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1 Nash's theorem

Nash's theorem generalizes Von Neumann's theorem to n-person games.

Theorem 1 (Nash) If in the game G = (N;Si; ui; i 2 N) the sets Si are convex
and compact, and the functions ui are continuous over X and quasi-concave in
si, then the game has at least one Nash equilibrium.

For the proof we use the following mathematical preliminaries.

1) Upper hemi-continuity of correspondences
A correspondence f : A !! Rm is called upper hemicontinuous at x 2 A if
for any open set U such that f(x) � U � A there exists an open set V such
that x 2 V � A and that for any y 2 V we have f(y) � U . A correspondence
f : A !! Rm is called upper hemicontinuous if it is upper hemicontinuous at
all x 2 A.
Note that for a single-valued function f , this de�nition is just the continuity

of f .

Proposition 2 A correspondence f : A !! Rm is upper hemicontinuous if
and only if it has a closed graph and the images of the compact sets are bounded
(i.e. for any compact B � A the set f(B) = fy 2 Rm : y 2 f(x) for some
x 2 Bg is bounded).

Note that if f(A) is bounded (compact), then the upper hemicontinuity is
equivalent to the closed graph condition. Thus to check that f : A !! A
from the premises of Kakutani's �xed point theorem is upper hemicontinuous
it is enough to check that it has closed graph. I.e., one needs to check that for
any xk 2 A, xk ! x 2 A, and for any yk ! y such that yk 2 f(xk), we have
y 2 f(x).
2) Two �xed point theorems

Theorem 3 (Brouwer's �xed point theorem) Let A � Rn be a nonempty convex
compact, and f : A ! A be single-valued and continuous. Then f has a �xed
point : there exists x 2 A such that x = f(x).
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Extension to correspondences:

Theorem 4 (Kakutani's �xed point theorem)

Let A � Rn be a nonempty convex compact and f : A !! A be an upper
hemicontinuous convex-valued correspondence such that f(x) 6= ? for any x 2
A. Then f has a �xed point: there exists x 2 A such that x 2 f(x).
Proof of Nash Theorem.
For each player i 2 N de�ne a best reply correspondence Ri : S�i !! Si in

the following way: Ri(s�i) = argmax
�2Si

ui(�; s�i). Consider next the best reply

correspondence R : S !! S; where R(s) = R1(s�1)� :::� RN (s�N ). We will
check that R satis�es the premises of the Kakutani's �xed point theorem.
First S = S1�:::�SN is a nonempty convex compact as a Cartesian product

of �nite number of nonempty convex compact subsets of Rp.
Second since ui are continuous and Si are compact there always exist max

�2Si
ui(�; s�i).

Thus Ri(s�i) is nonempty for any s�i 2 S�i and so R(s) is nonempty for any
s 2 S:
Third R(s) = R1(s�1) � ::: � RN (s�N ) is convex since Ri(s�i) are convex.

The last statement follows from the (quasi-) concavity of ui(�; s�i). Indeed if
si; ti 2 Ri(s�i) = argmax

�2Si
ui(�; s�i) then ui(�si+(1��)ti; s�i) � �ui(si; s�i)+

(1� �)ui(ti; s�i) = max
�2Si

ui(�; s�i), and hence �si + (1� �)ti 2 Ri(s�i).
Finally given that S is compact to guarantee upper hemicontinuity of R we

only need to check that it has closed graph. Let sk 2 S, sk ! s 2 S, and
tk ! t be such that tk 2 R(sk). Hence for any k and for any i = 1; :::; N we
have that ui(t

k; sk�i) � ui(�; sk�i) for all � 2 Si. Given that (tk; sk�i)! (t; s�i)
continuity of ui implies that ui(t; s�i) � ui(�; s�i) for all � 2 Si. Thus t 2
argmax

�2Si
ui(�; s�i) = R(s) and so R has closed graph.

Now, Kakutani's �xed point theorem tells us that there exists s 2 S =
S1 � ::: � SN such that s = (s1; :::; sN ) 2 R(s) = R1(s�1) � ::: � RN (s�N ).
I.e. si 2 R(s�i) for all players i. Hence, each strategy in s is a best reply to
the vector of strategies of other players and thus s is a Nash equilibrium of our
game.�
A useful variant of the theorem is for symmetrical games.

Theorem 5 If in addition to the above assumptions, the game is symmetrical,
then there exists a symmetrical Nash equilibrium si = sj for all i; j.

Proof. The game is (N;S0; u) with S0 the common strategy set, and u : S0 �
S
N�f1g
0 ! R its common payo� function. Check that we can apply Kakutani's
theorem to the mapping R0 from S0 into itself:

R0(s0) = arg max
�2S0

ui(�; s0; s0; � � � ; s0)

A �xed point of R0 is a symmetric Nash equilibrium.
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The main application of Nash's theorem is to �nite games in strategic form
where the players use mixed strategies.
Consider a normal form game �f = (N; (Ci)i2N ; (ui)i2N ), where N is a

(�nite) set of players, Ci is the (nonempty) �nite set of pure strategies available
to the player i, and ui : C = C1� :::�CN ! R is the payo� function for player
i. Let Si = �(Ci) be the set of all probability distributions on Ci (i.e., the set of
all mixed strategies of player i). We extend the payo� functions ui from C to
S = S1� :::�SN by expected utility. The normative assumptions justifying this
type of preferences over uncertain outcomes are the subject of the next section.
In the resulting game Si will be convex compact subsets of some �nite-

dimensional vector space. Extended payo� functions ui : S ! R will be contin-
uous on S, and ui(�; s�i) will be be concave (actually, linear) on Si: Thus we
can apply the theorem above to show that

Theorem 6 �f always has a Nash equilibrium in mixed strategies.

Note that a Nash equilibrium of the initial game remains an equilibrium in
its extension to mixed strategies.
The Problems o�er several applications of Nash's theorem, in particular

problem 5.

2 Games with increasing best reply

A class of games closely related to dominance-solvable games consist of those
where the best reply functions (or correspondences) are non decreasing. In those
games existence of a Nash equilibrium is guaranteed by the general �xed point
theorem of Tarski, stating that an increasing function in a lattice must have at
least a �xed point.
A simple instance of this result is that any non decreasing function f from

[0; 1]n into itself (i.e., x � x0 ) f(x) � f(x0)) has a �xed point. We also
know that it has a smallest �xed point, and a largest �xed point. Now consider
a symmetric game where Si = [0; 1] and the (symmetric) best reply function
s ! br(s; � � � ; s) is non decreasing. This function must cross the diagonal,
which shows that a symmetric Nash equilibrium exists. The next Proposition
generalizes this observation.

Proposition 7 Let the strategy sets Si be either �nite, or real intervals [ai; bi].
Assume the best reply functions in the game G = (N;Si; ui; i 2 N) are single
valued and non decreasing

s�i � s0�i ) bri(s�i) � bri(s0�i) for all i and s�i 2 S�i

Then the game has a smallest Nash equilibrium outcome s� and s+ a largest
one s+. If a best reply dynamics starting from a converges, its limit is s�; if a
best reply dynamics starting form b converges, it is to s+.

3



Proposition 8 Say that the payo� functions ui satisfy the single crossing prop-
erty if for all i and all s; s0 2 SN such that s � s0 we have

ui(s
0
i; s�i) > ui(si; s�i)) ui(s

0
i; s

0
�i) > ui(si; s

0
�i)

ui(s
0
i; s�i) � ui(si; s�i)) ui(s

0
i; s

0
�i) � ui(si; s0�i)

Under the SC property, de�ne br�i and br+i to be respectively the smallest and
largest element of the best reply correspondence. They are both non-decreasing.
The sequences st� and s

t
+ de�ned as

s0� = a; s
t+1
� = br�i (s

t
�); s

0
+ = b; s

t+1
+ = br+i (s

t
+)

are respectively non decreasing and non increasing, and they converge respec-
tively to the smallest Nash equilibrium s� and to the largest one s+. Finally the
successive elimination of strictly dominated strategies converges to [s�; s

+]

fs�; s+g � \1t=1StN � [s�; s+]

In particular if the game has a unique equilibrium outcome, it is strictly dominance-
solvable.

Note that if ui is twice di�erentiable the SC property holds if and only if

@2ui
@si@sj

� 0 on [a; b].

Example 1 Voluntary contribution to a public good (continued)
Consider Example 20 of chapter 2 where z ! B(z) is convex over R+. Then
the game has the SC property, therefore all the properties spelled above apply.
As the game is also a potential game, we conclude that it is strictly dominance
solvable if the potential function P (s) = B(sN ) �

P
i Ci(si) has a unique

coordinate-wise maximum. An example is B(x) = 1
2x

2; Ci(x) =
1
3
x3

a2i
.

Example 2 A search game
Each player exerts e�ort searching for new partners. The probability that player
i �nds any other player is si; 0 � si � 1, and when i and j meet, they derive
the bene�ts �i and �j respectively. The cost of the e�ort is Ci(si). Hence the
payo� functions

ui(s) = �isisN�fi) � Ci(si) for all i

Assuming only that Ci is increasing, we �nd that the game satis�es the single
crossing property. The strategy pro�le s� = 0 is always an equilibrium, and the
largest equilibrium s+ is Pareto superior to s�.
The game is a potential game as well, provided we rescale the utility functions
as

vi(s) =
1

�i
ui(s) = sisN�fi) �

1

�i
Ci(si)

4



so the potential is

P (s) =
X
i 6=j

sisj �
X
i

1

�i
Ci(si)

Example 3 price competition
Each �rm has a linear cost production (set to zero without loss of generality)
and chooses a non negative price pi. The resulting demand and net payo� for
�rm i are

Di(p) = (Ai �
�i
3
p2i +

X
j 6=i

�jpj)+ and ui(p) = piDi(p)

Check that for any p�i, the best reply of player i is

bri(s�i) =
1
p
�i

s
Ai +

X
j 6=i

�jpj

so that the game has increasing best reply functions. On the other hand it does
not have the single crossing property.
In the symmetric case (Ai = A;�i = �; �i = �), one checks that its equilibrium
is unique and is strongly stable.

3 Von Neumann Morgenstern utility

We axiomatize preferences over random outcomes represented by an expected
utility function.
Notation:
C is the �nite set of outcomes (consequences), C = fc1; � � � ; cmg
� is the set of lotteries on C with generic element L = (p1; � � � ; pm); pj � 0

for all j and
Pm

1 pj = 1

De�nition 9 (compound lottery) Given K (simple) lotteries Lk 2 �; k =
1; � � � ;K, and a probability distribution � = (�1; � � � ; �K), the compound lot-
tery (Lk; k = 1; � � � ;K;�) is the random choice of an outcome in C where we
pick �rst a lottery Lk according to �, then an outcome in C according to Lk.

The simple lottery L =
PK

1 �kLk give the same ultimate probability dis-
tribution over outcomes as the compound lottery (Lk; k = 1; � � � ;K;�), yet it
is not unreasonable to distinguish these two objects from a decision-theoretic
viewpoint.

Consequentialist axiom: the preferences of our decision maker over a com-
pound lottery do not distinguish it from the associated simple lottery.

In view of this axiom, the preferences of our agent over the random outcomes
in C, obtained via compound lotteries of arbitrary order, are represented by a
rational preference (complete, transitive) � over �.
Continuity axiom: upper and lower contour sets of � are closed in �.
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By the classic Debreu theorem, the continuity axiom implies that these pref-
erences can be represented by a continuous utility function.

Independence axiom: for all L;L0; L00 2 �, for all � 2 [0; 1]

L � L0 , �L+ (1� �)L00 � �L0 + (1� �)L00

The independence axiom is very intuitive given consequentialism, and yet
extremely powerful. It is the mathematical engine driving th VNM theorem.

De�nition 10 The utility function U : �! R has the Von Neumann Morgen-
stern expected utility form if there exists real numbers u1; � � � ; um such that

U(L) =
mX
j=1

ujpj for all L = (p1; � � � ; pm) 2 �

An equivalent de�nition is that the function U is a�ne on �, namely

U(�L+ (1��)L0) = �U(L) + (1��)U(L0) for all L;L0 2 �, and all � 2 [0; 1]

An important invariance property of the VNM representation of a preference
relation on �: if U has the VNM form and represents �, so does �U +  for
any numbers � > 0 and  2 R. Conversely, such utility functions are the only
alternative VNM representations of �.
A consequence of this invariance is that di�erences in cardinal utilities have

meaning:

u1 � u2 > u3 � u4 ,
1

2
u1 +

1

2
u4 >

1

2
u2 +

1

2
u3

Theorem 11 (Von Neumann and Morgenstern) The preferences � over �
meet the Continuity and Independence axioms if and only if they are repre-
sentable in the expected utility form.

A consequence of the Independence axiom is the property that indi�erence
contours of these preferences are straight lines; this is the key argument in the
proof of the Theorem.
Critique of the independence axiom: the Allais paradox

Consider three outcomes

� c1: win a prize of 800K

� c2: win a prize of 500K

� c3: no prize.

Now consider the two choices between two pairs of lotteries

L1 = (0; 1; 0) versus L
0
1 = (0:1; 0:89; 0:01)

L2 = (0; 0:11; 0:89) versus L
0
2 = (0:1; 0; 0:9)

A commonly observed set of preferences are:

L1 � L01, L02 � L2
but these preferences are not compatible with VNM expected utility!
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4 Mixed strategy equilibrium

Here we discuss a number of examples to illustrate both the interpretation and
computation of mixed strategy equilibrium in n-person games. We start with
two-by-two games ( two players have two strategies each).

Example 4 crossing games
We revisit the example 12 from chapter 2

stop 1; 1 1� "; 2
go 2; 1� " 0; 0

stop go

and compute the (unique) mixed strategy equilibrium

s�1 = s
�
2 =

1� "
2� " stop +

1

2� "go

with corresponding utility 2�2"
2�" ' 1 �

"
2 for each player. So an accident (both

player go) occur with probability slightly above 1
4 . Both players enjoy an ex-

pected utility only slightly above their secure (guaranteed) payo� of 1�". Under
s�1, on the other hand, player 1 gets utility close to

1
2 about half the time: for

a tiny increase in the expected payo�, our player incur a large risk. [Note that
this is a critique of the VNM utility representation, not of the mixed strategy
equilibrium concept.]
The point is stronger in the following variant of the crossing game

stop 1; 1 1 + "; 2
go 2; 1 + " 0; 0

stop go

where the (unique) mixed strategy equilibrium is

s�1 = s
�
2 =

1 + "

2 + "
stop +

1

2 + "
go

and gives to each player exactly her guaranteed utility level in the mixed game.
Indeed a (mixed) prudent strategy of player 1 is

es1 = 2

2 + "
stop +

"

2 + "
go

and it guarantees the expected utility 2+2"
2+" , which is also the mixed equilibrium

payo�. Now the case for playing the equilibrium strategy in lieu of the pru-
dent one is even weaker, unless we maintain a strict interpretation of the VNM
preferences.

Computing the mixed equilibrium or equilibria of a �nite n-person game
follows the same general approach as for two-person zero-sum games. Here too
the di�culty is to identify the support of the equilibrium strategies. In a two-
person games, we can always �nd at least one equilibrium with two supports
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of equal sizes, but this is not true any more with three or more players (for
instance player 3 may have a dominant strategy, while players 1 and 2 play
mixed strategies of equal size0. Once this is done we need to solve a system of
linear equalities and inequalities.
Unlike in two-person zero-sum games, we may have several mixed equilibria

with di�erent payo�s. A deep theorem shows that for "most games", the number
of mixed or pure equilibria is odd.

Example 5 public good provision (Bliss and Nalebu�)
Each one of the n players can provide the public good (hosting a party, slaying
the dragon, or any other example where only one player can do the job) at a
cost c > 0. The bene�t is b to every agent if the good is provided. We assume
c < nb: the social bene�t justi�es providing the good. The players can divide
the burden of providing the good by the following use of lotteries. Each player
chooses to step forward (volunteer) or not. If nobody volunteers, the good is
not provided; if some players volunteer, we choose one of them with uniform
probability to provide the good.
If b < c, the game in pure strategies is a classic Prisoner's Dilemna (section

2.2.3) . If b > c, it resembles the war of attrition (sectione 2.2.1) in that we have
n pure strategy equilibria where one player provides the good and the other free
ride.
The game is symmetrical so we look for a symmetrical equilibrium in mixed

strategies in which every player steps forward with probability p�; 0 < p� < 1.
Then each player is indi�erent between stepping forward or not. The latter
gives the expected utility b(1� (1� p)n�1). The former gives the utility

b� c(
n�1X
k=0

�
n�1
k

�
k + 1

pk(1� p)n�1�k) = b� c1� (1� p)
n

np

(because
(n�1k )
k+1 =

( n
k+1)
n ). Therefore p� solves

nb

c
p =

1� (1� p)n
(1� p)n�1 = f(p)

Notice that f is convex, increasing, from f(0) = 0 to f(1) =1, and f 0(0) = n.
Therefore if b < c, the only solution of the equation above is p = 0 and we are
back to the Prisoner's Dilemna. But if b > c, there is a unique equilibrium in
mixed strategies. For instance if n = 2, we get

p�2 =
2(b� c)
2b� c and ui(p

�) =
2b(b� c)
2b� c

One checks that as n grows, p�n goes to zero as
K
n where K is the solution of

c

b
=

KeK

1� e�K

therefore the probability that the good be provided goes to 1 � e�K , but the
probability of volunteering of each player goes to zero.

8



Note that, because p�(k) is decreasing in k, the game has many other equi-
libria, where only a subset of k players step forward with the corresponding
probability p�(k).

In�nite sets of pure strategies
Existence of a Nash equilibrium in mixed strategies holds under the same

assumptions as Glicksberg theorem for two person zero-sum games, namely
strategy sets are convex and compact, and utility functions are continuous.
Here is an example.

Example 6 lobbying game (a.k.a. all-pay �rst price auction)
The n players compete for a prize of $p and can spend $si on lobbying (bribing)
the relevant jury members. The largest bribe wins the prize; all the money
spent on bribes is lost to the players. Hence the payo� functions

ui(s) = p� si if si > max
j 6=i

sj ; = �si if si < max
j 6=i

sj ; =
p

K
� si if si = max

j 6=i
sj

The strategies si > p are dominated by the null strategy. But the game has no
equilibrium in pure strategies. In the symmetrical mixed Nash equilibrium each
player independently chooses a bid in [0; p] according to the cumulative distri-
bution function F . As in the previous example we compute the expected payo�
to player 1 using his pure strategy s1 against the mixed strategy of everyone
else: (p � s1)Fn�1(s1) � s1(1 � Fn�1(s1)). That this payo� is independent of
s1 2 [0; p] gives

F (x) = (
x

p
)

1
n�1

As in the above example the equilibrium payo� is zero, just like the guaranteed
payo� from a null bid.

Example 7 war of attrition (a.k.a. all-pay second price auction)
We revisit the game of timing in Example 7 Chapter 2, specifying VNM utilities.
The n players compete for a prize worth $p by "hanging on" longer than everyone
else. Hanging on costs $1 per unit of time. Once a player is left alone, he wins
the prize without spending any more e�ort.

ui(s) = p�max
j 6=i

sj if si > max
j 6=i

sj ; = �si if si < max
j 6=i

sj ; =
p

K
� si if si = max

j 6=i
sj

where K is the number of largest bids.
One checks �rst that no pure strategy is dominated. In addition to the

pure equilibria described in Example 7, Chapter 2, we have one symmetrical
equilibrium in completely mixed strategies where each player independently
chooses si in [0;1[ according to a cumulative distribution function F : so F (t) =
probafsi � tg. To compute F we assume that all players 2; � � � ; n choose si
according to F and consider the expected payo� of player 1 using the pure
strategy s1:Z s1

0

(p� t)G0(t)dt� s1(1�G(s1)), where G(t) = Fn�1(t) = probafmax
j 6=i

sj � tg

9



Then we write that all pure strategies s1 give the same payo� to player 1, i.e.,
the above expression is constant in s1. This gives pG

0(t) + G(t) = 1 for all t;
taking the initial condition G(0) = 0 into account, we �nd

F (x) = (1� e�
x
p )

1
n�1

In particular the support of this distribution is [0;1[ and for any B > 0 there
is a positive probability that a player bids above B. The payo� to each player
is zero so the mixed strategy is not better than the prudent one (zero bid)
payo�wise. It is also more risky. There is no equilibrium in this game where
players use strategies with bounded support.

5 Correlated equilibrium

Given a �nite n-players game in strategic form � = (N; (Ci)i2N ; (ui)i2N ), a
correlation device is a lottery L over the set C = C1 � ::: � Cn of strategy
pro�les. The interpretation is that the lottery itself is a non binding agreement
to play according to its outcome. Thus the lottery is built jointly by the players
(much like we say that the players jointly reach an agreement to play a certain
Nash equilibrium), and once it draws an outcome x 2 C, the players are supposed
to play accordingly, namely player i chooses xi in Ci.
If the outcome of the lottery is publicly known, the agreement will be self

enforcing if and only if the support of the lottery consists of Nash equilibrium
outcomes (in pure strategies). Then the lottery is a simple coordination device
over a set of equilibria in pure strategies. This is a useful coordination device,
for instance to achieve a fair compromise between asymetric equilibria in a
symmetric game. In the crossing game of example 1, tossing a fair coin between
the two equilibria yields a payo� of 1:5� "

2 , much better than the payo� of the
only symmetric equilibrium, in mixed strategies. We can interpret a red light
as achieving precisely this kind of coordination when two lines of tra�c cross.
Another example is the war of attrition (Example 7), where the players can
coordinate on a fair compromise between two Pareto optimal equilibria in pure
strategies.
More interesting is the scenario where the distribution L is known to ev-

eryone, but the outcome of the lottery is only partially revealed to each player.
Speci�cally player i learns the i-th coordinate of the outcome x, but no more:
then she evaluates the random strategies chosen by other players according to
the conditional probability of L given xi. If other players are indeed following
the recommendation of the correlation device, this evaluation is correct. Now
the equilibrium (self-enforcing) property of the lottery L states that player i's
best reply to any recommendation xi is to comply.
Given a lottery L 2 �(C) we write its support [L] � C and the projection

of the support on Ci as projif[L]g. This set contains the strategies of player
i that the device recommends to play with positive probability. For any i and
xi 2 Ci, we denote by L(xi) the corresponding conditional probability of L on
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CN�fig. Thus if Lx denotes the probability that L selects outcome x, we have

L(xi)x�i =
L(xi;x�i)P

y�i2CN�fig
L(xi;y�i)

for all xi 2 projif[L]g all x�i 2 CN�fig

De�nition 12 A lottery L 2 �(C) is a correlated equilibrium of the game
(N; (Ci)i2N ; (ui)i2N ) if for all i 2 N we have

ui(xi; L(xi)) � ui(yi; L(xi)) for all yi 2 Ci and all xi 2 projif[L]g

,
X

y�i2CN�fig

ui(xi; y�i)L(xi;y�i) �
X

y�i2CN�fig

ui(yi; y�i)L(xi;y�i) for all yi; xi 2 Ci

If s 2 �(C1)� :::��(Cn) is an equilibrium in mixed strategies, then the lottery
L = s1 � s2 � � � � � sn is a correlated equilibrium. This remark establishes that
a correlated equilibrium always exists in a �nite game.

The most important feature of the set C of correlated equilibria is that it
is a convex, compact subset of �(C). Indeed C is de�ned by a �nite set of
linear inequalities in �(C). Thus it contains all convex combinations of Nash
equilibria, pure and mixed.
In some games, that is all. For instance suppose each player has a strictly

dominant strategy: then the unique Nash equilibrium is also the unique corre-
lated equilibrium. Indeed the support of any correlated equilibrium must resist
the successive elimination of strictly dominated strategies. Furthermore, there
is always one correlated equilibrium of which the support resists the successive
elimination of weakly dominated strategies.
But as soon as we have several Nash equilibria (pure or mixed) not in a

rectangular position, there are more correlated equilibria. In some games this
only helps to average between pure equilibria, as in Example 4 above. In other
games, correlation allows a considerable improvement upon the Nash equilib-
rium outcomes.

Example 8 another Battle of the Sexes
home 10; 10 5; 13
theater 13; 5 0; 0

home theater
One of the spouses must stay home, lest they are both very unhappy to call
for a baby sitter. Both would prefer to go to the theater if the other stays
home. Each must commit to one of the two strategies before returning home,
and without the possibility to communicate with each other.
There are two equilibria in pure strategies, and a mixed equilibrium where each
player goes out with probability 3

8 . The expected payo� of the latter is 8:1 for
each. Tossing a fair coin before leaving to work between the two equilibria yields
the payo� 9 for each spouse.
There is a better correlated equilibrium, choosing (theater, home) and (home,
theater) each with probability 3

11 , and (home,home) with probability
5
11 . The

expected payo� is now 9:45 for each.
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Example 9 musical chairs
We have n players and 2 "chairs" (locations), with n > 5. The game is symet-
rical. Each player chooses a chair. His payo� is +4 if he is alone to make this
choice, 1 if one other player (exactly) makes the same choice, and 0 otherwise
(i.e., if his choice is shared by at least 2 other players).
In a pure strategy equlibria of the game, each chair is �lled by two or more

players and all such outcomes are equilibria. The total payo� is 2 or 0. In the
symmetric mixed equilibrium each player chooses a chair with probability 0:5,
and the resulting expected payo� is

4
1

2n
+ 1

n� 1
2n

=
2n� 1
2n

� 2

(there are no other mixed equilibria)
The best symmetric correlated equilibrium (i.e., the one giving the highest

total payo�) selects with probability � = 2
n�3 a distribution where one player

sits alone (and chooses with uniform probability among all such distributions),
and with probability 1�� = n�5

n�3 it picks a distribution where two players share
one chair (and chooses with uniform probability among all such distributions).
The total payo� is 2 + 4

n�3 .

6 Games of incomplete information

A game in Bayesian form(or Bayesian game) speci�es

� the set N of players

� the set of pure strategies Xi for each player i

� the set of types Ti of each player i

� the set of beliefs of each player i, represented by a probability distribution
�i(�jti) over TN�fig: one distribution for each possible type of player i

� the payo� function ui(x; t) for each player i, where x 2 XN and t 2 TN .

A Bayesian equilibrium is decribed by a mixed strategy for each player,
conditional on his type: si(ti) 2 �(Xi). The equilibrium property is

8i; ti 2 Ti;8s0i 2 �(Xi) :X
t�i2TN�fig

�i(t�ijti)ui(s(t); t) �
X

t�i2TN�fig

�i(t�ijti)ui(s0i; s�i(t�i); t)

where we use the notation

s(t) 2 �i2N�(Xi); s�i(t�i) 2 �j2N�fig�(Xj) : sj(t) = sj(tj)

12



It is enough in the equilibrium property to consider deviations to pure strategies
xi 2 Xi. Therefore the number of inequalities characterizing the equilibrium isP

i jTijjXij.
Theorem: If the sets Xi and Ti are �nite, the game possesses at least one

Bayesian equilibrium.

This is a direct consequence of Nash's theorem, after observing that a Bayesian
equilibrium is a Nash equilibrium (in pure strategies) of the game with N =
�iTi, strategy set �(Xi) for each player (i; ti) 2 N and payo�s

eu(i;ti)(s) = X
t�i2TN�fig

�i(t�ijti)ui(s(i;ti); s(j;tj) j 2 N�fig)

This game meets all the assumptions of Nash's Theorem (in particular utility
is linear in own strategy).

The common prior, common knowledge assumption
In most examples , the individual beliefs are consistent, they are derived from a
common prior, namely a probability distribution � over TN , and each player i
learns her own type ti. Thus player i's beliefs are described by the conditional
probability �i(�jti) = �(�jti) of � upon learning one's type. This distribution �
is common knowledge, which means that player i knows it, i knows that player
j knows it, j knows that player i knows that player j knows it, and so on. More
generally, for any sequence i; j; k; � � � ; l of players (possibly with repetition): i
knows that j knows that k knows that � � � that l knows it.
The classic story of the 40 prisoners illustrates the subtle role of the common
knowledge assumption. Each has a white or black dot painted on his forehead.
They see everyone else's dot, but they cannot talk to one another. Every morn-
ing they can approach the prison's warden: anyone who tells his own color is
freed at once; if he is wrong he is immediately excecuted, so no prisoner will tell
his own color unless he is absolutely certain.
All prisoners have a black dot, and nothing happens for a long time. One

day the warden gathers them and says: there is at least one black dot among
you ( a fact they all already know). Forty days later, they all go to see the
warden and all are freed.

In a Bayesian game where the beliefs are not consistent, the interpretation of
the equilibrium notion is more di�cult. Consider for instance a 2�2 two-person
zero-sum game where if t1 = t2 the game has a value of +1, whereas if t1 6= t2
the value is �1. If player 1 (resp. player 2) believes t1 = t2 (resp. t1 6= t2) for
sure, both players, "win" ex ante.

Example 10-a
Two players, player 1's type is known, that of player 2 is t1 with probability
0:6, t2 with probability 0:4:

T 1; 2 0; 1
B 0; 4 1; 3
t1 L R

T 1; 3 0; 4
B 0; 1 1; 2
t2 L R

13



Player 2 has a dominant strategy, hence the unique equilibrium is in pure strate-
gies:

x1 = T ;x2 = L if t1, = R if t2

Note that this is not the same as playing the unique Bayesian equlibrium in each
matrix separately, which makes no sense given player 1's information. Instead,
player 1 compares

(0:6)u1(T; (L; t1))+(0:4)u1(T; (L; t1)) and (0:6)u1(B; (L; t1))+(0:4)u1(B; (L; t1))

Example 10-b Same information structure, and the payo�s are now:
T 0; 2 2; 0
B 2; 0 0; 2
t1 L R

T 1; 1 5; 0
B 0; 5 3; 3
t2 L R

Here the game under t1 is essentially matching pennies, and under t2 player 2
has a dominant strategy to play L. There is no pure strategy equilibrium, as
the sequences of best replies are: LL ! B ! RL ! T ! LL, and RR ! T ,
LR! B.
Mixed strateges for the two players are

s1 = �T + (1� �)B; s2 = �L+ (1� �)R if t1; = L if t2 (1)

(because under t2 player 2 plays L for sure). In equilibrium, each player must
make the other indi�erent between his two pure strategies. Therefore player 1's
mixed strategy is the optimal play for matching pennies, and player 2's strategy
is computed as:

s�1 =
1

2
T +

1

2
B; s�2 =

2

3
L+

1

3
R if t1, = L if t2

Example 10-c Same information structure:
T 0; 2 2; 0
B 2; 0 0; 2
t1 L R

T 2; 0 1; 2
B 0; 3 2; 0
t2 L R

Here again we have no pure strategy equilibrium, as the best reply sequence is
T ! LR ! B ! RL ! T , and LL ! B;RR ! T . Bayesian strategies take
the form (1) as above. Note that player 2 no longer has a dominant strategy
in any of her types, and cannot be indi�erent between her two pure choices for
each one of her types. So she can only be indi�erent at one of her types, and
there are two possibilities:
1) player 1 makes player 2 indi�erent at t2, not at t1. Then s1 =

3
5T +

2
5B

and s2 = L if t1, = �L + (1 � �)R if t2. We must choose � to make player 1
indi�erent, namely

(0:6)0 + (0:4)(2�+ (1� �)) = (0:6)2 + (0:4)(0�+ 2(1� �))) � =
4

3

contradiction!
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2) player 1 makes player 2 indi�erent at t1, not at t2. Then s1 =
1
2T +

1
2B

and s2 = �L+ (1� �)R if t1, = L if t2. Chosing � to make player 1 indi�erent
gives

(0:6)2(1� �) + (0:4)2 = (0:6)2�+ (0:4)0) � =
5

6

and this is the unique Bayesian equilibrium of the game.

Example 11 a two-person zero sum betting game
Bob (column player) draws a card High or Low with equal probability 1

2 . Ann
(row player) has a Medium card (a fact known to Bob). Bob can raise (R) or
stay put (P ). After seeing Bob's move, Ann can see (S) or fold (F ). Payo�s
are as follows

S �10; 10 �4; 4
F �1; 1 1;�1

High R P

S 10;�10 4;�4
F �1; 1 1;�1
Low R P

Here Ann has 4 pure strategies denoted XY for do X if Bob raises, do Y if
he does not; Bob's strategy depends on his type, and is written similarly XY
for do X if High, do Y if Low (note the di�erence in interpretations).
Check �rst there is no pure strategy equilibrium, as the sequence of best

replies is

BobRR! AnnSS; AnnSS or SF ! BobRP (revealing)! AnnFS ! BobRR

and similarly

BobPR(blu�ng)! FS ! RR! � � � ;PP ! FF ! RR! � � �

Bob has a dominant strategy to raise if his card is high. Thus his P strategy
reveals to Ann that he is Low, in which case she wants to see. Therefore the
Bayesian equilibrium takes the form

Ann: p�S + p
0�F if Bob raises; S if Bob stays put

Bob: R if High; q�R + q
0�P if Low

The equilibrium conditions are

for Ann:
1

1 + q
(�10) + q

1 + q
(10) = �1) q =

9

11

for Bob: p(�10) + p0(1) = �4) p =
5

11

In equilibrium Ann expects to pay $ 611 to Bob: private information is more
valuable than second move.

Example 12: �rst price auction (Vickrey)
Pure strategies and payo�s are identical to those in example 12 Chapter 3. We
have n players and one object. Each bids for the object, highest winner wins
the object and pays own bid.
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Each player draws a valuation in the [0; 100] interval. The draws are IID
with cumulative distribution function F . We assume that F is continuous: the
underlying distribution has no atoms.
The symmetrical equilibrium has player i bid x(ti) where ti is his (privately

known) valuation.The expected payo� to player i from bidding y, given that
other players use the equilibrium strategy x(�) is

ui(yjti) = (ti � y)�fx(Tj) < y for all j 6= ig

where Tj is the type of player j, a random variable. Player i chooses his bid
y = x(t) so as to maximize (ti � x(t))probafx(Tj) < x(t) for all j 6= ig. The
equilibrium property is that t = ti is such a maximizer.
Check �rst that x(�) must be increasing. Fix t; t0; t < t0, and set p =

�fx(tj) < x(t) for all j 6= ig, p0 = �fx(tj) < x(t0) for all j 6= ig. The equilibrium
conditions at t and t0 give respectively

f(t� x(t))p > (t� x(t0)p0, and (t0� x(t0))p0 > (t0�x(t)pg ) (t0� t)(p0� p) � 0

and the desired conclusion. Similar arguments show that x(�) must be continu-
ous and di�erentiable.
We see now that the event fx(Tj) < x(t) for all j 6= ig is fTj < t for all

j 6= ig therefore probafx(Tj) < x(t) for all j 6= ig = Fn�1(t).
It remains to write that z ! (t � x(z))Fn�1(z) reaches its maximum at t,

for all t. Di�erentiating:

x0(t)Fn�1(t)� (t� x(t))fFn�1(t)g0 = 0

The boundary condition is x(0) = 0. A zero valuation player does not want to
bid any positive amount. The di�erential equation writes

fx(t)Fn�1(t)g0 = tfFn�1(t)g0; x(0) = 0, and Fn�1(0) = 0

Therefore

x(t) =

R t
0
zdFn�1(z)

Fn�1(t)
= E[t(2)jt(1) = t] (2)

where t(k) is the k-th order statistics of the n variables ti. To check the second
equality, observe that for all a; t; a < t

�ft(2) � ajt(1) = tg = �ft�1 � ajt�1 � t; t1 = tg = �ft�1 � ajt�1 � tg =
Fn�1(a)

Fn�1(t)

(where the �rst equality follows from the fact that types are identically dis-
tributed, and the second from the fact they are stochastically independent).
Equation (2) says that the equilibrium bid is the expected value of the second

highest bid, conditional on your own bid winning the object.
For instance assume the uniform distribution on [0; 100], so that F (t) = t,

then x(t) = n�1
n t and the expected highest bid (revenue of the seller) is

E[x(t(1))] =
n� 1
n

E[t(1)] =
n� 1
n+ 1

100
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Moreover the e�cient buyer (the one with the highest valuation) gets the object,
therefore the expected joint surplus to the seller and bidders is E[t(1)] =

n
n+1100.

This leaves only an expected gain of 1
n(n+1)100 per bidder!

Interestingly this sharing of the surplus between buyers and the seller is the
same as in Vickrey's second price auction, because there the revenue of the seller
is

E[t(2)] =

Z 100

0

E[t(2)jt(1) = t]dFn(t) =
Z 100

0

x(t)dFn(t) = E[x(t(1))]

Note that there are (many0 other equilibria in which the players use di�erent
bidding strategies. Describing them all is an open question.
Example 13 sealed bids double auction (Myerson and Satterthwaite)

The object is worth a to the seller, b to the buyer. Both a and b are IID on
[0; 300] with uniform distribution. They play the sealed bid double auction game:
they independently and simulatneously send an ask price x (seller) and an o�er
price y (buyer). If x > y, no trade takes place; if x � y, trade takes place at
price p = x+y

2 .
One checks �rst that x(a) = a; y(b) = b is not an equilibrium. Suppose the

seller plays x(a) = a, and the buyer is of type b; his pro�t
R y
0
(b � y+a

2 )db is

maximized at y = 2
3b.

We compute the linear equilibrium, where each player uses a bid function
that is linear in own valuation

x(a) = �a+ �; y(b) = b+ � (3)

We compute the best reply functions of our two players.
If the seller uses x(�) in (3), the expected pro�t of a type b buyer o�ering y

isZ y��
�

0

(b�y + �a+ �
2

)da = (
y � �
�

)(b�y + �
2

)��
4
(
y � �
�

)2 = (
y � �
�

)(b��
4
�3
4
y)

maximized at y(b) = 2b+�
3 .

If the buyer uses y(�) in (3), trade will occur if the seller's o�er x is such
that x � y(b), b � x��

 . The expected pro�t of a type a seller o�ering x isZ 300

x��


(
x+ b+ �

2
� a)db = 1

2
f�3
2
x2 + (300 + 2a+ �)x+ constantg

It is maximized at x(a) = 1
3 (2a+ 300 + �).

Thus the unique candidate linear equilibrium is

x(a) =
2

3
a+ 75; y(b) =

2

3
b+ 25

It remains to check that participation is voluntary, i.e., no one would prefer to
abstain from bidding. A buyer of type b < 75 bids above his own valuation,
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y(b) > b, but as the seller's o�er is never below $75, such an o�er is never
accepted. Similarly a seller of type a > 225 bids x(a) < a, but again, this o�er
is irrelevant as y(b) � 225 for all b.
Finally we compute the welfare loss at this equilibrium. Trade occurs only

if x(a) � y(b), b � a+ 75. Therefore the loss is

1

3002

Z Z
a�b�a+75

(b� a)dadb = 125

16
' 7:8

so about 16% of the e�cient expected surplus

1

3002

Z Z
a�b
(b� a)dadb = 50

It is important to keep in mind that the liner equilibrium is but one equilibr-
tium among many others, non linear equilibria. Computing all equilibria of the
double auction game is an open problem. See Problem 20 for a family of very
simple "�xed price equilibria", and Problem 21 for alternative trade mechanisms
in the same context.

7 Problems for Chapter 4

Problem 1
a) In the two-by-two game

T 5; 5 4; 10
B 10; 4 0; 0

L R

Compute all Nash equilibria. Show that a slight increase in the (B;L) payo�
to the row player results in a decrease of his mixed equilibrium payo�.
b) Consider the crossing game of example 4

stop 1; 1 1� "; 2
go 2; 1� " 0; 0

stop go

and its variant where strategy "go" is more costly by the amount �; � > 0, to
the row player:

stop 1; 1 1� "; 2
go 2� �; 1� " ��; 0

stop go

Show that for � and " small enough, row's mixed equilibrium payo� is higher if
the go strategy is more costly.

Problem 2
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Three plants dispose of their water in the lake. Each plant can send clean water
(si = 1) or polluted water (si = 0). The cost of sending clean water is c. If only
one �rm pollutes the lake, there is no damage to anyone; if two or three �rms
pollute, the damage is a to everyone, a > c.
Compute all Nash equilibria in pure and mixed strategies.

Problem 3
Give an example of a two-by-two game where no player has two equivalent pure
strategies, and the set of Nash equilibria is in�nite.

Problem 4
A two person game with �nite strategy sets S1 = S2 = f1; � � � ; pg is represented
by two p� p payo� matrices U1 and U2, where the row player is labeled 1 and
the column player is 2. The entry Ui(j; k) is player i's payo� when row chooses
j and column chooses k. Assume that both matrices are invertible and denote
by jAj the determinant of the matrix A. Then write eUi(j; k) = (�1)j+kjUi(j; k)j
the (j; k) cofactor of the matrix Ui, where Ui(j; k) is the (p�1)� (p�1) matrix
obtained from Ui by deleting the j row and the k column.
Show that if the game has a completely mixed Nash equilibrium, it gives to

player i the payo�
jUijP

1�j;k�p
eUi(j; k)

Problem 5
In this symmetric two-by-two-by-two (three-person) game, the mixed strategy
of player i takes the form (pi; 1�pi) over the two pure strategies. The resulting
payo� to player 1 is

u1(p1; p2; p3) = p1p2p3 � 3p1(p2 + p3) + p2p3 � p1 � 2(p2 + p3)

Find the symmetric mixed equilibrium of the game. Are there any non sym-
metric equilibria (in pure or mixed strategies)?

Problem 6
Let(f1; 2g; C1; C2; u1; u2) be a �nite two person game and G = (f1; 2g; S1; S2; u1; u2)
be its mixed extension. Say that the set NE(G) of mixed Nash equilibrium out-
comes of G has the rectangularity property if we have for all s; s0 2 S1 � S2

s; s0 2 NE(G))(s01; s2); (s1; s02) 2 NE(G)

a) Prove that NE(G) has the rectangularity property if and only if it is a convex
subset of S1 � S2.
b) In this case, prove there exists a Pareto dominant mixed Nash equilibrium
s�:

for all s 2 NE(G))u(s) � u(s�)
Problem 7 all-pay second price auction

This is a variant of example 6 with only two players who value the prize respec-
tively at a1 and a2. The payo� are

ui(s1; s2) = ai � sj if sj < si; = �si if si < sj ; =
1

2
ai � si if sj = si;
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For any two numbers b1; b2 in [0; 1] such that maxfb1; b2g = 1, consider the
mixed strategy of player i with cumulative distribution function

Fi(x) = 1� bie
� x
aj ; for x � 0

Show that the corresponding pair of mixed strategies (s1; s2) is an equilibrium
of the game.
Riley shows that these are the only mixed equilibria of the game.

Problem 8 all-pay �rst price auction
This is a variant of Example 7 with only two players who value the prize re-
spectively at a1 and a2. The payo�s are

ui(s1; s2) = ai � si if sj < si; = �si if si < sj ; =
1

2
ai � si if sj = si

Assume a1 � a2. Show that the following is an equilibrium:
player 1 chooses in [0; a2] with uniform probability;
player 2 bids zero with probability 1� a2

a1
, and with probability a2

a1
he chooses

in [0; a2] with uniform probability.
Riley shows this is the unique equilibrium if a1 > a2.

Problem 9 �rst price auction
This is a variant of Example 12 Chapter 2 where the two players value the prize
respectively at a1 and a2. Each player bids $si, where si 2 R+ (instead of
integers in Example 12, Chapter 2).The payo�s are

ui(s1; s2) = ai � si if sj < si; = 0 if si < sj ; =
1

2
(ai � si) if sj = si

a) Assume a1 = a2. Show that the only Nash equilibrium of the game in mixed
strategies is s1 = s2 = ai.
b) Assume a1 > a2. Show there is no equilibrium in pure strategies. Show that
in any equilibrium in mixed strategies
player 1 bids a2
player 2 chooses in [0; a2] according to some probability distribution � such

that for any interval [a2 � "; a2] we have �([a2 � "; a2]) � "
a2�a1 .

Give an example of such an equilibrium.

Problem 10 a location game
Two shop owners choose the location of their shop in [0; 1]. The demand is
inelastic; player 1 captures the whole demand if he locates where player 2 is,
and player 2's share increases linearly up to a cap of 23 when he moves away from
player 1. The sets of pure strategies are Ci = [0; 1] and the payo� functions are:

u1(x1; x2) = 1� jx1 � x2j

u2(x1; x2) = minfjx1 � x2j;
2

3
g

a) Show that there is no Nash equilibrium in pure strategies.
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b) Show that the following pair of mixed strategies is an equilibrium of the
mixed game:

s1 =
1

3
�0 +

1

6
� 1
3
+
1

6
� 2
3
+
1

3
�1

s2 =
1

2
�0 +

1

2
�1

and check that by using such a strategy, a player makes the other one indi�erent
between all his possible moves.

Problem 11 Correlated equilibrium
In the crossing games of example 4, compute all correlated eqilibria. Show that
the best symmetric one is a simple "red light".

Problem 12 more musical chairs
Consider three variants of example 9 where

� there are two chairs and 3 players

� there are two chairs and 4 players

� there are three chairs and n players, n � 7

In each case discuss the equilibria in pure strategies, in mixed strategies, and
the best symmetric correlated equilibrium.

Problem 13-a Correlated equilibrium
We have three players named 1; 2; 3, each with two strategies labeled A;B. The
game is symmetrical, and the payo�s are as follows:

(B;B;A) ! (2; 2; 0)

(A;A;A) or (B;B;B) ! (1; 1; 1)

(B;A;A) ! (0; 0; 0)

a) Find all equilibria in pure strategies, and all equilibria in mixed strategies.
b) Find the symmetrical correlated equilibrium with the largest common payo�.

Problem 13-b Correlated equilibrium
This is a symmetric game with four players and each has two pure strategies

si 2 fa; bg. The payo�s are as follows:

� if all play the same strategy, all get $10

� if each strategy is played by exactly two players, all get $16

� if exactly 3 players use the same strategy, these players get $20, while the
remaining player gets $0.
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a) Find all Nash equilibria, if any, in pure strategies. Do not limit yourself
to symmetric equilibria.
b) Find all Nash equilibria, if any, in mixed strategies. Do not limit yourself

to symmetric equilibria.
c) Find the best (i.e., ensuring the highest expected payo�) symmetric cor-

related equilibrium.
d) Assume now that if all play the same strategy, all get $16. Answer

questions b) and c) above.

Problem 14 a coordination game
There are q locations equally distributed on the oriented unit circle, q � 3, and
each of the two players chooses one location. The payo� to both players is 1
if they choose the same location, 0 if they choose two di�erent locations that
are not adjacent. If the two choices are adjacent, the player who precedes the
other (given the orientation of the circle) gets a payo� of 3, the other one gets
a payo� of 2.
Show that the game has no pure strategy equilibrium; compute its symmetric
equilibrium in mixed strategies and the corresponding payo�s.
Show there is no other equilibrium in mixed strategies.
Construct a correlated equilibrium where total payo� is maximal, namely 2:5
for each player.

Problem 15
Find all equilibria in pure and mixed strategies of the following three person
game. Each player has two pure strategies, Ci = fxi; yig for all i = 1; 2; 3. The
payo� is zero to everybody, unless exactly one player i chooses yi, in which case
this player i gets 5, the player before i in the 1! 2! 3! 1 cycle gets 6; and
the player after i in this cycle gets 4. Note that the game is not symmetric in
the sense of De�nition 21 (Chapter 2), yet it is cyclically symmetric, i.e., with
respect to the cycle 1! 2! 3! 1.
Compute the (fully) symmetric correlated equilibria of the game and compare
their payo�s to those of the pure and mixed equilibria.

Problem 16 Bayesian equilibrium
a) The strategy sets and information structure is as in Example 10, and the
payo�s are

T 1; 2 0; 0
B 0; 0 2; 1
t1 L R

T 0; 0 3; 1
B 1; 3 0; 0
t2 L R

Check that we have two pure strategy equilibria. How many Bayesian equilibria
involving mixed strategies?
b) The payo�s are now

T 1; 2 0; 0
B 0; 0 2; 1
t1 L R

T 4; 1 0; 0
B 0; 0 2; 3
t2 L R

Find all Bayesian equilibria.
c) Player 1 chooses a row and his type is known, player 2 chooses a column and
his type is t1 with probability

2
3 , t2 with probability

1
3 . Payo�s are:

22



T 2; 0 0; 2
B 0; 2 2; 0
t1 L R

T 0; 0 2; 2
B 3; 3 0; 0
t2 L R

Find all equilibria in pure strategies and all Bayesian equilibria.

Problem 17
Two opposed armies are poised to seize an island. Each army's general chooses
(simultaneously and independently) either to attack or not to attack. In addi-
tion, every army is either strong or weak, with equal probability, and the army's
type is known to its general (but not to the general of the opposed army). An
army captures the island if either it attacks it while its opponent does not at-
tack, or if it attacks while strong, whereas its rival is weak. If two armies of
equal strength both attack, neither captures the island.
Payo�s are zero initially; the island is worth 8 if captured; an army incurs a
cost of �ghting, which is 3 if it is strong and 6 if it is weak. There is no cost of
attacking if the rival does not attack, and no cost to not attacking.
Give the normal form of the game, eliminate dominated strategies if any, and
compute all Bayesian equilibria.

Problem 18
Mob becomes very strong in �ghting on the day he uses drugs, otherwise he

is weak. No matter, whether he used drugs or not, Mob is often involved in
conicts of the type described below.
Bob has just insulted Mob in the bar, and Mob must decide whether to �ght

Bob immediately, or to leave and try to beat Bob after Bob leaves the bar in
a couple of hours. If Mob leaves and tries to catch up with Bob later outside,
then, if Mob is strong today, he beats Bob and gets utility 10. However, if Mob
is weak, Bob beats him and Mob gets -10.
If Mob decides to �ght immediately then it is Bob's choice whether to �ght

or to leave. If Bob leaves, Mob gets utility 5 from humiliating Bob. If they �ght
in the bar, then on the day Mob is strong he would beat Bob publicly and get
utility 20. However, on the day Mob is weak he would loose to Bob publicly
and get utility -30.
Mob knows whether he took drugs this day. Bob does not know it, but he

was told by the bar owner that Mob uses drugs on average one day out of three.
If Bob is challenged, he gets -10 from leaving, -15 if he �ghts and looses and

5 if he �ghts and wins. If the �ght is postponed Bob gets -6 from loosing it and
3 from winning.
a) Describe the set of pure strategies for each player, and write the game

matrix. Eliminate dominated strategies.
b) Find all Nash equilibria of this game.

Problem 19 all-pay �rst price auction
The game is identical to that in Example 7, except for the fact that the valuation
ti of the object to player i is known only to this agent. Other agents know that
ti is drawn from the uniform probability distribution over [0; 100], and that all
draws are stochastically independent.
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a) Show that if bidder i observes his type ti, contemplates the bid y and knows
that other bidders all use the same bidding function x(t), bidder i's expected
pay-o� is

ti�fx(tj) < y for all j 6= ig � y

b) Deduce the unique symmetrical equilibrium bidding function x(�). Compare
it to the symmetrical equilibrium of the �rst price auction.
c) Show that the expected revenue to the seller is the same as in the �rst price
auction (example 11) and in the second price auction. Compare the expected
pro�t of a bidder in these three auctions.

Problem 20 sealed bid double auction
In the game of Example 13, consider the following pair of strategies, where �
is a number in [0,300]:

seller x(a) = � if 0 � a � �; = 300 if � < a � 300

buyer y(b) = 0 if 0 � b < �; = � if � � b � 300

Show that it is a Bayesian equilibrium.

Show that the expected gain of a buyer is �(300��)2
2�3002 , and that of a seller is

�2(300��)
2�3002 . Compute total welfare loss and show that it is never less than 25%

(minimum achieved). Compare to the welfare loss of the linear equilibrium
found in Example 13.

Problem 21 alternative trade mechanisms
As in Example 13, we have a buyer and a seller with IID valuations in [0; 300].
a) Consider the following take it or leave it mechanism: the seller chooses a
price x 2 [0; 300], which the buyer accepts or not. Compute its unique Bayesian
equilibrium, and compare its welfare loss to that found in Example 13, and in
Problem 19. also compare the division of the surplus between the two players.
b) Consider the following mechanism. After the seller and buyer independently
bid respectively x and y
trade occurs at price y

2 if y � 3x and x+ y � 300
trade occurs at price x

2 + 150 if y �
x
3 + 200 and x+ y > 300

no trade occurs, and no money changes hands, in every other case
Show that sincere report of one's valuation (x(a) = a and y(b) = b for all a; b) is
a Bayesian equilibrium. Compare the welfare loss of this mechanisms to those
found in Example 13 and in Problem 19.

Problem 22 the lemon problem
The seller's reservation price t is drawn in [0; 100] with uniform probability. The
buyer does not see t. Her reservation price for the object is 3

2x.
a) Suppose the buyer makes a "take it or leave it" o�er which the seller can only
accept or reject. Show that the only Bayesian equilibrium of this game has the
buyer o�ering a price of zero, which the seller always refuses.
b) What is the Bayesian equilibrium of the game where the seller makes a "take
it or leave it" o�er which the buyer can only accept or reject?

Problem 23 A modi�ed �rst price auction (50 points)
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There are n potential buyers and one object in the auction. Player i values
the object $ai. Each player submits a bid xi, then one of the highest bidders
gets the object. Denote x�1 the highest bid, and x�2 the second highest bid.
Then the winner of the object pays 1

2 (x
�1 + x�2). When two or more bidders

are tied with the highest bid (so that x�1 = x�2), we draw as usual one of them
with uniform probability to be the winner, who then pays x�1.
a) Assume in this question that all bids x�1 and all valuations ai are in

round dollars. Find the undominated strategies in this game, and perform the
successive elimination of dominated strategies. Find all Nash equilibria. Which
equilibrium (or equilibria) is (are) more likely to emerge when bidders have
complete information about the pro�le of valuations?

b) Assume from now on that all bids x�1 and all valuations ai are real
numbers, in other words they are in�nitely divisible. Answer the same questions
as in a), distinguishing according to the number of players who share the highest
valuation.

c) Now the valuations ai are drawn in [0; 100] independently and according
to the same probability distribution with cumulative distribution function F .
Find the symmetric Bayesian Nash equilibrium of this game. Recall that if
the n random variables Zi are IID on [0; 100] with c.d.f. F , and Z�1; Z�2 are
respectively the highest and second highest order statistics, we have

E[Z�2jZ�1 = t] =
R t
0
zdFn�1(z)

Fn�1(t)

Note: for simplicity you may assume that F is the uniform distribution on
[0; 100]:
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