
Chapter 5: extensive form games

December 30, 2009

1 De�nition

The general model of n-person games in extensive form is a straightforward
extension of the model in sectiion 1.3 for two-person zero sumgames.
De�nition
An n-person game in extensive form �e is given by:
1) a set of players N = f1; :::; ng;
2) a tree (a connected graph without cycles), with a particular node taken as

the root;
3) for each non-terminal node, a speci�cation of who has the move (one of

real players or \chance");
4) a partition of all nodes, corresponding to each particular player, into

information states, which specify what players know about their location on the
tree;
5) for each terminal node, a payo� attached to it.

Formally, a rooted tree is a pair (M;�) where M is the �nite set of nodes,
and � :M !M[; associates to each node its predecessor. A (unique) node m0

with no predecessors (i.e., �(m0) = ;) is the root of the tree. Terminal nodes
are those which are not predecessors of any node. Denote by T (M) the set of
terminal nodes. For any non-terminal node r; the set fm 2 M : �(m) = rg is
the set of successors of r:We call the edges, which connectm with its successors,
\alternatives" at m. The maximal possible number of edges in a path from the
root to some terminal node is called the length of the tree.
Given a rooted tree (M;�); the game in extensive form is speci�ed once we

label all the nodes and edges according to the following rules.
(a) Each non-terminal node (including the root) is labeled by number from

f0; 1; :::; ng, where i 2 f1; :::; ng = N represents a real player in the game, and
0 represents a \nature" or \chance" player. We denote by Mi the set of nodes
labeled by the player i. The interpretation is that when the game is played, we
start at the root and then for each node m 2Mi the player i is choosing which
edge to follow from this node.
(b) The alternatives at a node labeled by the chance player 0 are labeled by

numbers from [0; 1], so that those numbers over all the alternatives sum to 1.
They represent probabilities that chance would choose those alternatives.
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(c) The alternatives at a node m 2 Mi; i 2 f1; :::; ng are labeled by \move
labels". Di�erent alternatives at the same node are labeled with di�erent labels.
(d) Each Mi, i 6= 0, is partitioned into information sets P i1; :::; P

i
ki
, Mi =S

j

P ij , P
i
j1
\ P ij2 = 0, with the following condition: any two nodes x; y from the

same information set must have the same number of successors, and the set of
move labels on the alternatives at x should coincide with the set of move labels
on the alternatives at y. The interpretation is that when a player i has to choose
an alternative at the node m 2Mi, he knows in what information set he is, but
he does not know at what exact node from this information set he is making his
choice.
(e) Each terminal node m is labeled by a vector u(m) = (u1; :::; un) which

speci�es the payo�s for players 1; :::; n, if the game ends at this node. This
de�nes the payo� function u : T (M)! R.
The game starts at the root m0 of the tree. For each non-terminal node

m; m 2 Mi means that player i has the move at this node. A move for the
chance player consists in choosing the successor of m randomly according to
the probability distribution on the alternatives at m. A move for a real player
i 2 N consists in picking a move label for the successor of this node. Note that
when making the move, a player does not know where exactly he stands. He
only knows the information set he is at, and hence the set of the move labels.
Once a move label is picked, the game moves to the successor of the node m
which is connected to m by the alternative with the chosen move label. The
game continues until some terminal node mt is reached. Then a payo� u(mt);
attached to this node, is realized.

An important special case: When each information set of each player consists
of a single node, we say that this game has \perfect information". This
term refers to the fact that, when a player has to move, he possesses perfect
information about where exactly in the tree he is.

Normal form games as extensive form games: any normal form game can be
represented in extensive form, by ordering the players arbitrarily say 1; 2; � � � ; n,
have player 1 move �rst, after which the information set of other players "hides"
1's move, then player 2 moves, after which the information set of the remaining
players hides the �rst two moves, etc.. In this fashion we can also represent
multi stage games where at some nodes, several players move simultaneously.

Conversely there is a canonical normal form representation � of any exteten-
sive form game �e. A strategy for a player i is a complete speci�cation of what
move to choose at each and every information set from P = fP i1; :::; P ikig. The
set of all such possible speci�cations is the strategy set Ci for player i in �.
The payo� ui(c1; :::; cn) is the payo� to player i at the terminal node which is
reached after all players have chosen all their moves according to the strategies
c1; :::; cn. It is important to note that, since there are chance players in the
extensive form game who make their choice at random, the game could have
an uncertain outcome even when all real players use pure strategies. In this
case the game could end in di�erent terminal nodes, but we can calculate the
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probability of our game to end in each terminal node (given choice of strate-
gies c1; :::; cn). Then, the payo� payo� ui(c1; :::; cn) will be the expected payo�
according to those probabilities.
As usual, we assume that players evaluate di�erent outcome on the basis of

a VNM (expected) utility function.
As for normal form games we de�ne the mixed strategy si 2 �(Ci) for

player i as a probability distribution on his set of pure strategies Ci. The
best response correspondence is de�ned by bri(s�i) to be the set of strategies
for player i that give him the best (expected) payo� against the vector s�i of
strategies of other players. A Nash equilibrium of the extensive form game �e

is the vector s = (s1; :::; sn) of strategies, where each one is a best response to
the others.

2 Subgame perfection

In a game in extensive form, the set of the Nash equilibria is often very big and
some of those equilibria make little sense.
Consider for instance the extensive form variant of the Nash demand game

(example 6 in Chapter 2) with perfect information. Demands are in cents (they
divide $1), player 1 chooses his demand x, which is revealed to player 2, who can
only accept or reject it. For any integer x; 0 � x � 100, the pair of strategies
where player 1 demands x, and player 2 rejects if s1 > x, and accepts if s1 � x,
is a Nash equilibrium. But for x � 50, this equilibrium involves the unrealistic
refusal of a fair share of the pie.
The key concept of subgame perfection is an important re�nement that will

eliminate many such unrealistic outcomes. We de�ne it �rst, before illustrating
its predictive power and its limits in a handful of examples.
We assume that our game has perfect recall. Thus, in the course of the game

each player remembers his past moves. In particular, it implies some restrictions
on the information sets. Two nodes x; y cannot belong to the same information
set of the player i, if the choices in the game he made before reaching x or y
allow him to distinguish between the two. For example, no game path (a path
from the root to a terminal node) could contain several nodes from the same
informational set.
A proper subgame of an extensive form game �e is a subtree starting from

some non-terminal node, with all the labels, such that any information set which
intersects with the set of nodes in this subtree, is fully contained in that set of
nodes. Thus, the fact that a player knows that a subgame is being played does
not give him any additional information to re�ne his information structure.

De�nition 1 A subgame perfect equilibrium for the extensive form game �e is
a Nash equilibrium whose restriction to any subgame is also a Nash equilibrium
of this subgame.

in the variant of the Nas demand game just discussed, there are exactly two
subgame perfect equilibria: player 1 demands 100, and player 2 accepts any
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demand; player 1 demands 99 and player 2 accepts any demand of 99 or less,
but rejects the demand 100. Note that an extensive experimental testing of this
game reveals that such a strategy typically fails, because the utility of player 2
depends on more than the amount of money he takes home.
Example 1 Consider the following extensive form game with perfect in-

formation. Player 1 decides whether to go left or right. Knowing his choice,
player 2decides whether to go up or down. The payo�s are u(left; up) = (3; 1);
u(left; down) = (0; 0), u(right; up) = (0; 0), u(right; down) = (1; 3):
In this game player 1 has two strategies (left and right), while player 2

has four strategies, since one has to specify for her what to do if player 1
chooses left as well as what to do if he chooses right. Thus, her strategy set is
f(upl; upr); (upl; downr); (downl; upr); (downl; downr)g, where subindex l is for
her choice after player 1 goes left, and subindex r is for her choice after player
1 goes right. Note that if player 2 would not know the choice of player 1 at a
time she makes her own choice, then it would be the Battle of Sexes game, in
which each player has just two strategies.
This game has two proper subgames, in each only player 2 is to make a

move. The whole game has three Nash equilibria in pure strategies. They are
(left; (up; down)); (left; (up; up)), (right; (down; down)). However, only �rst of
them is subgame perfect. Player 2 would prefer the last one, where she gets
3, by threatening player 1 to choose terminal node with zero payo�s if he goes
left. But it is not sustainable under the subgame perfection assumption, since
if player 1 actually moves left player 2 will have strong incentive to choose the
node with payo�s (3; 1) and she has no way to pre-commit herself not to do it.

Theorem 2 Any �nite (i.e., based on a �nite tree) game �e in extensive form
has at least one subgame perfect equilibrium.

The proof is by induction in the number of proper subgames the game �e has.
If it has no proper subgames, then any Nash equilibrium of the corresponding
normal form game will be a subgame perfect equilibrium of �e. Now, consider a
subgame �e0 of �e which has no its own proper subgames. It has (at least one)
Nash equilibrium; pick up one of those. Substitute this whole subgame �e0 by
a new terminal node for �e; located at the root of this subgame �e0. Label this
new terminal node with the payo�s from the chosen Nash equilibrium of �e.
We thus constructed a new game �e1 which has less proper subgames, and hence
has a subgame perfect equilibrium vector of strategies by induction hypothesis.
Now, we add to the strategies in this equilibrium for �e1 vector the speci�cation
for each player of what to do in �e0, namely the prescription to play according
to the Nash equilibrium we have picked for �e0. It is easy to check that the
resulting vector of strategies will be the subgame perfect equilibrium of �e.

Theorem 3 Any �nite game �e in extensive form with perfect information has
at least one subgame perfect equilibrium in pure strategies. If for any player all
payo�s at all terminal nodes are distinct, then this equilibrium is unique.
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It is easy to see that such subgame perfect equilibrium in pure strategies can
be always found by backward induction, starting from the end (by seeing for
every node, whose all successors are terminal nodes, what should be the choice
there, and then proceeding by induction).

Leader-follower equilibrium
Given a two person game in normal form (S1; S2; u1; u2), the extensive form

game where player i chooses his strategy si �rst, this choice is revealed to
player j who then chooses sj , is called the i�Leader,j�Follower game. When
we speak below of the i�Leader,j�Follower equilibrium, we always mean its
subgame perfect equilibrium, or equilibria.
Comparing the i�L,j�F equilibrium with the Nash equilibrium (or equilib-

ria) of the initial normal form game, gives useful prediction about commitment
tactics in that game. Clearly player i always prefers (sometimes weakly) the
i�L,j�F equilibrium to any of the Nash equilibria. But there are no other
restrictions on the comparison of i's j�L,i�F equilibrium payo� with the two
above.
In two-person zero sum games with a value, or in a game with (strictly) dom-

inant strategy, the L-F equilibrium and Nash equilibrium coincide: it does not
matter if we choose strategies simultaneously and independently, or sequentially
with the �rst choice being revealed.
In the Battle of the Sexes, in the war of attrition (example 7 chapter 2 and

example 6 chapter 3), as well as in the simple Cournot duopoly of example 10
chapter 2, both players prefer to be the leader. In the former two, the leader-
follower equilibria coincide with the pure strategy Nash equilibria; in the latter
case i's payo� in the i�L,j�F equilibrium is larger than at the unique Nash
equilibrium, whereas j's payo� is lower.
In two-person zero sum games without a value, both players obviously prefer

to be follower. The same is true in the following game of timing.

Example 2 grab the dollar
This is a symmetrical game of timing with two players. Both functions a

and b increase with a(t) > b(t) for all t, and b(1) > a(0). Recall that a(t) is the
payo� to the player who cries stop at t. If both stop at t = 0, thay both get
a(0); if they both stop at t = 1, they both get b(1). The normal form game has
a unique Nash equilibrium; the Leader-Follower equilibrium favors the Follower,
but they both prefer it to the Nash equilibrium of the normal form.

A common di�culty with the interpretation of subgame perfect equilibrium
selection is that it involves imprudent strategies.
Consider Kalai's hat game: a hat passes around the n players; each can put

a dollar or nothing in the hat; if all do, they get back $2 each; if one or more
put nothing in the hat, all the money in the hat is lost. There are two Nash
equilibria: all put $1 or nobody does; the former is the s.p. equilibrium, but,
unlike the latter, its strategies are imprudent.
The next example is a celebrated paradoxical game.

Example 3 Selten's chain store paradox
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There are 20 + 1 players. The incumbent meets successively the 20 small
potential entrants. At every meeting, the following game takes place: �rst
stage: the small �rm chooses to enters or stay out; in the latter case payo�s are
(0; 100) to small �rm and incumbent; if small �rm enters, the incumbent chooses
to collude or �ght, with corresponding payo�s (40; 50) and (�10; 0) respectively.
The only s.p. equilibrium is that all small �rms enter, and collusion occurs every
time.
Now suppose you are small �rm #17 and the incumbent has been challenged

5 times and has fought every time, what do you do? It is certainly imprudent to
enter! The other Nash equilibrium where the incumbent is committed to �ght
every period seems more plausible.
On the other hand, the s.p. equilibrium may display excessive prudence as

in the following game.

Example 4 Rosenthal's centipede game
This is a multi-stage version of grab the dollar (example 2 above), where the

pot starts empty, and grows by 1 cent every period. In odd periods, player 1
can grab half of the pot plus one cent, and leave the rest of the pot to player 2,
or do nothing and let the pot grow till next period; in even periods player 2 can
grab half of the pot plus one cent, and leave the rest to player 1, or do nothing
and let the pot grow till next period. The game lasts for 100 periods. In the
last period player 2 gets 51c and player 1 gets 49c.
In the subgame perfect equilibrium, player 1 grabs 1c in period 1 and player

2 gets nothing. This is actually the only Nash equilibrium of the game!

3 Subgame perfect equilibrium in in�nite games

When the number of stages in the game is in�nite, the computation of s.p.
equilibria becomes more tricky, and can lead to much indeterminacy or to a
deterministic prediction. A famous example follows.

Example 5 Rubinstein's alternating o�ers bargaining
The two players divide a dollar by taking turns (starting with player 1)

making o�ers. The �rst accepted o�er is �nal. No money is handed out until
an o�er is accepted. Player i's discount rate is �i; 0 � �i � 1: receiving $x in
period k is worth $x(�i)

k�1 in period 1. (Alternative interpretation: after each
rejected o�er, there is a chance (1� �) that the game ends with no one getting
any money).
Case 1: no impatience, �1 = �2 = 1 (or no risk of the game terminating). If

the number of periods is �nite, whoever makes the last o�er acts as the Leader
in a Nash demand game, therefore keeps essentially the whole dollar. If the
game never stops, in�nite number of periods (and disagreement for ever yields
zero pro�t to both players), any division (x; 1 � x) of the dollar is a subgame
perfect equilibrium outcome. It is achieved by the in
exible strategies where
player 1 (resp. 2) refuses any o�er below x (resp. below 1� x) and accepts any
o�er weakly above x (resp. weakly above 1� x), and the �rst o�er is (x; 1� x).
Case 2: impatient players, �1 < �2 < 1
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Check �rst that the in
exible strategies around (x; 1 � x) described above,
form a Nash equilibrium, but not not a subgame perfect equilibrium. Say in
his �rst move player 1 o�ers (y; 1 � y) where 1 � x > 1 � y > �2(1 � x).
Player 2's in
exible strategy is to say No, however in the subgame starting in
period 2 where in
exible strategies are used, player 2 cannot hope any more
than �2(1�x), therefore No to (y; 1� y) is not part of any equilibrium strategy
in this subgame. The in
exible strategies are not subgame perfect because they
contradict the equilibrium rationale in some out of equilibrium subgame.
We show now the equilibrium is unique, and compute the corresponding

shares.
Observe �rst that in any s.p.eq. outcome, agreement takes place immedi-

ately. Indeed suppose for instance agreement takes place in period 2 at (z; ��z),
then player 1 can o�er (z + 1��

2 ;
1+�
2 � z) to player 2, a better result for both

players, which player 2 should accept under subgame perfection.
Next the set of s.p.eq. outcomes can be shown to be closed, hence compact,

so we can talk of the best or worst s.p. share for either agent.
In a s.p.eq. where 1 speaks �rst, if his o�er is rejected we go to a s.p.eq.

where 1 speaks second. Hence the best s.p.eq. for 1 when he speaks �rst is the
one followed by the worst s.p.eq. of 2 in the game where 2 speaks �rst. Let x
be 1's share in his best s.p.eq. when he speaks �rst, and y be player 1's share
in his best s.p.eq. when he speaks second. Because the o�er 1 � x is accepted
by 2 in that s.p.eq., we have

1� x = �2(1� y)

Next consider player 2: the worst s.p.eq. for 2 when he speaks �rst is the one
followed by the best s.p.eq. of 1 in the game where 1 speaks �rst. Because the
o�er y is accepted by 1 in that s.p.eq., we have

y = �1x

We can symmetrically look at the worst s.p.eq. share x0 for 1 in the game where
he speaks �rst, and worst s.p.eq. share y0 in the game where he speaks second.
Check that x0; y0 satis�es the same system of equations as x; y, implying x = x0

and y = y0, i.e., the s.p. equilibrium outcome is unique. When player 1 speaks
�rst it is

(x; 1� x) = ( 1� �2
1� �1�2

;
�2(1� �1)
1� �1�2

)

It remains to show that in the game where player 1 speaks �rst, the following
strategies form a s.p.eq.:
player 1 always o�ers (x; 1� x), rejects any o�er below y, accepts any o�er

y or more;
player 2 always o�ers (y; 1 � y), rejects any o�er below 1 � x, accepts any

o�er 1� x or more;
Our last example involves only two stages but many players. It illustrates

the techniques to compute s.p.equilibria in this context.
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Example 6 durable goods monopoly
A monopolist produces at zero cost a durable good. There are 1000 con-

sumers, with reservation prices for the good uniformly distributed in the interval
[0; 100]. The common discount rate of the monopolist and consumers is �. If
the monopolist can commit himself to a �xed pricing policy at the beginning of
the game, his best choice is a constant price of 50. Consumers are impatient,
so the upper half will buy immediately, for a monopolist pro�t of 25,000 and
consumer surplus 12,500. However it is more realistic to assume the monopolist
cannot commit ex ante for both periods; in period 2, he wants to cut his price
to extract a little more surplus from the consumers who did not buy in the
1st period. But p1 = 50; p2 = 25 is not an equilibrium, because a consumer
who values the object at $51 prefers to wait for the "sale" rather than buying
immediately.
Say p1 is the price charged in period 1, and all consumers with valuation

in ['(p1); 100] buy in period 1; then in period 2, a regular monopoly situation,

the price will be '(p1)
2 and all agents in ['(p1)2 ; '(p1)] will buy. Equilibrium

conditions in period 1:
for consumers

'(p1)� p1 = �('(p1)�
'(p1)

2
)() '(p1) =

p1

1� �
2

for the monopolist

p1 maximizes (100� '(p1))p1 + �(
'(p1)

2
)2

hence

p1 =
(1� �

2 )
2

1� 3�
4

50 < 50;'(p1) =
1� �

2

1� 3�
4

50 > 50

�nally both monopoly pro�t and consumer surplus go up, relative to the non
strategic p1 = 50; p2 = 25.

4 Other re�nements of Nash equilibrium

When we represent an extensive form game in the normal form, the normal form
could have multiple equilibria which are \behaviorally" the same. For example,
assume that player 1 makes move two times. The �rst time he chooses a or b,
and the second time he chooses c or d. This results in four strategies (a; c), (a; d),
(b; c), and (b; d). The unique (behaviorally) mixed strategy \play a or b, with
probability 1/2 each, at the �rst move, and play c or d, with probability 1/2 each,
at the second move", can be represented in a continuum ways as a mixed strategy
in normal form representation, as p(a; c)+(1=2�p)(a; d)+(1=2�p)(b; c)+p(b; d)
for any p 2 [0; 1=2].
Another way to view Nash equilibrium of an extensive form game is looking

at its multiagent representation. Namely, assume that each player i is repre-
sented by several agents, one for each of his information sets. All those agents
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have the same payo�s (same as player i). Each agent acts at most once in the
game | if and when the game path goes through the corresponding informa-
tion set | and at the moment this agent acts he has no additional information
compared with what he knew before the game started. Hence, we can regard
our game as a game where all players (i.e., all agents) simultaneously and inde-
pendently choose each a strategy from his strategy set (which is the set of move
labels for the information set for which an agent is responsible). This game
hence can be viewed as a normal form game.
The Nash equilibria of the original extensive form game can be de�ned as

the Nash equilibria of thus constructed normal form game which is called its
multiagent representation. The problem with this de�nition is that agents are
precluded from cooperation. Thus, we get unrealistic equilibria.

Example 7 Consider an extensive form game where agent 1 �rst chooses a
or b: Without knowing his choice, agent 2 then chooses x or w. If agent 1 has
chosen b initially, then the game ends there. If agent 1 has chosen a initially, he
has now to choose between y and z, without knowing the choice of agent 2. The
payo�s are (3; 2) for (b; x), (2; 3) for (b; w), (4; 1) for (a; x; z), (2; 3) for (a; x; y),
(0; 5) for (a;w; z), and (3; 2) for (a;w; y). It is easy to check that (b; w; z) is
a Nash equilibrium of the multiagent representation of this game, but not an
equilibrium of its normal form. The last follows from the fact that player 1's
best response to w is not (b; z), but (a; y):

The way to deal with this is to consider as Nash equilibria of extensive form
game �e only those equilibria of its multiagent representation which survive as
Nash equilibria of the normal representation of initial game �e. These equilibria
are called Nash equilibria in behavioral strategies. They always exist for �nite
extensive form games.

4.1 Sequential rationality

Sequential rationality is a generalization of the subgame-perfect equilibrium):
the idea that the choice in each information set should be rational (i.e. a best
response), given what the player believes about what are the chances for him to
be at each particular node from this information set. These beliefs are assumed
to be formed by Bayesian update. This idea results in the notion of sequential
equilibrium (they always exist for �nite extensive form games).
A sequential equilibrium is (s; �); a vector of behavioral strategies plus a

vector of Bayesian consistent beliefs for all nodes (conditional probabilities that
we are at each particular node, given that we are in the information set including
this node), such that given those beliefs it is sequentially rational for the players
to follow the prescribed strategies. The proper de�nition includes the way to
de�ne the consistency of � for the nodes that have a zero probability to be on
the game path under s. It is done by assuming that there exists a sequence
of \tremblings" of s, which assign a positive probability to each pure strategy
and converge to s, such that the belief about the node with zero probability
is the limit of the Bayesian updated beliefs for those tremblings (see below the
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de�nition of trembling hand equilibrium).

4.2 Trembling hand perfect equilibrium

Trembling hand perfection is the re�nement of Nash equilibrium which applies
to the normal form games. Consider � = (N; (Ci)i2N ; (ui)i2N ) with all Ci �nite,
Si = �(Ci). A vector of mixed strategies s 2 S is a (trembling hand) perfect
equilibrium of this game if there exists a sequence of sk 2 S, k = 1; 2; :::, such
that
(1) Any ski is completely mixed strategy, i.e. all pure strategies from Ci

belong to its support (are used with positive probability)
(2) lim

k!1
ski (ci) = si(ci) for all i 2 N , all ci 2 Ci (i.e., sk converges to s)

(3) si 2 arg max
ti2Si

ui(ti; s
k
�i) for all i 2 N , and all k

I.e., s is a (trembling hand) perfect equilibrium if there exists a sequence
of \tremblings" (completely mixed strategies, ones which could end up in using
any pure strategy with positive probability, even the most unreasonable one),
such that this sequence converges to s, and that each strategy si in s is a best
response to any of those tremblings made by all players other then i.
The following theorems we will not prove.

Theorem 4 For any � = (N; (Ci)i2N ; (ui)i2N ) with all Ci �nite there exists at
least one (trembling hand) perfect equilibrium.

Theorem 5 If �e is an extensive form game with perfect recall, and s is a
trembling hand perfect equilibrium of the multiagent representation of �e, then
there exists a vector of beliefs �, such that (s; �) is a sequential equilibrium of
�e.

Note that the existence of sequential equilibria follows from these two theo-
rems.

5 Problems for Chapter 5

Problem 1 leader follower equilibrium
In each case, compare the two leader follower equilibria with the Nash equi-

librium (or equilibria) of the normal form game. If the game de�ned earlier is
among n players, simply consider the two player case.
a) variant of the grab the dollar game (example 2 chapter 4) where a and b

increase and b(t) > a(t) for all t:
b) in the coordination game example 8 chapter 2
c) in the public good provision game of example 20 chapter 2
d) in the war of attrition with mixed strategies, example 6 chapter 3
e) in the (mixed strategies) lobbying game of example 7 chapter 3.

Problem2 King Solomon
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King Solomon hears from two mothers A and B who both claim the baby
but only one of them is the true mother. Both mothers know who is who, but
Solomon does not. However Solomon knows that the baby s worth v1 to the true
mother and v2 to the false one, with v2 < v1. He has them play the following
game.
Step 1 Mother A is asked to say "mine" or "hers". If she says "hers" mother

B gets the baby and the game stops. If she says "mine" we go to Step 2. Mother
B must "agree" or "challenge". If she agrees mother A gets the baby and the
game stops; if she challenges, mother B pays v and keeps the baby, whereas
mother A pays w. These two numbers are chosen so that v2 < v < v1 and
w > 0.
Show that in the subgame perfect equilibrium of the game, the true mother

gets the baby. What about the money?

Problem 3 Bertrand duopoly
Two �rms are located town A and B respectively; in each town there is

d units of inelastic demand with reservation price p (the same in each town);
transportation cost between a and B is t. Thus we have a symmetrical game
with strategy set [0; p] and payo�

u1(s1; s2) = ds1 if js1 � s2j � t
= 2ds1 if s1 + t < s2; = 0 if s2 + t < s1

(note that when t is exactly the price di�erence, customers does not travel; the
opposite assumption would do just as well).
a) Show the game has no Nash equilibrium if 2t < p. Compute the Nash

equilibrium (or equilibria) if p � 2t.
b) Compute the Leader-Follower equilibria and show that a �rm always

prefers to be Follower.

Problem 4 leader-follower equilibrium
In this problem we restrict attention to �nite two-person games (S1; S2; u1; u2)

in pure strategies, such that the mappings u1 and u2 are one-to-one on S1�S2.
Therefore the best reply strategies are unique, and so are the 1�L,2�F and
2�L,1�F equilibria. Denote the corresponding payo�s Li and Fi.
Suppose Li = Fi for i = 1; 2. Show that the 1�L,2�F and 2�L,1�F equi-

libria coincide, are a Nash equilibrium, Pareto superior to any other Nash equi-
librium.

Problem 5 three way duel (Dixit and Nalebu�)
Larry, Mo and Curly play a two rounds game. In the 1st round, each has

a shot, �rst Larry then Mo then Curly. Each player, when given a shot, has
3 options: �re at one of the other players, or �re up in the air. After the 1st
round, any survivor is given a second shot, again beginning with Larry then Mo
then Curly.
For each duelist, best outcome is to be the sole survivor; next is to be one of

two survivors; inthird place is the outcome where no one gets killed; dead last
is that you get killed.
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Larry is a poor shot, with only 30% chance of hitting a person at whom he
aims. Mo has 80% accuracy, and Curly has 100% accuracy.
Compute the subgame perfect equilibrium of this game, and the equilibrium

probabilities of survival.

Problem 6
Ten pirates (ranked from 10 to 1 from the oldest to the youngest) share 100

gold coins. The oldest �rst submits an allocation of his choice to a vote. If at
least half of the pirates (including the petitioner) approves of this allocation, it
is enforced. Otherwise, the oldest pirate walks away with no coin, and the same
game is repeated with nine pirates, etc. How would you recommend the players
to play? (Find the subgame-perfect Nash equilibrium outcomes)

Problem 7
In an extensive form game, a behavior strategy for player i speci�es a prob-

ability distribution over alternatives at each information set of player i. Mixed
strategy, as always, is a probability distribution over the set of pure strategies.
Two strategies of player i are called equivalent if they generate the same payo�
for player i for all possible combinations c�i of pure strategies of other play-
ers. Prove that in a game of perfect recall, mixed and behavior strategies are
equivalent.
More precisely: every mixed strategy is equivalent to the unique behavior

strategy it generates, and each behavior strategy is equivalent to every mixed
strategy that generates it.

Problem 8 (di�cult!)
Prove that for a zero-sum game any Nash equilibrium is subgame perfect.

More precisely, for any outcome which is the result of a Nash equilibrium strat-
egy pro�le, there is a subgame perfect equilibrium strategy pro�le which results
in the same outcome (an outcome is a probability distribution over the terminal
nodes).

Problem 9 grab a shrinking dollar
One dollar is placed in the "pot" in period 1; its value will diminish by a

discount of � at each period (after k periods, it is worth �k�1 to both players).
The two players take turns, starting with player 1. When i has the move, she
has 2 choices: to stop the game, in which case 40% of the pot goes to i and
60% to player j, or to let player j have the next move. The game goes on until
someone stops, or if no one does both players get zero.
a) Show that if � is small enough, the only Nash equilibrium of the game is

that player 1 grabs the dollar immediately. Explain "small enough".
b) Is there any value of � such that in some Nash equilibrium of the corre-

sponding game, someone grabs the dollar after each player has declined to do
so at least once?
c) Show that if � is large enough, there is a subgame perfect equilibrium

where player 1 does not grab the dollar, and player 2 does in the next turn.
Explain "large enough".

Problem 10 bargaining with alternating o�ers
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In this variant of Rubinstein's model (example 5), the only di�erence is that
after an o�er is rejected, the 
ip of a fair coin decides the player who makes the
next o�er. Successive draws are independent.
a) Assume �rst the players have a common discount factor �. Find the

symmetrical subgame perfect equilibrium of the game, and show it is the unique
s.p. equilibrium.
b) Now we have 2 di�erent discount factors. Compute similarly the s.p.

equilibrium or equilibria.
Note: for both questions you must describe the equilibrium o�er and accep-

tance strategies of both players.

Problem 11 durable goods monopoly
In the model of example 6, we now assume the good is in�nitely durable

and the game lasts for ever. A strategy of the monopolist is a stream of prices
(p1; p2; � � � ) and his pro�t is

P1
t=1 �

tptqt, where qt is the quantity sold in period
t. A consumer with valuation v gets utility �t(v � pt) if she buys in period t.
Look for a linear stationary s.p. equilibrium: facing price pt at time t,

all consumers with valuation �pt or above (if any are left) buy, others don't.
facing an unserved demand [0; v] at time t, the monopolist charges the price �v.
Naturally the two constant �; � are such that � � 1; � � 1.
write the equilibrium condtions resulting in a system to compute �; �. Solve

the system numerically for � = 0:9 and � = 0:5. Deduce the optimal sequence
(p1; p2; � � � ) and discuss its rate of convergence. Compute the equilibrium pro�t
and consumer surplus.

Problem 12 last mover advantage in a �rst price auction
In the game of Example 12 chapter 3 with two bidders, recall that the unique

symmetrical equilibrium has a bid function x(t) = t
2 , and an expected gain of

$ 1006 for each player.
Suppose now player 2 has the last mover advantage: he observes player 1's

bid before bidding himself. Compute the unique subgame perfect equilibrium
of this game, and the corresponding expected gains of the players. Compare to
the case of simultaneous bids.
Suppose next that player 2 sees player 1's bid but player 1 is unaware of this

(and so he plays as in the case of simultaneous bids). Compute the corresponding
expected gains of both players.
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