G) has the rectangularity property if and only if it is a convex
subset of S1 � S2.
b) In this case, prove there exists a Pareto dominant mixed Nash equilibrium
s�:

for all s 2 NE(G))u(s) � u(s�)
Problem 7 all-pay second price auction

This is a variant of example 3 with only two players who value the prize respec-
tively at a1 and a2. The payo¤ are

ui(s1; s2) = ai � sj if sj < si; = �si if si < sj ; =
1

2
ai � si if sj = si;

For any two numbers b1; b2 in [0; 1] such that maxfb1; b2g = 1, consider the
mixed strategy of player i with cumulative distribution function

Fi(x) = 1� bie
� x
aj ; for x � 0

Show that the corresponding pair of mixed strategies (s1; s2) is an equilibrium
of the game.
Riley shows that these are the only mixed equilibria of the game.

Problem 8 all-pay �rst price auction
This is a variant of example 4 with only two players who value the prize respec-
tively at a1 and a2. The payo¤s are

ui(s1; s2) = ai � si if sj < si; = �si if si < sj ; =
1

2
ai � si if sj = si

Assume a1 � a2. Show that the following is an equilibrium:
player 1 chooses in [0; a2] with uniform probability;
player 2 bids zero with probability 1� a2

a1
, and with probability a2

a1
he chooses

in [0; a2] with uniform probability.
Riley shows this is the unique equilibrium if a1 > a2.

Problem 9 �rst price auction
We have two players who value the prize respectively at a1 and a2. The payo¤s
are

ui(s1; s2) = ai � si if sj < si; = 0 if si < sj ; =
1

2
(ai � si) if sj = si

a) Assume a1 = a2. Show that the only Nash equilibrium of the game in mixed
strategies is s1 = s2 = ai.
b) Assume a1 > a2. Show there is no equilibrium in pure strategies. Show that
in any equilibrium in mixed strategies
player 1 bids a2
player 2 chooses in [0; a2] according to some probability distribution � such

that for any interval [a2 � "; a2] we have �([a2 � "; a2]) � "
a2�a1 .

Give an example of such an equilibrium.
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Problem 10 a location game
Two shopowners choose the location of their shop in [0; 1]. The demand is
inelastic; player 1 captures the whole demand if he locates where player 2 is,
and player 2�s share increases linearly up to a cap of 23 when he moves away from
player 1. The sets of pure strategies are Ci = [0; 1] and the payo¤ functions are:

u1(x1; x2) = 1� jx1 � x2j

u2(x1; x2) = minfjx1 � x2j;
2

3
g

a) Show that there is no Nash equilibrium in pure strategies.
b) Show that the following pair of mixed strategies is an equilibrium of the
mixed game:

s1 =
1

3
�0 +

1

6
� 1
3
+
1

6
� 2
3
+
1

3
�1

s2 =
1

2
�0 +

1

2
�1

and check that by using such a strategy, a player makes the other one indi¤erent
between all his possible moves.

Problem 11 Correlated equilibrium
In the crossing game of example 1, compute all correlated eqilibria. Show that
the best symmetric one is a simple "red light".

Problem 12 more musical chairs
Consider three variants of example 6 where

� there are two chairs and 3 players

� there are two chairs and 4 players

� there are three chairs and n players, n � 7

In each case discuss the equilibria in pure strategies, in mixed strategies, and
the best symmetric correlated equilibrium.

Problem 13 Correlated equilibrium
We have three players named 1; 2; 3, each with two strategies labeled A;B. The
game is symmetrical, and the payo¤s are as follows:

(B;B;A) ! (2; 2; 0)

(A;A;A) or (B;B;B) ! (1; 1; 1)

(B;A;A) ! (0; 0; 0)

a) Find all equilibria in pure strategies, and all equilibria in mixed strategies.
b) Find the symmetrical correlated equilibrium with the largest common payo¤.

Problem 14 a coordination game

62



There are q locations equally distributed on the oriented unit circle, q � 3, and
each of the two players chooses one location. The payo¤ to both players is 1
if they choose the same location, 0 if they choose two di¤erent locations that
are not adjacent. If the two choices are adjacent, the player who precedes the
other (given the orientation of the circle) gets a payo¤ of 3, the other one gets
a payo¤ of 2.
Show that the game has no pure strategy equilibrium; compute its symmetric
equilibrium in mixed strategies and the corresponding payo¤s.
Show there is no other equilibrium in mixed strategies.
Construct a correlated equilibrium where total payo¤ is maximal, anmely 2:5
for each player.

Problem 15
Find all equilibria in pure and mixed strategies of the following three person
game. Each player has two pure strategies, Ci = fxi; yig for all i = 1; 2; 3. The
payo¤ is zero to everybody, unless exactly one player i chooses yi, in which case
this player i gets 5, the player before i in the 1! 2! 3! 1 cycle gets 6; and
the player after i in this cycle gets 4. Note that the game is not symmetric in
the sense of De�nition 21 (Chapter 2), yet it is cyclically symmetric, i.e., with
respect to the cycle 1! 2! 3! 1.
Compute the (fully) symmetric correlated equilibria of the game and compare
their payo¤s to those of the pure and mixed equilibria.

Problem 16 Bayesian equilibrium
a) The strategy sets and information structure is as in Example 7, and the
payo¤s are

T 1; 2 0; 0
B 0; 0 2; 1
t1 L R

T 0; 0 3; 1
B 1; 3 0; 0
t2 L R

Check that we have two pure strategy equilibria. How many Bayesian equilibria
involving mixed strategies?
b) The payo¤s are now

T 1; 2 0; 0
B 0; 0 2; 1
t1 L R

T 4; 1 0; 0
B 0; 0 2; 3
t2 L R

Find all Bayesian equilibria.
c) Player 1 chooses a row and his type is known, player 2 chooses a column and
his type is t1 with probability 2

3 , t2 with probability
1
3 . Payo¤s are:

T 2; 0 0; 2
B 0; 2 2; 0
t1 L R

T 0; 0 2; 2
B 3; 3 0; 0
t2 L R

Find all equilibria in pure strategies and all Bayesian equilibria.

Problem 17
Two opposed armies are poised to seize an island. Each army�s general chooses
(simultaneously and independently) either to attack or not to attack. In addi-
tion, every army is either strong or weak, with equal probability, and the army�s
type is known to its general (but not to the general of the opposed army). An
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army captures the island if either it attacks it while its opponent does not at-
tack, or if it attacks while strong, whereas its rival is weak. If two armies of
equal strength both attack, neither captures the island.
Payo¤s are zero initially; the island is worth 8 if captured; an army incurs a
cost of �ghting, which is 3 if it is strong and 6 if it is weak. There is no cost of
attacking if the rival does not attack, and no cost to not attacking.
Give the normal form of the game, eliminate dominated strategies if any, and
compute all Bayesian equilibria.

Problem 18 all-pay �rst price auction
The game is identical to that in example 4, except for the fact that the valuation
ti of the object to player i is known only to this agent. Other agents know that
ti is drawn from the uniform probability distribution over [0; 100], and that all
draws are stochastically independent.
a) Show that if bidder i observes his type ti, contemplates the bid y and knows
that other bidders all use the same bidding function x(t), bidder i�s expected
pay-o¤ is

ti�fx(tj) < y for all j 6= ig � y

b) Deduce the unique symmetrical equilibrium bidding function x(�). Compare
it to the symmetrical equilibrium of the �rst price auction.
c) Show that the expected revenue to the seller is the same as in the �rst price
auction (example 8) and in the second price auction. Compare the expected
pro�t of a bidder in these three auctions.

Problem 19 sealed bid double auction
In the game of example 10, consider the folowing pair of strategies, where � is
a number in [0,300]:

seller x(a) = � if 0 � a � �; = 300 if � < a � 300

buyer y(b) = 0 if 0 � b < �; = � if � � b � 300

Show that this pair is a Bayesian equilibrium.
Compute its welfare loss and choose � so that it is minimal. Then compare it
to the welfare loss of the linear equilibrium found in example 10.

Problem 20 the lemon problem
The seller�s reservation price t is drawn in [0; 100] with uniform probability. The
buyer does not see t. Her reservation price for the object is 3

2x.
a) Suppose the buyer makes a "take it or leave it" o¤er which the seller can only
accept or reject. Show that the only Bayesian equilibrium of this game has the
buyer o¤ering a price of zero, which the seller always refuses.
b) What is the Bayesian equilibrium of the game where the seller makes a "take
it or leave it" o¤er which the buyer can only accept or reject?
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