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In this section we study games with only two players. We also restrict atten-
tion to the case where the interests of the players are completely antagonistic:
at the end of the game, one player gains some amount, while the other loses the
same amount. These games are called \two person zero sum games".
Military games such as pursuit-evasion problems, are a rich source of two-

person zero-sum games. While in most economics situations the interests of the
players are neither in strong conict nor in complete identity, this speci�c class of
games provides important insights into the notion of "optimal play". In some 2-
person zero-sum games,each player has a well de�ned \optimal" strategy, which
does not depend on her adversary decision (strategy choice). In other games,
no such optimal strategy exists. Finally, the founding result of Game Theory,
known as the minimax theorem, says that optimal strategies exist when our
players can randomize over a �nite set of deterministic strategies.

1 Games in strategic form

A two-person zero-sum game in strategic form is a triple G = (S; T; u), where
S is a set of strategies available to the player 1, T is a set of strategies available
to the player 2; and u : S � T ! R is the payo� function of the game G; i.e.,
u(s; t) is the resulting gain for player 1 and the resulting loss for player 2, if they
choose to play s and t respectively. Thus, player 1 tries to maximize u; while
player 2 tries to minimize it. We call any strategy choice (s; t) an outcome of
the game G.
When the strategy sets S and T are �nite, the game G can be represented

by an n by m matrix A; where n = jSj; m = jT j; and aij = u(si; tj):
The secure utility level for player 1 (the minimal gain he can guarantee him-

self, no matter what player 2 does) is given by

m = max
s2S

min
t2T

u(s; t) = max
i
min
j
aij :

A strategy s� for player 1 is called prudent, if it realizes this secure max-min
gain, i.e., if min

t2T
u(s�; t) = m:
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The secure utility level for player 2 (the maximal loss she can guarantee
herself, no matter what player 1 does) is given by

m = min
t2T

max
s2S

u(s; t) = min
j
max
i
aij :

A strategy t� for player 2 is called prudent, if it realizes this secure min-max
loss, i.e., if max

s2S
u(s; t�) = m:

The secure utility level is what a player can get for sure, even if the other
player behaves in the worst possible way. For each strategy of a player we
calculate what could be his or her worst payo�, resulting from using this strategy
(depending on the strategy choice of another player). A prudent strategy is one
for which this worst possible result is the best. Thus, by a prudent choice of
strategies, player 1 can guarantee that he will gain at least m, while player 2
can guarantee that she will loose at most m. Given this, we should expect that
m � m: Indeed:

Lemma 1 For all two-person zero-sum games, m � m:

Proof : m = max
s2S

min
t2T

u(s; t) = min
t2T

u(s�; t) � u(s�; t�) � max
s2S

u(s; t�) =

min
t2T

max
s2S

u(s; t) = m:

De�nition 2 If m = m; then m = m = m is called the value of the game G.
If m < m, we say that G has no value.
An outcome (s�; t�) 2 S � T is called a saddle point of the payo� function

u, if u(s; t�) � u(s�; t�) � u(s�; t) for all s 2 S and for all t 2 T .

Remark 3 Equivalently, we can write that (s�; t�) 2 S � T is a saddle point if
max
s2S

u(s; t�) � u(s�; t�) � min
t2T

u(s�; t)

When the game is represented by a matrix A, (s�; t�) will be a saddle point,
if and only if as�t� is the largest entry in its column and the smallest entry in
its row.
A game has a value if and only if it has a saddle point:

Theorem 4 If the game G has a value m, then an outcome (s�; t�) is a saddle
point if and only if s� and t� are prudent. In this case, u(s�; t�) = m: If G has
no value, then it has no saddle point either.

Proof. Suppose that m = m = m; and s� and t� are prudent strategies of
players 1 and 2 respectively. Then by the de�nition of prudent strategies

max
s2S

u(s; t�) = m = m = m = min
t2T

u(s�; t):

In particular, u(s�; t�) � m � u(s�; t�); hence, u(s�; t�) = m: Thus, max
s2S

u(s; t�) =

u(s�; t�) = min
t2T

u(s�; t); and so (s�; t�) is a saddle point. Conversely, suppose
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that (s�; t�) is a saddle point of the game, i.e., max
s2S

u(s; t�) � u(s�; t�) �
min
t2T

u(s�; t): Then, in particular, max
s2S

u(s; t�) � min
t2T

u(s�; t): But by the def-

inition of m as max
s2S

min
t2T

u(s; t) we have min
t2T

u(s�; t) � m; and by the de�ni-

tion of m as min
t2T

max
s2S

u(s; t) we have max
s2S

u(s; t�) � m: Hence, using Lemma

1 above, we obtain that min
t2T

u(s�; t) � m � m � max
s2S

u(s; t�): It follows

that m = max
s2S

u(s; t�) = u(s�; t�) = min
t2T

u(s�; t) = m. Thus, G has a value

m = m = m; and s� and t� are prudent strategies.
Example 1 Matching pennies is the simplest game with no value: each

player chooses Left or Right; player 1 wins +1 if their choices coincide, loses 1
otherwise.
Example 2 The noisy gun�ght is a simple game with a value. The two

players walk toward each other, with a single bullet in their gun. Let ai(t); i =
1; 2, be the probability that player i hits player j if he shoots at thime t. At
t = 0, they are far apart so ai(0) = 0; at time t = 1, they are so close that
ai(1) = 1; �nally ai is a continuous and increasing function of t. When player
i shoots, one of 2 things happens: if j is hit, , player iwins $1 from j and the
game stops (j cannot shoot any more); if i misses, j hears the shot, and realizes
that i cannot shoot any more so j waits until t = 1, hits i for sure and collects
$1from him. Note that the silent version of the gun�ght model (in the problem
set below) has no value.

In a game with a value, prudent strategies are optimal|using them, player
1 can guarantee to get at least m; while player 2 can guarantee to loose at most
m.
In order to �nd a prudent strategy:
{ player 1 solves the program max

s2S
m1(s), where m1(s) = min

t2T
u(s; t) (max-

imize the minimal possible gain);
{ player 2 solves the program min

t2T
m2(t), where m2(t) = max

s2S
u(s; t) (mini-

mize the maximal possible loss).
We can always �nd such strategies when the sets S and T are �nite.

Remark 5 (In�nite strategy sets) When S and T are compact (i.e. closed
and bounded) subsets of Rk; and u is a continuous function, prudent strategies
always exist, due to the fact that any continuous function, de�ned on a compact
set, reaches on it its maximum and its minimum.

In a game without a value, we cannot deterministically predict the outcome
of the game, played by rational players. Each player will try to guess his/her
opponent's strategy choice. Recall matching pennies.
Here are several facts about two-person zero-sum games in normal form.

Lemma 6 (rectangularity property) A two-person zero-sum games in normal
form has at most one value, but it can have several saddle points, and each
player can have several prudent (and even several optimal) strategies. Moreover,
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if (s1; t1) and (s2; t2) are saddle points of the game, then (s1; t2) and (s1; t2) are
also saddle points.

A two-person zero-sum games in normal form is called symmetric if S = T;
and u(s; t) = �u(t; s) for all s; t: When S; T are �nite, symmetric games are
those which can be represented by a square matrix A; for which aij = �aji for
all i; j (in particular, aii = 0 for all i).

Lemma 7 If a symmetric game has a value then this value is zero. Moreover,
if s is an optimal strategy for one player, then it is also optimal for another
one.

Proof. Say the game (S; T; u) has a value v, then we have

v = max
s
min
t
u(s; t) = max

s
f�max

t
u(t; s)g = �min

s
max
t
u(t; s) = �v

so v = 0. The proof of the 2d statement is equally easy.

2 Games in extensive form

A game in extensive form models a situation where the outcome depends on
the consecutive actions of several involved agents (\players"). There is a precise
sequence of individual moves, at each of which one of the players chooses an
action from a set of potential possibilities. Among those, there could be chance,
or random moves, where the choice is made by some mechanical random device
rather than a player (sometimes referred to as \nature" moves).
When a player is to make the move, she is often unaware of the actual choices

of other players (including nature), even if they were made earlier. Thus, a
player has to choose an action, keeping in mind that she is at one of the several
possible actual positions in the game, and she cannot distinguish which one is
realized: an example is bridge, or any other card game.
At the end of the game, all players get some payo�s (which we will measure

in monetary terms). The payo� to each player depends on the whole vector of
individual choices, made by all game participants.
The most convenient representation of such a situation is by a game tree,

where to non terminal nodes are attached the name of the player who has the
move, and to terminal nodes are attached payo�s for each player. We must also
specify what information is available of a player at each node of the tree where
she has to move.
A strategy is a full plan to play a game (for a particular player), prepared in

advance. It is a complete speci�cation of what move to choose in any potential
situation which could arise in the game. One could think about a strategy
as a set of instructions that a player who cannot physically participate in the
game (but who still wants to be the one who makes all the decisions) gives
to her "agent". When the game is actually played, each time the agent is to
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choose a move, he looks at the instruction and chooses according to it. The
representative, thus, does not make any decision himself!
Note that the reduction operator just described does not work equally well

for games with n -players with multiple stages of decisions.
Each player only cares about her �nal payo� in the game. When the set

of all available strategies for each player is well de�ned, the only relevant in-
formation is the pro�le of �nal payo�s for each pro�le of strategies chosen by
the players. Thus to each game in extensive form is attached a reduced game in
strategic form. In two-person zero sum games, this reduction is not conceptually
problematic, however for more general n-person games, it does not capture the
dynamic character of a game in extensive form, and for this we need to develop
new equilibrium concepts: see Chapter 5.
In this section we discuss games in extensive form with perfect information.
Example 3 Gale's chomp game: the player take turns to destroy a n �m

rectangular grid, with the convention that if player i kills entry (p; q), all entries
(p0; q0) such that (p0; q0) � (p; q) are destroyed as well. When a player moves, he
must destroy one of the remaining entries.The player who kills entry (1; 1) loses.
In this game player 1 who moves �rst has an optimal strategy that guarantees
he wins. This strategy is easy to compute if n = m, not so if n 6= m.
Example 4 Chess and Zermelo's theorem. The game of Chess has three

payo�s, +1;�1; 0. Although we do not know which one, one of these 3 numbers
is the value of the game, i.e., either White can guarantee a win, or Black can,
or both can secure a draw.

De�nition 8 A �nite game in extensive form with perfect information is given
by
1) a tree, with a particular node taken as the origin;
2) for each non-terminal node, a speci�cation of who has the move;
3) for each terminal node, a payo� attached to it.

Formally, a tree is a pair � = (N;�) where N is the �nite set of nodes, and
� : N ! N [ ; associates to each node its predecessor. A (unique) node n0
with no predecessors (i.e., �(n0) = ;) is the origin of the tree. Terminal nodes
are those which are not predecessors of any node. Denote by T (N) the set of
terminal nodes. For any non-terminal node r; the set fn 2 N : �(n) = rg is the
set of successors of r: The maximal possible number of edges in a path from the
origin to some terminal node is called the length of the tree �.
Given a tree �, a two-person zero-sum game with perfect information is

de�ned by a partition of N as N = T (N)[N1 [N2 into three disjoint sets and
a payo� function de�ned over the set of terminal nodes u : T (N)! R:
For each non-terminal node n; n 2 Ni (i = 1; 2) means that player i has

the move at this node. A move consists of picking a successor to this node.
The game starts at the origin n0 of the tree and continues until some terminal
node nt is reached. Then the payo� u(nt) attached to this node is realized (i.e.,
player 1 gains u(nt) and player 2 looses u(nt)).
We do not necessary assume that n0 2 N1. We even do not assume that if

a player i has a move at a node n; then it is his or her opponent who moves
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at its successor nodes (if the same player has a move at a node and some of its
successors, we can reduce the game and eliminate this anomaly).
The term \perfect information" refers to the fact that, when a player has

to move, he or she is perfectly informed about his or her position in the tree.
If chance moves occur later or before this move, their outccome is revealed to
every player.
Recall that a strategy for player i is a complete speci�cation of what move

to choose at each and every node from Ni: We denote their set as S; or T; as
above.

Theorem 9 (Kuhn) Every �nite two-person zero-sum game in extensive form
with perfect information has a value. Each player has at least one optimal
(prudent) strategy in such a game.

Proof. The proof is by induction in the length l of the tree �. For l = 1
the theorem holds trivially, since it is a one-person one-move game (say, player
1 is to choose a move at n0; and any of his moves leads to a terminal node).
Thus, a prudent strategy for the player 1 is a move which gives him the highest
payo�, and this payo� is the value of the game. Assume now that the theorem
holds for all games of length at most l � 1; and consider a game G of length
l: Without loss of generality, n0 2 N1; i.e., player 1 has a move at the origin.
Let fn1; :::; nkg be the set of successors of the origin n0. Each subtree �i; with
the origin ni; is of length l � 1 at most. Hence, by the induction hypothesis,
any subgame Gi associated with a �i has a value, say, mi. We claim that the
value of the original game G is m = max

1�i�k
mi. Indeed, by moving �rst to ni

and then playing optimally at Gi; player 1 can guarantee himself at least mi.
Thus, player 1 can guarantee that he will gain at least m in our game G. But,
by playing optimally in each game Gi; player 2 can guarantee herself the loss
of not more than mi. Hence, player 2 can guarantee that she will lose at most
m in our game G. Thus max-min and min-max payo�s coincide and m is the
value of the game G.
The value of a �nite two-person zero-sum game in extensive form, as well as

optimal strategies for the players, are easily found by solving the game backward.
We start by any non-terminal node n, such that all its successors are terminal.
An optimal choice for the player i who has a move at n is clearly one which
leads to a terminal node with the best payo� for him/her (the max payo� if
i = 1, or the min payo� if i = 2). We can write down this optimal move for
the player i at the node n; then delete all subtree which originates at n; except
the node n itself, and �nally assign to n the best payo� player i can get. Thus,
the node n becomes the terminal node of so reduced game tree. After a �nite
number of such steps, the original game will reduce to one node n0, and the
payo� assigned to it will be the value of the initial game. The optimal strategies
of the players are given by their optimal moves at each node, which we wrote
down when reducing the game.

Remark 10 Consider the simple case, where all payo�s are either +1 or �1
(a player either \wins" or \looses"), and where whenever a player has a move
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at some node, his/her opponent is the one who has a move at all its successors.
An example is Gale's chomp game above. When we solve this game backward,
all payo�s which we attach to non-terminal nodes in this process are +1 or �1
(we can simply write \+" or \�"). Now look at the original game tree with \+"
or \�" attached to each its node according to this procedure. A \+" sign at a
node n means that this node (or \this position") is \winning" <for player 1>,
in a sense that if the player 1 would have a move at this node he would surely
win, if he would play optimally. A \�" sign at a node n means that this node
(or \this position") is \loosing" <for player 1>, in a sense that if the player 1
would have a move at this node he would surely lose, if his opponent would play
optimally. It is easy to see that \winning" nodes are those which have at least
one \loosing" successor, while \loosing" nodes are those whose all successors
are \winning". A number of the problems below are about computing the set of
winning and losing positions.

3 Mixed strategies

Penalty kicks in soccer, serves in tennis: in each case the receiver must antici-
pate the move of the sender to increase her chances of a winning move. So the
sender must use an appropriate mixture of shots.
Blu�ng in Poker When optimal play involves some blu�ng, the blu�ng

behavior needs to be unpredictable. This can be guaranteed by delegating a
choice of when to blu� to some (carefully chosen!) random device. Then even
the player herself would not be able to predict in advance when she will be
blu�ng. So the opponents will certainly not be able to guess whether she is
blu�ng. See the blu�ng game (problem 17) below.

Matching pennies: the matrix

�
1 �1
�1 1

�
; has no saddle point. Moreover,

for this game m = �1 and m = 1 (the worst possible outcomes), i.e., a prudent
strategy does not provide any of two players with any minimal guarantee. Here
a player's payo� depends completely on how well he or she can predict the choice
of the other player. Thus, the best way to play is to be unpredictable, i.e. to
choose a strategy (one of the two available) completely random. It is easy to see
that if each player chooses either strategy with probability 1=2 according to the
realization of some random device (and so without any predictable pattern),
then \on average" (after playing this game many times) they both will get
zero. In other words, under such strategy choice the \expected payo�" for each
player will be zero. Moreover, we show below that this randomized strategy is
also optimal in the mixed extension of the deterministic game.
Schelling's toy safe. Ann has 2 safes, one at her o�ce which is hard to crack,

another "toy" fake at home which any thief can open with a coat-hanger (as in
the movies). She must keep her necklace, worth $10,000, eithe at home or at
the o�ce. Bob must decide which safe to visit (he has only one visit at only one
safe). If he chooses to visit the o�ce, he has a 20% chance of opening the safe.
If he goes to ann's home, he is sure to be able to open the safe. The point of
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this example is that the presence of the toy safe helps Ann, who should actually
use it to hide the necklace with a positive probability.

Even when using mixed strategies is clearly warranted, it remains to deter-
mine which mixed strategy to choose (how often to blu�, and on what hands?).
The player should choose the probabilities of each deterministic choice (i.e. on
how she would like to program the random device she uses). Since the player
herself cannot predict the actual move she will make during the game, the pay-
o� she will get is uncertain. For example, a player may decide that she will
use one strategy with probability 1=3, another one with probability 1=6; and
yet another one with probability 1=2. When the time to make her move in
the game comes, this player would need some random device to determine her
�nal strategy choice, according to the pre-selected probabilities. In our exam-
ple, such device should have three outcomes, corresponding to three potential
choices, relative chances of these outcomes being 2 : 1 : 3. If this game is played
many times, the player should expect that she will play 1-st strategy roughly
1=3 of the time, 2-nd one roughly 1=6 of the time, and 3-d one roughly 1=2 of
the time. She will then get \on average" 1=3 (of payo� if using 1-st strategy)
+1=6 (of payo� if using 2-nd strategy) +1=2 (of payo� if using 3-d strategy).
Note that, though this player's opponent cannot predict what her actual

move would be, he can still evaluate relative chances of each choice, and this will
a�ect his decision. Thus a rational opponent will, in general, react di�erently
to di�erent mixed strategies.
What is the rational behavior of our players when payo�s become uncertain?

The simplest and most common hypothesis is that they try to maximize their
expected (or average) payo� in the game, i.e., they evaluate random payo�s
simply by their expected value. Thus the cardinal values of the deterministic
payo�s now matter very much, unlike in the previous sections where the ordinal
ranking of the outcomes is all that matters to the equilibrium analysis. We give
in Chapter 2 some axiomatic justi�cations for this crucial assumption.
The expected payo� is de�ned as the weighted sum of all possible payo�s

in the game, each payo� being multiplied by the probability that this payo�
is realized. In matching pennies, when each player chooses a \mixed strategy"
(0:5; 0:5) (meaning that 1-st strategy is chosen with probability 0.5, and 2-
nd strategy is chosen with probability 0.5), the chances that the game will
end up in each particular square (i; j); i.e., the chances that the 1-st player
will play his i-th strategy and the 2-nd player will play her j-th strategy, are
0:5 � 0:5 = 0:25: So the expected payo� for this game under such strategies is
1� 0:25 + (�1)� 0:25 + 1� 0:25 + (�1)� 0:25 = 0:

De�nition 11 Consider a general �nite game G = (S; T; u), represented by
an n by m matrix A; where n = jSj; m = jT j: The elements of the strategy
sets S and T (\sure" strategy choices, which do not involve randomization)
are called pure or deterministic strategies. A mixed strategy for the player is
a probability distribution over his or her deterministic strategies, i.e. a vector
of probabilities for each deterministic strategy which can be chosen during the
actual game playing. Thus, the set of all mixed strategies for player 1 is X =
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f(x1; :::; xn) :
Pn

i=1 xi = 1; xi � 0g; while for player 2 it is Y = f(y1; :::; ym) :Pm
i=1 yj = 1; yj � 0g:

Note that when player 1 chooses x 2 X and player 2 chooses y 2 Y; the
expected payo� of the game is equal to the matrix product xTAy:

xTAy = (x1; :::; xn)

0@ a11 ::: a1m
::: ::: :::
an1 ::: anm

1A0@ y1
:::
ym

1A =
nP
i=1

mP
j=1

xiaijyj ,

and each element of this double sum is xiaijyj = aijxiyj =
aij�Pro[1 chooses i]�Pro[2 chooses j] = aij�Pro[1 chooses i and 2 chooses j]:
The number xTAy is a weighted average of the expected payo�s for player 1

when he uses x against player's 2 pure strategies (where weights are probabilities
that player 2 will use these pure strategies).

xTAy = xT

0@ a11 ::: a1m
::: ::: :::
an1 ::: anm

1A0@ y1
:::
ym

1A = xT [y1A�1 + :::+ ymA�m] =

= y1
�
xTA�1

�
+ :::+ ym

�
xTA�m

�
= y1

�
xTAe1

�
+ :::+ ym

�
xTAem

�
:

Here A�j is j-th column of the matrix A; and e
j = (0; :::; 0; 1; 0; :::; 0) is

the (m-dimensional) vector, whose all coordinates are zero, except that its j-
th coordinate is 1, which represents the pure strategy j of player 2. Recall
A�j = Ae

j :
We de�ne the secure utility level for player 1<2> (the minimal gain he can

guarantee himself, no matter what player 2<1> does) in the same spirit as
before. The only change is that it is now the \expected" utility level, and that
the strategy sets available to the players are much bigger now: X and Y , instead
of S and T .
Let v1(x) = min

y2Y
xTAy be the minimum payo� player 1 can get if he chooses

to play x. Then v1 = max
x2X

v1(x) = max
x2X

min
y2Y

xTAy is the secure utility level

for player 1. Similarly, we de�ne v2(y) = max
x2X

xTAy; and v2 = min
y2Y

v2(y) =

min
y2Y

max
x2X

xTAy, the secure utility level for player 2.

Given the above decomposition of xTAy, and v1(x) = min
y2Y

xTAy, the mini-

mum of xTAy; will be attained at some pure strategy j (i.e., at some ej 2 Y ).
Indeed, if xTAej > v1(x) for all j; then we would have x

TAy =
P
yj
�
xTAej

�
>

v1(x) for all y 2 Y . Hence, v1(x) = min
j
xTA�j , and v1 = max

x2X
min
j
xTA�j .

Similarly, v2(y) = max
i
Ai�y, where Ai� is the i-th row of the matrix A, and

v2 = min
y2Y

max
i
Ai�y.

As with pure strategies, the secure utility level player 1 can guarantee himself
(minimal amount he could gain) cannot exceed the secure utility level payer 2
can guarantee herself (maximal amount she could lose): v1 � v2. This follows
from Lemma 1.
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Such prudent mixed strategies x and y are called maximin strategy (for
player 1) and minimax strategy (for player 2) respectively.

Theorem 12 (The Minimax Theorem) v1 = v2 = v: Thus, if players can use
mixed strategies, any game with �nite strategy sets has a value.

Proof. Let n�m matrix A be the matrix of a two person zero sum game.
The set of all mixed strategies for player 1 is X = f(x1; :::; xn) :

Pn
i=1 xi =

1; xi � 0g; while for player 2 it is Y = f(y1; :::; ym) :
Pm

i=1 yj = 1; yj � 0g: Let
v1(x) = min

y2Y
x � Ay be the smallest payo� player 1 can get if he chooses to play

x. Then v1 = max
x2X

v1(x) = max
x2X

min
y2Y

x � Ay is the secure utility level for player
1. Similarly, we de�ne v2(y) = max

x2X
x �Ay; and v2 = min

y2Y
v2(y) = min

y2Y
max
x2X

x �Ay
is the secure utility level for player 2. We know that v1 � v2:
Consider the following closed convex sets in Rn:
L = fz 2 Rn : z = Ay for some y 2 Y g is a convex set, since Ay =

y1A�1 + :::+ ymA�m, where A�j is j-th column of the matrix A; and hence L is
the set of all convex combinations of columns of A; i.e., the convex hull of the
columns of A. Moreover, since it is a convex hull of m points, L is a convex
polytope in Rn with m vertices (extreme points), and thus it is also closed and
bounded.
Cones Kv = fz 2 Rn : zi � v for all i = 1; :::; ng are obviously convex and

closed for any v 2 R. Further, it is easy to see that Kv = fz 2 Rn : x � z � v for
all x 2 Xg:
Geometrically, when v is very small, the cone Kv lies far from the bounded

set L; and they do not intersect. Thus, they can be separated by a hyperplane.
When v increases, the cone Kv enlarges in the direction (1; :::; 1), being \below"
the set L; until the moment when Kv will \touch" the set L for the �rst time.
Hence, v; the maximal value of v for which Kv still can be separated from L; is
reached when the cone Kv �rst \touches" the set L: Moreover, Kv and L have
at least one common point z, at which they \touch". Let y 2 Y be such that
Ay = z 2 L \Kv:
Assume that Kv and L are separated by a hyperplane H = fz 2 Rn : x � z =

cg; where
Pn

i=1 xi = 1. It means that x � z � c for all z 2 Kv, x � z � c for all
z 2 L; and hence x � z = c. Geometrically, since Kv lies \below" the hyperplane
H, all coordinates xi of the vector x must be nonnegative, and thus x 2 X.
Moreover, since Kv = fz 2 Rn : x � z � v for all x 2 Xg, x 2 X and z 2 Kv, we
obtain that c = x � z � v. But since vector (v; :::; v) 2 Kv we also obtain that
c � x � (v; :::; v) = v

Pn
i=1 xi = v. It follows that c = v.

Now, v1 = max
x2X

min
y2Y

x �Ay � min
y2Y

x �Ay � v (since x � z � c = v for all z 2 L;
i.e. for all z = Ay, where y 2 Y ). Next, v2 = min

y2Y
max
x2X

x � Ay � max
x2X

x � Ay =
max
x2X

x � z = max
i=1;��� ;n

zi � v (since z 2 Kv).

We obtain that v2 � v � v1. Together with the fact that v1 � v2; it gives us
v2 = v = v1; the desired statement. Note also, that the maximal value of v1(x)
is reached at x; while the minimal value of v2(y) is reached at y: Thus, x and y

10



constructed in the proof are optimal strategies for players 1 and 2 respectively.

4 Computation of optimal mixed strategies

How can we �nd the (a) maximin strategy x, the (a) minimax strategy y; and
the value v of a given game?
If the game with deterministic strategies (the original game) has a saddle

point, then v = m, and the maximin and minimax strategies are deterministic.
Finding them amounts to �nd an entry aij of the matrix A which is both the
maximum entry in its column and the minimum entry in its row.
When the original game has no value, the key to computing optimal mixed

strategies is to know their supports, namely the set of strategies used with
strictly positive probability. Let x; y be a pair of optimal strategies, and v =
xTAy. Since for all j we have that xTAej � min

y2Y
xTAy = v1(x) = v1 = v, it

follows that v = xTAy = y1
�
xTAe1

�
+ ::: + ym

�
xTAem

�
� y1v + ::: + ymv =

v (y1 + :::+ ym) = v, and the equality implies xTA�j = xTAej = v for all j
such that yj 6= 0. Thus, player 2 receives her minimax value v2 = v by playing
against x any pure strategy j which is used with a positive probability in her
minimax strategy y (i.e. any strategy j; such that yj 6= 0).
Similarly, player 1 receives his maximin value v1 = v by playing against y

any pure strategy i which is used with a positive probability in his maximin
strategy x (i.e. any strategy i; such that xi 6= 0). Setting x� = fijxi > 0g and
T � = fjjyj > 0g, we see that x; y solve the following system with unknown x; y

xTA�j = v for all j 2 T �;Ai:y = v for all i 2 S�
nX
i=1

xi = 1; xi � 0;
mX
i=1

yj = 1; yj � 0

Finding a solution x; y to this system for a given pair S�T � is not enough
to ensure that (x; y) is actually a mixed strategy equilibrium ofthe initial game.
We must also check that x (resp. y) is also a best reply against the strategy y
(resp. x) of the opponent, i.e., that the following system of inequalities hold

Ai:y � v for all i 2 S�S�; xTA�j � v for all j 2 T�T �

The main di�culty in this approach is that there are 2n+m possible choices
for S�; T �, and no systematic way to guess!
One way to limit the search for S�; T � is to assume that they are of the same

size, because if they are not, one of the two systems xTA�j = v for all j 2 T �,
or Ai:y = v for all i 2 S�, is over-determined, so that the corresponding payo�
sub-matrix is not of maximal rank. But this is not going to always work, as
shown in the following example: 24 0 0

1 �2
�2 1

35
11



where the unique saddle point has the row player using Top with probability 1,
while the Column player randomizes with equal probabilities over the two pure
strategies.
Here is another useful but not systematic approach. In many n � n games

(each player has n pure strategies), one can get an idea about the support of an
optimal pair by assuming a full support and solving the corresponding system
of equalities (as above, except for xi � 0 and yj � 0). If its solution is non
negative, it is a pair of optimal strategies. If not, the set of pure strategies i; j
where xi � 0 and yj � 0 gives plausible bounds of the support of an optimal
strategy. But this trick is not always going to work. Consider the 3 � 3 game
with payo�s 24 8 0 �1

�3 4 7
0 �2 0

35
where the trick suggests to give zero weight to the middle column, when in fact
the optimal strategy puts weight on the left and middle columns (and on the
top and middle rows).
A more rigorous approach to simplify the search for the supports of opti-

mal mixed strategies uses the successively elimination of dominated rows and
columns.

De�nition 13 We say that the i-th row of a matrix A dominates (resp. strictly
dominates) its k-th row, if aij � akj for all j and aij > akj for at least one j
(resp. aij > akj for all j). Similarly, we say that the j-th column of a matrix
A dominates (resp. strictly dominates) its l-th column, if aij � ail for all i and
aij > ail for at least one i (resp. aij > ail for all i).

In other words, a pure strategy (represented by a row or a column of A)
dominates another pure strategy if, no matter what the other player does, the
choice of the �rst (dominating) strategy is at least as good as the choice of the
second (dominated) strategy, and for some strategies of the other player, it is
strictly better.
Strict domination requires more: the �rst strategy yields a strictly better

payo� than the second one, irrespective of the strategic choices of other players.

Proposition 14 a) If the row i of a matrix A is strictly dominated, then any
optimal strategy x of player 1 has xi = 0. Thus removing a strictly dominated
strategy does not lose any optimal strategy for either player.
b) If the row i of a matrix A is dominated, then player 1 has an optimal

strategy x such that xi = 0. Moreover, any optimal strategy, for any player, in
the game obtained by removing dominated rows from A will also be an optimal
strategy in the original game. Thus a player can always �nd an optimal mixed
strategy using only undominated strategies, but some of his optimal strategies
may be dominated.
c) Two symmetrical statements hold for strictly dominated and dominated

columns of player 2.

12



Removing dominated rows of A gives a smaller matrix A1: Removing dom-
inated columns of A1 leaves us with a yet smaller matrix A2: We can continue
by removing dominated rows of A2; etc., until we obtain a matrix which does
not contain dominated rows or columns. The optimal strategies and the value
for the game with this reduced matrix will still be the optimal strategies and
the value for the initial game represented by A. This process is called \iter-
ative elimination of dominated strategies". See the problems for examples of
application of this technique.
An example where each player has one dominated pure optimal strategy

(and in�nitely many mixed optimal strategies) follows24 0 0 1
0 0 0
�1 0 �

35
4.1 2� 2 games

Suppose that A =

�
a11 a12
a21 a22

�
. This game does not have saddle point if and

only if [a11; a22]\ [a12; a21] = ?. In this case, a pure strategy cannot be optimal
for either player (check it!). It follows that optimal strategies (x1; x2) and
(y1; y2) must have all components positive. Let us repeat the argument above
for the 2�2 case. We have v = xTAy = a11x1y1+a12x1y2+a21x2y1+a22x2y2,
or

x1(a11y1 + a12y2) + x2(a21y1 + a22y2) = v:

But a11y1 + a12y2 � v and a21y1 + a22y2 � v (these are the losses of player 2
against 1-st and 2-nd pure strategies of player 1; but since y is player's 2 optimal
strategy, she cannot lose more then v in any case). Hence, x1(a11y1 + a12y2) +
x2(a21y1 + a22y2) � x1v + x2v = v. Since x1 > 0 and x2 > 0; the equality
is only possible when a11y1 + a12y2 = v and a21y1 + a22y2 = v: Similarly
a11x1 + a21x2 = v and a12x1 + a22x2 = v: We also know that x1 + x2 = 1 and
y1 + y2 = 1.
We have a linear system with 6 equations and 5 variables x1; x2; y1; y2 and

v: The minimax theorem guarantees us that this system has a solution with
x1; x2; y1; y2 � 0: One of these 6 equations is actually redundant. The sys-
tem has a unique solution provided the original game has no saddle point. In
particular

v =
a11a22 � a12a21

a11 + a22 � a12 � a21
Note that the denominatior is non zero because [a11; a22] \ [a12; a21] = ?.

4.2 2�n games
By focusing on the player who has two strategies, one computes the value as
the solution of a tractable linear program. Say player 1 has two strategies and
the game

13



A =

�
a b c � � � g
a0 b0 c0 � � � g0

�
has no pure strategy equilibrium (no value).

Then the optimal mixed strategy of player 1 is x = (p; 1� p), and it solves

max
0�p�1

minfap+ a0(1� p); bp+ b0(1� p); � � � ; gp+ g0(1� p)g

because the best reply of player 2 can be chosen a pure strategy. It is easy to
represent the function minfap+ a0(1� p); bp+ b0(1� p); � � � ; gp+ g0(1� p)g as
a minimum of straight lines, and to �nd its maximum.
See the examples in Problem 9.

4.3 Symmetric games

The game with matrix A is symmetric if A = �AT (Exercise: check this). Recall
that the value of a symmetric game is zero (Lemma 7). Moreover, if x is an
optimal strategy for player 1, then it is also optimal for player 2.

5 Von Neumann's Theorem

It generalizes the minimax theorem. And it is a special case of the more general
Nash Theorem in Chapter 4.

Theorem 15 The game (S; T; u) has a value and optimal strategies if S; T are
convex compact subsets of some euclidian spaces, the payo� function u is con-
tinuous on S � T , and for all s 2 S; all t 2 T

t0 ! u(s; t0) is quasi-convex in t0; s0 ! u(s0; t) is quasi-concave in s0

Example 8 Borel's model of poker.
Each player bids $1, then receives a hand mi 2 [0; 1]. Hands are independently
and uniformly distributed on [0; 1]:Each player observes only his hand.Player 1
moves �rst, by either folding or bidding an additional $5. If 1 folds, the game is
over and player 2 collects the pot. If 1 bids, player 2 can either fold (in which
case 1 collects the pot) or bid $5 more to see: then the hands are revealed and
the highest one wins the pot.
A strategy of player i can be any mapping from [0; 1] into fF;Bg, however it

is enough to consider the following simple threshold strategies si : fold whenever
mi � si; bid whenever mi > si. Notice that for player 2, actual bidding
only occur if player 1 bids before him. Compute the probability �(s1; s2) that
m1 > m2 given that si � mi � 1 :

�(s1; s2) =
1 + s1 � 2s2
2(1� s2)

if s2 � s1

=
1� s2
2(1� s1)

if s1 � s2

14



from which the payo� function is easily derived:

u(s1; s2) = �6s21 + 5s1s2 + 5s1 � 5s2 if s2 � s1

= 6s22 � 7s1s2 + 5s1 � 5s2 if s1 � s2
The Von Neumann theorem applies, and the utility function is continu-

ously di�erentiable. Thus the saddle point can be found by solving the system
@u
@si
(s) = 0; i = 1; 2. This leads to

s�1 = (
5

7
)2 = 0:51; s�2 =

5

7
= 0:71

and the value �0:51: player 2 earns on average 51 cents.
Two more simplistic models of poker are in the problems below.

6 in�nite games

When the sets of pure strategies are in�nite, mixed strategies can still be de�ned
as probability distributions over these sets, but the existence of a value for the
game in mixed strategies is no longer guaranteed.

Example 5: a silly game
Each player chooses an integer in f1; 2; � � � ; n; � � � g. The one who choooses the
largest integer wins $1 from the other, unless they choose the same number, in
which case no money changes hands. A mixed strategy is a probability distri-
bution x = (x1; x2; � � � ; xn; � � � ); xi � 0;

P1
1 xi = 1. Given any such strategy

chosen by the opponent, and any positive ", there exists n such that
P1

n xi � ",
therefore playing n guarantees a win with probability no less than 1 � ". It
follows that in the game in mixed strategies, max

x2X
min
y2Y

u(x; y) = �1 < +1 =

min
y2Y

max
x2X

u(x; y).

Theorem 16 (Glicksberg Theorem). If the sets of pure strategies S; T are con-
vex compact subsets of some euclidian space, and the payo� function u is con-
tinuous on S � T , then the game in mixed strategies (where each player uses a
probability distribution over pure strategies) has a value.

However, knowing that a value exists does not help much to identify optimal
mixed strategies, because the support of these mixed strategies can now vary in
a very large set!
An example where Glicksberg Theorem applies is the subject of Problem

13.2.
A typical case where Glicksberg Theorem does not apply is when S; T are

convex compacts, yet the payo� function u is discontinuous. Below are two
such examples: in the �rst one the game nevertheless has a value and optimal
strategies, in the second it does not.

Example 6 Mixed strategies in the silent gun�ght
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In the silent gun�ght (Problem 5; see also the noisy version Example 2 in section
1.2), we assume a(t) = b(t) = t, so that the game is symmetric, and its value (if
it exists) is 0. The payo� function is

u(s; t) = s� t(1� s) if s < t
u(s; t) = �t+ s(1� t) if t < s
u(s; t) = 0 if s = t

It is enough to look for a symmetric equilibrium. Note that shooting near s = 0
makes no sense, as it guarantees a negative payo� to player 1. In fact the best
reply of player 1 to the strategy t by player 2 is s = 1 if t <

p
2� 1, s = t� " if

t >
p
2� 1.

This suggests that the support of an optimal mixed strategy will be [a; 1],
for some a � 0, and that the optimal strategy has a density f(t) over [a; 1]. We
compute player 1's expected payo� from the pure strategy s; a � s � 1, against
the strategy f by player 2

u(s; f) =

Z s

a

(s(1� t)� t)f(t)dt+
Z 1

s

(s(1 + t)� t)f(t)dt

The equilibrium condition is that u(s; f) = 0 for all s 2 [a; 1]. This equality is
rearranged as

s� (1 + s)f
Z s

a

tf(t)dtg � (1� s)f
Z 1

s

tf(t)dtg = 0

Setting H(s) =
R 1
s
tf(t)dt, this writes

s = (1 + s)(H(a)�H(s)) + (1� s)H(s), H(s) = H(a)
1 + s

2s
� 1
2

Taking H(1) = 0 into account gives H(a) = 1
2 , then

H(s) =
1� s
4s
) f(s) =

1

4s3

Finally we �nd a from

1 =

Z 1

a

f(t)dt) a =
1

3

Example 7 Campaign funding
Each player divides his $1 campaign budget between two states A and B. The
challenger (player 1) wins the overall game (for a payo� $1) if he wins (strictly) in
one state, where the winner in state A is whomever spends the most money, but
in state B the incumbent (player 2) has an advantage of $0:5 so the challenger
only wins if his budget there exceeds that of the incumbent by more than $0:5.
Here is the normal form of the game:

S = T = [0; 1] s (resp. t) is spent by player 1 (resp. 2) in state A
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u(s; t) = +1 if t < s or s+
1

2
< t

u(s; t) = �1 if s < t < s+ 1
2

u(s; t) = 0 if s = t or s+
1

2
= t

Clearly in the pure strategy game max
s
min
t
u(s; t) = �1 < +1 = min

t
max
s
u(s; t).

We claim that in the mixed strategy game we have

max
x2X

min
y2Y

u(x; y) =
1

3
<
3

7
= min

y2Y
max
x2X

u(x; y) (1)

Suppose �rst that player 2's mixed strategy y guarantees

sup
s2[0;1]

u(s; y) <
3

7
(2)

Applying (2) at s = 1 gives y(1) > 4
7 , and at s = 0

y(]
1

2
; 1])� y(]0; 1

2
[) <

3

7
(3)

Applying (2) at s = 1
2 � ", and letting " go to zero, gives

y([0;
1

2
[) + y(1)� y([1

2
; 1[) � 3

7

Summing the latter two inequalities yields

2y(1) + y(0)� y(1
2
) � 6

7

Combined with y(1) > 4
7 , this implies y(

1
2 ) �

2
7 , and (3) gives similarly y(]0;

1
2 [) >

1
7 . This is a contradiction as y(1) + y(

1
2 ) + y(]0;

1
2 [) � 1, hence inequality (2) is

after all impossible.
Next one checks easily that player 2's strategy

y� =
1

7
� 1
4
+
2

7
� 1
2
+
4

7
�1

guarantees sup[0;1] u(s; y
�) = 3

7 .
To prove the other half of property (1), we assume the mixed strategy x is

such that

inf
t2[0;1]

u(x; t) >
1

3

and apply this successively to t = 1 and t = 1
2 � ", letting " go to zero. We get

x([0;
1

2
[)� x(]1

2
; 1[) >

1

3
and � x([0; 1

2
[) + x([

1

2
; 1]) � 1

3
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Summming these two inequalities x( 12 )+x(1) >
2
3 , a contradiction of x([0;

1
2 [) >

1
3 . Finally player 1's strategy

x� =
1

3
�0 +

1

3
� 1
2
+
1

3
�1

guarantees inf [0;1] u(x
�; t) = 1

3 .

7 Problems on Chapter 2

7.1 Pure strategies

Problem 1
Ten thousands students formed a square. In each row, the tallest student is
chosen and Mary is the shortest one among those. In each column, a shortest
student is chosen, and John is the tallest one among those. Who is taller|John
or Mary?

Problem 2
Compute m = minmax and m = maxmin values for the following matrices:

2 4 6 3
6 2 4 3
4 6 2 3

3 2 2 1
2 3 2 1
2 2 3 1

Find all saddle points.

Problem 3. Gale's roulette
a)Each wheel has an equal probability to stop on any of its numbers. Player 1
chooses a wheel and spins it. Player 2 chooses one of the 2 remaining wheels
(while the wheel chosen by 1 is still spinning), and spins it. The winner is the
player whose wheel stops on the higher score. He gets $1 from the loser.
Numbers on wheel #1: 2,4,9; on wheel #2: 3,5,7; on wheel #3: 1,6,8

Find the value and optimal strategies of this game
b) Variant: the winner with a score of s gets $s from the loser.

Problem 4 Land division game.
The land consists of 3 contiguous pieces: the unit square with corners
(0; 0); (1; 0); (0; 1); (1; 1), the triangle with corners (0; 1); (1; 1); (0; 2), the trian-
gle with corners (1; 0); (1; 1); (2; 1): Player 1 chooses a vertical line L with 1st
coordinate in [0; 1]: Player 2 chooses an horizontal line M with 2d coordinate
in [0; 1]. Then player 1 gets all the land above M and to the left of L; as well
as the land below M and to the right of L. Player 2 gets the rest. Both players
want to maximize the area of their land. Find the value and optimal strategies.

Problem 5 Silent gun�ght
Now the duellists cannot hear when the other player shoots. Payo�s are com-
puted in the same way. If v is the value of the noisy gun�ght, show that in
the silent version, the values m = minmax and m = maxmin are such that
m < v < m.

Problem 6.1
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Two players move in turn and the one who cannot move loses. Find the winner
(1-st or 2-nd player) and the winning strategy.
In questions a) and b), both players move the same piece.

a) A castle stays on the square a1 of the 8�8 chess board. A move consists in
moving the castle according to the chess rules, but only in the directions up or
to the right.
b) The same game, but with a knight instead of a castle.
In questions c) and d), a move consists of adding a new piece on the board.

c) A move consists in placing a castle on the 8 by 8 chess board in such a way,
that it does not threatens any of the castles already present.
d) The same game, but bishops are to be placed instead of castles.

Problem 6.2
Dominos can be placed on a m � n board so as to cover two squares exactly.
Two players alternate placing dominos. The �rst one who is unable to place a
domino is the loser.
a) Show that one of the two players, First or Second Mover, can guarantee a
win.
b) Who wins in the following cases:
n = 3;m = 3
n = 4;m = 4

c) Who wins in the following cases:
n and m even
n even, m odd

d) (much harder) Who wins if n = 1? If n and m are odd?

Problem 6.3
Two players move in turn until one of them cannot move. In the standard
version, that player loses; in the miser version, whoever was the last mover
loses. Find the winner (1-st or 2-nd moverer) and the winning strategy in both
standard and miser versions for the following games.
a) From a pile of n coins, the players take turns to remove one or two coins.
Show that n is a losing position i� n = 0(3) in the standard version, i� n = 1(3)
in the miser version.
b) Same as in a), but now the players can remove one or four coins?
c) Same as in a), but now the players can remove one, three or �ve coins?
d) We now have two piles, of size n and m, and the players take turns to remove
one or two coins from one of the piles. Show that n;m is losing in the standard
version i� n = m(3), i� n 6= m(3) in the miser version.
e) From one of the two piles as in d), the players can remove one or four coins.
f) We still have two piles of size n;m, but now the players can remove any
number of coins (and at least one) from one of the piles.
g) Marienbad game: we have p piles of sizes n1; � � � ; np. A player can remove
any number of coins (and at least one) from one of the (non empty) piles. Show
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that in the standard version, a position n1; � � � ; np is winning i�

for all t; 1 � t � T :
pX
k=1

atk is even; and

pX
k=1

atk > 0 for at least one t

when nk = a
T
k a

T�1
k � � � atk � � � a1k is the diadic representation of nk, augmented by

enough zeros on the left so that all nk have the same number of digits. What
is the solution of the miser version of this game?

Problem 6.4
a) The game starts with two piles, of respectively n and m coins. A move
consists in taking one pile away and dividing the other into two nonempty piles.
Solve the standard and miser versions of the game (de�ned in Problem 6.3).
b) n coins are placed on a line such that they touch each other. A move consists
in taking either one coin, or two adjacent (touching) coins. Solve the standard
and miser versions.
c) The initial position is 111111101111110111101, where a 1 is a match and 0 an
empty space. Players successively remove one match or three adjacent matches.
Solve the two versions of the game.

Problem 7
Show that, if a 2�3 matrix has a saddle point, then either one row domi-
nates another, or one column dominates another (or possibly both). Show by a
counter-example that this is not true for 3�3 matrices.
Problem 8 Shapley's criterion

Consider a game (S; T; u) with �nite strategy sets such that for every subsets
S0 � S; T0 � T with 2 elements each, the 2 � 2 game (S0; T0; u) has a value.
Show that the original game has a value. Hint: by contradiction. Assume
maxmin < minmax, and without loss maxmin < 0 < minmax. Then �nd a

sub-2x2 matrix of the type

�
+ �
� +

�
.

7.2 Mixed strategies

Problem 9
In each question you must check that the game in deterministic strategies (given
in the matrix form) has no value, then �nd the value and optimal mixed strate-
gies. Results in section 1.5 will prove useful.

a) A =

�
2 3 1 5
4 1 6 0

�

b) A =

0BBBB@
12 0
0 12
10 6
8 10
9 7

1CCCCA
c) A =

0@ 2 0 1 4
1 2 5 3
4 1 3 2

1A
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d) A =

0@ 1 6 0
2 0 3
3 2 4

1A
e) A =

0@ 0 1 �2
�1 0 3
2 �3 0

1A
f) A =

0@ 8 4 2
0 2 4
0 4 2

1A ; A =
0@ 5 4 2
0 2 4
0 4 2

1A
g) A =

0@ 2 4 6 3
6 2 4 3
4 6 2 3

1A
Problem 10 Rock, Paper, Scissors and Well

Two players choose simultaneously one of 4 pure strategies: Rock, Paper, Scis-
sors and Well. If their choices are identical, no money changes hands. Otherwise
the loser pays $1 to the winner.
The pattern of wins and losses is as follows. The paper is cut by (loses to)

the scissors, it wraps (beats) the rock and closes (beats) the well. The scissors
break on the rock and fall into the well (lose to both). The rock falls into (loses
to) the well . The same choice by both players is a tie (no money changes hand).
a) Solve the game in mixed strategies when the winner gets $1 from the loser.
b) Solve the game in mixed strategies when losing to the rock or the scissor
costs $2 to the loser, while losing to paper or well only costs $1.

Problem 11 Picking an entry

a) Player 1 chooses either a row or a column of the matrix

�
2 1
4 5

�
: Player 2

chooses an entry of this matrix. If the entry chosen by 2 is in the row or column
chosen by 1, player 1 receives the amount of this entry from player 2. Otherwise
no money changes hands. Find the value and optimal strategies.
b) Same strategies but this time if player 2 chooses entry s and this entry is not
in the row or column chosen by 1, player 2 gets $s from player 1; if it is in the
row or column chosen by 1, player 1 gets $s from player 2 as before.

Problem 12 Guessing a number
Player 2 chooses one of the three numbers 1,2 or 5. Call s2 that choice. One of
the two numbers not selected by Player 2 is selected at random (equal probability
1/2 for each) and shown to Player 1. Player 1 now guesses Player 2's choice: if
his guess is correct, he receives $s2 form Player 2, otherwise no money changes
hand.
Solve this game: value and optimal strategies.
Hint: drawing the full normal form of this game is cumbersome; describe instead
the strategy of player 1 by three numbers q1; q2; q5. The number q1 tells what
player 1 does if he is shown number 1: he guesses 2 with probability q1 and 5
with proba. 1� q1; and so on.

Problem 13.1
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Player 1, the catcher, and player 2, the evader, simultaneously and inde-
pendently pick a node in a given graph. If they choose the same node or two
adjacent nodes, player 2 is captured, otherwise he escapes. The payo� is the
probability of capture, which Player 1 maximizes, and player 2 minimizes. Solve
this game for the following graphs (hint; use domination arguments):
a) a line of arbitrary length.
b)
�  ! �
l l
�  ! �  ! �  ! �

c)
�  ! �  ! �  ! �

l l
�  ! �  ! �  ! �  ! �

d)
�  ! �
l l
�  ! �  ! �

l l
�  ! �

Problem 13.2 Catch me
a) Player 1 chooses a location x in [0; 1] and player 2 chooses simultaneously a
location y. Player 1 is trying to be as far as possible from player 2, and player
2 has the opposite preferences. The payo� (to player 1)is u(x; y) = (x� y)2.
Show the game in pure strategies has no value. Find the value and optimal
strategies for the game in mixed strategies.
b) Solve the similar game where the "board" is an arbitrary tree (connected
graph with no cycles) and the payo� is the square of the distance on the tree.
c) Solve the similar game where the "board" is a circle, using the euclidian
distance for de�ning the payo�..

Problem 14 Hiding a number
Fix an increasing sequence of positive numbers a1 � a2 � a3 � � � � � ap � � � � .
Each player chooses an integer, the choices being independent. If they both
choose the same number p; player 1 receives $p from player 2. Otherwise, no
money changes hand.
a) Assume �rst

1X
p=1

1

ap
<1

and show that each player has a unique optimal mixed strategy.
b) In the case where

1X
p=1

1

ap
=1
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show that the value is zero, that every strategy of player 1 is optimal, whereas
player 2 has only ""-optimal" strategies, i.e., strategies guaranteeing a payo�
not larger than ", for arbitrarily small ".

Problem 15
Asume that both players choose optimal (mixed) strategies x and y and thus the
resulting payo� in the game is v. We know that player 1 would get v if against
player 2's choice y he would play any pure strategy with positive probability in
x (i.e. any pure strategy i; such that si > 0), and he would get less then v if
he would play any pure strategy i; such that xi = 0: Explain why a rational
player 1, who assumes that his opponent is also rational, should not choose a
pure strategy i such that xi > 0 instead of x.

Problem 16
In a two-person zero-sum game in normal form with a �nite number of pure
strategies, show that the set of all mixed strategies of player 1 which are part of
some equilibrium of the game, is a convex subset of the set of player 1's mixed
strategies.

Problem 17 Blu�ng game
At the beginning, players 1 and 2 each put $1 in the pot. Next, player 1 draws a
card from a shu�ed deck with equal number of black and red cards in it. Player
1 looks at his card (he does not show it to player 2) and decides whether to raise
or fold. If he folds, the card is revealed to player 2, and the pot goes to player
1 if it is red, to player 2 if it is black. If player 1 raises, he must add $1 to the
pot, then player 2 must meet or pass. If she passes the game ends and player 1
takes the pot. If she meets, she puts $� in the pot. Then the card is revealed
and, again, the pot goes to player 1 if it is red, to player 2 if it is black..
Draw the matrix form of this game. Find its value and optimal strategies as
a function of the parameter �. Is blu�ng part of the equilibrium strategy of
player 1?

Problem 17 A simple poker game
There are 3 cards, of value Low, Medium and High. Ann is dealt a card face
down, with equal probability for each card. After seeing her card, Ann can bid
or fold. if she folds she gives $2 to Bob and the game ends. if she bids, Bill is
dealt one of the remaining cards (with equal probability) face down. He looks
at his card and can then Fold or See. If he folds he gives $4 to Ann. If he sees
the cards are revealed and the holder of the higher card wins $10 from the loser.
Solve this game: optimal mixed strategies and value. Do the optimal strate-

gies involve blu�ng?
Problem 19 Another poker game

There are 3 cards, of value Low, Medium and High. Each player antes $1 to
the pot and Ann is dealt a card face down, with equal probability for each card.
After seeing her card, Ann announces "Hi" or "Lo". To go Hi costs her $2 to
the pot, and Lo costs her $1. Next Bill is dealt one of the remaining cards (with
equal probability) face down. he looks at his card and can then Fold or See. If
he folds the pot goes to Ann. If he sees he must match Ann's contribution to
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the pot; then the pot goes to the holder of the higher card if Ann called Hi, or
to the holder of the lower card if she called Lo.
Solve this game: how much would you pay, or want to be paid to play this game
as Ann? How would you then play?
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