Chapter 3: Nash Equilibrium
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In a general n-person game in strategic form, interests of the players are
neither identical nor completely opposed. As in the previous chapter information
about other players’ preferences and behavior will influence my behavior. The
novelty is that this information may sometime be used cooperatively, i.e., to our
mutual advantage.

We discuss in this chapter the two most important scenarios justifying the
Nash equilibrium concept as the consequence of rational behavior by the players:

e the coordinated scenarios where players know a lot about each other’s
strategic opportunities (strategy sets) and payoffs (preferences), and use
either deductive reasoning or non binding comunication to coordinate their
choices of strategies.

e the decentralized (competitive) scenarios where mutual information is min-
imal, to the extent that a player may not even know how many other
players are in the game or what their individual preferences look like.

Decentralized scenarios are realistic in games involving a large number of
players, each one with a relatively small influence on the overall outcome, so
that the ”competitive” assumption that each player ignores the influence of
his own moves on other players’ strategic choices is plausible. Coordination
scenarios are more natural in games with a small number of participants.

This chapter is long on examples and short on abstract proofs. The next
chapter is just the opposite.

Definition 1 A game in strategic form is a list G = (N, S;,u;,1 € N), where N
is the set of players, S; is player i’s strategy set and u; is his payoff, a mapping
from Sy = H S; into R, which player i seeks to maximize.
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An important class of games consists of those where the roles of all players
are fully interchangeable.

Definition 2 A game in strategic form G = (N, S;,u;,i € N) is symmetri-
cal if S; = S for all 1,7, and the mapping s — u(s) from SINT into RINT s
symmetrical.



In a symmetrical game if two players exchange strategies, their payoffs are
exchanged and those of other players remain unaffected.

Definition 3 A Nash equilibrium of the game G = (N, S;, u;,i € N) is a profile
of strategies s* € Sy such that

i (%) > u;i(s4,8%;) for alli and all s; € S;

Note that the above definition uses only the ordinal preferences represented
by the utility functions u;. We use the cardinal representation as payoff (utility)
simply for convenience. However when we speak of mixed strategies in the next
chapter, the choice of a cardinal utility will matter.

The following inequality provides a useful necessary condition for the exis-
tence of at least one Nash equilibrium in a given game G.

Lemma 4 If s* is a Nash equilibrium of the game G = (N, S;,u;,1 € N), we
have for all i
u;(s*) > min max u;(8;,5_;)

T s_i€S_;s€S;
Example 1 duopoly a la Hoteling
The two competitors sell identical goods at fixed prices p1, p2 such that p; < ps.
The consumers are uniformly spread on [0, 1], each with a unit demand. Firms
incur no costs. Firms choose independently where to locate a store on the
interval [0, 1], then consumers buy from the cheapest store, taking into account
a transportation cost of $s if s is the distance to the store. Assume py —p; = i.
Check that »
. . 2
minmax v = pp;mMinmax us = —
Hnma 1=D nma 2 3
where the ming, maxg, u; obtains from the copycat strategy s; = sy by player
1, and the ming, maxg, us is achieved by s; = %, and s; = 0 or 1. Observe now
that the payoff profile (pi, &) is not feasible, therefore the game has no Nash
equilibrium.

1 Coordinated scenarios

We now consider games in strategic form involving only a few players who use
their knowledge about other players strategic options to form expectations about
the choices of these players, which in turn influence their own choices. In the
simplest version of this analysis, each player knows the entire strategic form
of the game, including strategy sets and individual preferences (payoffs). Yet
at the time they make their strategic decision, they act independently of one
another, and cannot observe the choice of any other player.

The two main interpretations of the Nash equilibrium are then the self ful-
filling prophecy and the self enforcing agreement.

The former is the meta-argument that if a ”Book of Rational Conduct”
can be written that gives me a strategic advice for every conceivable game in



strategic form, this advice must be to play a Nash equilibrium. This is the
”deductive’ argument in favor of the Nash concept.

The latter assumes the players engage in ”pre-play” communication, and
reach a non committal agreement on what to play, followed by a complete break
up of communication.

Two conceptual difficulties suggest caution when we apply the Nash equi-
librium concept in the coordinated context. First a Nash equilibrium may be
inefficient (Pareto inferior), as illustrated in the celebrated Prisoner’s Dilemna:
section 2.1.1. Then communication between the players drives them to move
away from the equilibrium, for the benefit of every participant. Second, many
games have multiple Nash equilibria, hence a selection problem (section 2.1.2).
Under either scenario above, it may be unclear how the players will be able to
coordinate on one of them.

On the other hand, we can identify large classes of games in which selecting
the Nash outcome by deduction (covert communication) is quite convincing,
so that our confidence in the predictive power of the concept remains intact.
These are the dominance-solvable games in section 2.1.3, and the games with a
dominant strategy equilibrium in section 2.1.4.

1.1 inefficiency of the Nash equilibrium outcomes

Example 2 Prisonners Dilemna

Each player chooses a selfless strategy C or a selfish strategy D. Choosing C'
brings a benefit a to every other player and a cost of b to me. Playing D brings
neither benefit nor cost to anyone. It is a dominant strategy to play D if b > 0.
If furthermore b < (n — 1)a, the unique Nash equilibrium is Pareto inferior to
the unanimously selfless outcome. This equilibrium is especially credible as each
player uses a dominant strategy (see 2.1.4 below).

Example 3 Pigou traffic example

There are two roads (country, city) to go from A to B and n commuters want
to do just that. The country road entails no congestion: no matter how many
users travel on it, each incurs a delay of 1. The city road has linear congestion
costs: if x commuters use that road, each of them incurs a delay of >, where
we assume m < n. A Nash equilibrium is an outcome where m, or m — 1,
agents take the city road, and n — m, or n — m + 1, take the country road,
and all get a disutility of 1, or ”-1. However total disutility is minimized by
sending only % commuters on the city road, for a total delay of n — 7, and a
Pareto improvement where 7 city commuters are better off, while the rest are
indifferent to the change.

Example 4 the Braess paradox
There are two roads to go from A to B, and 6 commuters. The upper road goes
through C, the lower road goes through D. The 2 roads only meet at A and B.
On each of the four legs, AC,CB, AD, DB, the travel time depends upon the
number of users x in the following way:

on AC and DB : 50+ z, on CB and AD : 10z



Every player must choose a road to travel, and seeks to minimize his travel time.
The Nash equilibria of the game are all outcomes with 3 users on each road,
and they all give the same disutility 83 to each player. Next we add one more
link on the road network, directly between C' and D, with travel time 10 + z.
In the new Nash equilibrium outcomes, we have two commuters on each of the
paths ACB, ADB, ADC B, and their disutility is 92. Thus the new road results

in a net increase of the congestion!

1.2 the selection problem

When several (perhaps an infinity of) Nash outcomes coexist, and the players’
preferences about them do not agree, they will try to force their preferred out-
come by means of tactical commitment. Two well known games illustrate the
resulting impossibility to predict the outcome of the game.

Example 5 crossing game (a.k.a. the Battle of the Sexes)
Each player must stop or go. The payoffs are as follows

stop 1,1 1—¢,2
go 2,1—¢ 0,0
stop go

Each player would like to commit to go, so as to force the other to stop. A typical
way is unilateral communication (schelling): I am going to pass, I cannot hear
you anymore. There is a mixed strategy equilibrium as well, but it has its own
problems. See Section 3.3.

Example 6 Nash demand game
The two players share a dollar by the following procedure: each write the
amounts she demands in a sealed envelope. If the two demands sum to no
more than $1, they are honored. Otherwise nobody gets any money. In this
game the equal plit outcome stands out because it is fair, and this will suffice
in many cases to achieve coordination. However, a player will take advantage of
an opportunity to commit to a high demand. More precisely, the pair s, s5 is
a Nash equilibrum if and only if 0 < s1,85 <1 and s1 + 89 =1, or s = 89 = 1.

Note that Examples 5 and 6 are symmetric games with (many) asymmetric
equilibria.

In both above examples and in the next one the key strategic intuition is
that the opportunity to commit to a certain strategy by ”burning the bridges”
allowing us to play anything else, is the winning move provided one convinces
the other player that the bridges are indeed gone.

Definition 5 Given two functions t — a(t) and t — b(t), the corresponding
game of timing is as follows. Each one of the two players must choose a time to
stop the clock between t = 0 and t = 1. If player i stops the clock first at time
t, his payoff is u; = a(t), that of player j is u; = b(t). In case of ties, each gets
the payoff %(a(t) + b(t)).



An example is the noisy duel of chapter 1, where a increases, b decreases,
and they intersect at the optimal stopping/shooting time (here optimality refers
to the saddle point property for this ordinally zero-sum game). Here is another
classic example.

Example 7 War of attrition

This is a game of timing where both a and b are continuous and decreasing,
a(t) < b(t) for all t, and b(1) < a(0). There are two Nash equilibrium outcomes.
Setting t* as the time at which a(0) = b(t*), one player commits to t* or more,
and the other concedes by stopping the clock immediately (at ¢ = 0).

The selection problem can often be alleviated by further arguments of salience,
Pareto dominance, or risk dominance. It is easy to agree on an equilibrium more
favorable to everyone: the Pareto dominance argument.

Definition 6 A coordination game is a game G = (N, S;,u;,i € N) such that
all players have the same payoff function: u;(s) = u;j(s) for alli € N,s € Sy.

If, in a coordination game, there is a single outcome maximizing the common
payoff, this Nash equilibrium will be selected without explicit comunication. We
have no such luck in a coordination game where several outcomes are optimal,
as in Schelling’s rendez-vous game. Two players living in a big city and unable
to communicate directly, must meet tomorrow at noon. If they show up at the
same salient location (e.g., the Eiffel tower in Paris), they both win a prize,
otherwise they get nothing. The problem here is that salience may not be a
deterministic criteria.

We illustrate finally the risk dominance argument, in an important model
where it conflicts with Pareto dominance.

Example 8 Coordination failure
This is an example of a public good provision game by voluntary contributions
(example 20, section 2.2.3), where individual contributions enter the common
benefit function as perfect complements:

u;(s) = mins; — Ci(s;)
J

Examples include the building of dykes or a vaccination program: the safety
provided by the dyke is only as good as that of its weakest link. Assume Cj is
convex and increasing, with C;(0) = 0 and C{(0) < 1, so that each player has
a stand alone optimal provision level s} maximizing z — C;(z). Then the Nash
equilibria are the outcomes where s; = A for all ¢, and 0 < A < min; s}. They are
Pareto ranked: the higher A, the better for everyone. However the higher A, the
more risky the equilibrium: if other players may make an error and fail to send
their contribution, it is prudent not to send anything (max,, ming_, u;(s) = 0
is achieved with s; = 0). Even if the probability of an error is very small,
a reinforcement effect will amplify the risk till the point where only the null
(prudent) equilibrium is sustainable.



1.3 dominance solvable games

Eliminating dominated strategies is the central coordination device performed
by independent deductions of players mutually informed about the payoff func-
tions. We repeat a definition already given for two-person zero-sum games
(Definition 13).

Definition 7 In the game G = (N, S;, u;,4 € N), we say that player i’s strategy
s; is weakly dominated by his strategy s (or simply dominated) if

wi(si,5—i) < w(sh,s_;) foralls_; € S_;

wi(si,8_i) < wu(si,s_;) for some s_; €S_;
We say that strategy s; is strictly dominated by s, if
wi(84,8_3) < ui(sh,s_;) forall s_; € S_;

Given a subset of strategies T; C S; we write WU;(Tn) (resp. U;(Tn)) for the
set of player i’s strategies in the restricted game (N,T;,u;,i € N) that are not
dominated (resp. not strictly dominated).

Definition 8 We say that the game G is dominance-solvable (resp. strictly
dominance-solvable) if the sequence defined inductively by

w8y = ;W ST = WU (VSY) (resp. SO = Si; ST =U;(SY)) for all i and t = 1,2,

and called the successive elimination of dominated (resp. strictly dominated)
strategies, converges to a single outcome s*:

mgilws}fv ={s"} (resp. N2y S;V ={s"})

If the strategy sets are finite, or compact with continuous payoff functions,
the set of undominated strategies U;(Sx) is non empty and closed, therefore
the sequence S% is well defined. On the other hand, the (smaller) set of weakly
undominated strategies WU;(Sy) is non empty but it may not be closed. There-
fore the existence of the sequence *S%; is not always guaranteed, because in the
second round we lose compactness. The issue does not arise if the strategy sets
are finite.

Despite their close similarities, the two types of elimination, of dominated
or of strictly dominated strategies, differ in other important ways. The latter
never throws away a Nash equilibrium outcome, and so it is not a selection tool,
rather a way to identify games with a unique Nash equilibrium. The former, on
the other hand, is a genuine selection tool, but one that must be handled with
care.

Proposition 9 For any T the set N_,S% contains all Nash equilibria of the
game. If N2, SL = {s*}, then s* is the single Nash equilibrium outcome of the
original game.

If the strategy sets are finite and N2, Sk = {s*}, then s* is a Nash equi-
librium of the original game.



The successive elimination of strictly dominated strategies is very robust in
the sense that it never loses equilibria , whereas the successive elimination of
weakly dominated strategies may lose some, or even all Nash equilibria of the
original game (in the latter case, the game reduced to NI_,;%S% contains no
equilibrium either). Here are two examples

[1,0 2,0 1,5
6,2 3,7 0,5
13,1 2,3 4,3]
where the elimination of weakly d.s. picks one of the two equilibria, and
(1,3 2,0 3,1]
0,2 2,2 0,2
13,1 2,0 1,3]

) ) )

where the algorithm throws out the unique Nash equilibrium!

Another difference between the two successive elimination algorithms, based
on strict or weak domination, is their robustness with respect to partial elimi-
nation. Suppose that at each stage we only drop strictly dominated strategies,
i.e., we construct a sequence R! such that RI™ C U/;(RY) for all i and ¢. Then
it is easy to check that the limit set Ng°; RY; is unaffected, provided we do elim-
inate some strategies at each round (see Problem 10). On the other hand when
we only drop some weakly dominated strategies at each stage, the result of the
algorithm may well depend on which ones we drop. Here is an example:

o= W
O = N W
_= O N W

— O =N

Depending on which strategy player 1 eliminates first, we end up at the (3,2)
or the (2,3) equilibrium.

The bottom line is that the successive elimination of strictly dominated
strategies can be performed without thinking twice, while we must be cautious
in performing the successive elimination of strictly dominated strategies, that
can lead to paradoxical results. We use several classic examples to reinforce this
point.

Example 9 Guessing game
Each one of the n players chooses an integer s; between 1 and 1000. Compute

the average response
1 Z
= — Si
n =
7

Each player receives a prize that strictly decreases with the distance of its own
strategy s; to %E

2_
~f(lsi = 33

u;(8)



This game is strictly dominance solvable and
m?ilsg\/ - {(17 Tty 1)}

Observe that for any ¢t = 0,1,---, if S C {1,---,p} for some integer p, then

St C {1, [2p]}. To prove this claim we check that player i’s strategy
sy = %p] strictly dominates any strategy s; such that s; > s; + 1. Assume

player ¢ uses s; and denote by s the average strategy of players other than i, so
that s = %sz* + "T_1§ Simple computations give

T < :>*>27 4 s 27< 2(1 +n—1
s si>-5and s] — -5 <s;— (=5
=P=si =3 i3 3'\n

%)

so s! is strictly closer to s than s;. We can now apply the upper bound on Sf +1
repeatedly:

51,1 C {17... ,667},53 C {1’... 7445}7... ’518 C {1,... 740}’... 751,16 C
{1,2}. Finally if the game is reduced to the strategies 1 and 2 for everyone,

check that strategy 2 is at least % away from %§, while strategy 1 is at most %
away from %E.

The guessing game has been widely tested in the lab, where the participants’
limited strategic sophistication lead them to perform only a couple (typically
two or three) of rounds of elimination. When playing the guessing game with
inexperienced opponents, it is therefore a good idea to choose a number between
(2)250 ~ 19 and (2)350 ~ 12.
Example 10 Cournot duopoly

Firm 4 produces s; units of output, at a unit cost of ¢;. The price at which the
total supply s; + sa clears is [A — (s1 + s2)]+. Hence the profit functions:

u; = [A— (814 82)]+8 —¢i8; for i =1,2

This game is strictly dominance-solvable.
In our next example, weak dominance solvability leads to a mildly paradox-
ical result.

Example 11 The chair’s paradox
Three voters choose one of three candidates a,b,c. The rule is plurality with
the Chair, player 1, breaking ties. Hence each player ¢ chooses from the set
S; = {a, b, c}, and the elected candidate for the profile of votes s is

89 if 89 = s3; or 1 if 89 # s3

Note that the Chair has a dominant strategy (Definition 25 below) to vote for
her top choice. The two other players can only eliminate the vote for their
bottom candidate as (weakly) dominated.

Assume that the preferences of the voters exhibit the cyclical pattern known as
the Condorcet paradoz, namely

up(c) < uy(b) < uy(a)



ua(b) < ug(a) < usz(c)
uz(a) < uz(c) < uz(b)

Writing this game in strategic form reveals that after the successive elimination
of dominated strategies, the single outcome s = (a,¢,c) remains. This is the
most plausible Nash equilibrium outcome when players know all preferences.
The paradox is that the chair’s tie-breaking privilege result in the election of
her worst outcome! There are other equilibria; two examples are: everyone votes
for a, or everyone for b.

In spite of the shortcomings detailed above, in many important economic
games, a couple of rounds of elimination of weakly dominated strategiesf may
well be enough to select a unique Nash equilibrium, even though the elimination
algorithm is stopped and the initial game is not weakly dominance solvable.

Example 12 First price auction
The sealed bid first price auction is strategically equivalent to the Dutch de-
scending auction.An object is auctioned between n bidders who each submit a
sealed bid s;. Bids are in round dollars (so S; = N). The highest bidder gets
the object and pays his bid. In case of a tie, a winner is selected at random with
uniform probability among the highest bidders. Assume that the valuations of
(willingness to pay for) the object are also integers u; and that

uy > u; for all ¢ > 2

At a Nash equilibrium of this game, the object is awarded to player 1 at a price
anywhere between u; — 1 and us, and there is another bid just below player 1’s
winning bid. However after two rounds of elimination we find a game where the
only Nash equilibrium has player 1 paying us for the object while one of the
players ¢, ¢ > 2, such that u; = max;-; u; bids u; — 1. Thus player 1 exploits
his informational advantage to the full.

Example 13 Steinhaus cake division method
The referee runs a knife from the left end of the cake to its right end. Each one
of the two players can stop the knife at any moment. Whoever stops the knife
first gets the left piece,the other player gets the right piece.
If both players have identical preferences over the various pieces of the cake,
this is a game of timing structurally equivalent to the noisy duel, and its unique
Nash equilibrium is that they both stop the knife at the time ¢* when they are
indifferent between the two pieces.
When preferences differ, this is a variant of a game of timing. Call ¢ the time
when player ¢ is indifferent between the two pieces, and assume t7 < t5. The
Nash equilibrium outcomes are those where player 1 stops the knife between ¢}
and t5 while player 2 is just about to stop it herself: player 1 gets the left piece
(worth more than the right piece to him) and player 2 gets the right piece (worth
more to her than the left piece). However after two rounds of elimination of
weakly dominated strategies, we are left with S? = [t5 —¢, 1], 53 = [t5, 1] (where
our notation is loose; for a precise statement, it is easier to give a discrete version
of the model). Although the elimination process stops there, the outcome of the



remaining game is not in doubt: s] = t5 —¢,s5 = t5. Indeed the remaining
game is inessential (see Problem 29, question a).

1.4 dominant strategy equilibrium

One instance where the successive elimination of weakly dominated strategies
is convincing is when each player has a dominant strategy. Put differently, the
following is a compelling equilibrium selection.

Definition 10 In the game G = (N, S;, us, 0 € N), we say that player i’s strat-
egy s; is dominant if

wi (87, 8-4) > wi(si,8—4) for all s_; € S_;, all s; € S;

We say that s* is a dominant strategy equilibrium if for each player i, s} is a
dominant strategy.

There is a huge difference in the interpretation of a game where dominance
solvability (whether in the strict or weak form) identifies a Nash equilibrium,
versus one where a dominant strategy equilibrium exists.

The former requires complete information about mutual preferences and
more: [ know your preferences, I know that you know that I know your pref-
erences, etc..You know my preferences, I know that you know my preferences,
you know that I know ...

In the latter, all a player has to know are the strategy sets of other players;
their preferences or their actual strategic choices do not matter at all to pick
his dominant strategy. Strategic choices are truly decentralized. Information
about other players’ payoffs or moves is worthless, as long as our player is unable
to influence their choices ( no direct communication channel allows to convey a
threat of the kind ”if you do this I will do that”, or this threat is not enforceable).

The Prisoner’s Dilemna (Example 1) is the most famous instance of a game
with a dominant strategy equilibrium.

Dominant strategy equilibria are rare because the strategic interaction is
often more complex. However they are so appealingly simple that when we
design a procedure to allocate resources, elect one of the candidates to a job, or
divide costs, we would like the corresponding strategic game to have a dominant
strategy equilibrium as often as possible. In this way we are better able to
predict the behavior of our participants. The two most important examples
of such strategy-proof allocation mechanisms follow. In both cases the game
has a (weakly but not strictly) dominant strategy equilibrium for all preference
profiles, and the corresponding outcome is efficient (Pareto optimal).

Example 14 Vickrey’s second price auction
An object is auctioned between n bidders who each submit a sealed bid s;. Bids
are in round dollars (so S; = N). The highest bidder gets the object and pays the
second highest bid. In case of a tie, a winner is selected at random with uniform
probability among the highest bidders (and pays the highest bid). If player i’s

10



valuation of the object is u;, it is a dominant strategy to bid ”sincerely”, i.e.,
s; = u;. The corresponding outcome is the same as in the Nash equilibrium
of the first price auction that we selected by dominance-solvability in example
12. But to justify that outcome we needed to assume complete information, in
particular the highest valuation player must know precisely the second highest
valuation. By contrast in the Vickrey auction, each player knows what bid to
slip in the envelope, whether or not she has any information about other players’
valuations, or even their number.

Note that in the second price auction game, there is a distressing variety of
other Nash equilibrium outcomes. In particular any player, even the one with
the lowest valuation of all, receives the object in some equilibrium. It is easy
to check that for any player ¢ and for any price p, 0 < p < a; there is a Nash
equilibrium where player i gets the object and pays p.

Example 15 voting under single-peaked preferences
The n players vote to choose an outcome z in [0, 1]. Preferences of player i over
the outcomes are single-peaked with the peak at v;: they are strictly increasing
on [0, v;] and strictly decreasing on [v;, 1]. Assume for simplicity n is odd. Each
player submits a ballot s; € [0, 1], and the median outcome among s1,--- , sy, is
elected: this is the number x = s;« such that more than half of the ballots are
no less than x, and more than half of the ballots are no more than x.

It is a dominant strategy to bid ”sincerely”, i.e., s = v;. Again, any outcome
x in [0, 1] results from a Nash equilibrium, so the latter concept has no predictive
power at all in this game.

2 Decentralized behavior and dynamic stability

In this section we interpret a Nash equilibrium as the resting point of a dynami-
cal system. The players behave in a simple myopic fashion, and learn about the
game by exploring their strategic options over time. Their behavior is compati-
ble with total ignorance about the existence and characteristics of other players,
and what their behavior could be.

Think of Adam Smith’s invisible hand paradigm: the price signal I receive
from the market looks to me as an exogenous parameter on which my own
behavior has no effect. I do not know how many other participants are involved
in the market, and what they could be doing. I simply react to the price by
maximizing my utility, without making assumptions about its origin.

The analog of the competitive behavior in the context of strategic games is
the best reply behavior. Take the profile of strategies s_; chosen by other players
as an exogeneous parameter, then pick a strategy s; maximizing your own utility
ui, under the assumption that this choice will not affect the parameter s_;.

The deep insight of the invisible hand paradigm is that decentralized price
taking behavior will result in an efficient allocation of resources (a Pareto effi-
cient outcome of the economy). This holds true under some specific microeco-
nomic assumptions in the Arrow-Debreu model, and consists of two statements.

11



First the invisible hand behavior will converge to a competitive equilibrium; sec-
ond, this equilibrium is efficient. (The second statement is much more robust
than the first).

In the much more general strategic game model, the limit points of the best
reply behavior are the Nash equilibrium outcomes. Both statements, the best
reply behavior converges, the limit point is an efficient outcome, are problematic.
The examples below show that the best reply behavior may not converge at all
If it converges, the limit Nash equilibrium outcome may well be inefficient (as
we saw in section 2.1). Decentralized behavior may diverge, or it may converge
toward a socially suboptimal outcome.

2.1 Stable and unstable equilibria

Definition 11 Given the game in strategic form G = (N, S;,u;, i € N), the
best-reply correspondence of player i is the (possibly multivalued) mapping br;
from S_; = H S; into S; defined as follows

JENNA}

s; € bri(s—;) & ui(si, s—i) > ui(si,s_;) for all s, € S;

Definition 12 We say that the sequence s' € Sy,t = 0,1,2,---, is a best
reply dynamics if for allt > 1 and all i, we have

st e {st= Y ubri(s') for allt > 1

and st € bri(st_jl) for infinitely many values of t

We say that s' is a sequential best reply dynamics if in addition at each
step at most one player is changing her strategy.

The best reply dynamics is very general, in that it does not require the
successive adjustments of the players to be synchronized. If all players use a
best reply at all times, we speak of myopic adjustment; in a sequential best
reply dynamics, players take turn to adjust. For instance with two players the
latter dynamics is:

if ¢ is even: s! € bri(sht), s = sb7?
if ¢t is odd: sb € bry(si71), 8] = si7F
But the definition allows much more complicated dynamics, where the timing
of best reply adjustments varies accross players. An important requirement is
that at any date ¢, every player will be using his best reply adjustment some
time in the future.
The first observation is an elementary result.

Proposition 13 Assume the strategy sets S; of each player are compact and
the payoff functions u; are continuous (this is true in particular if the sets S;
are finite). If the best reply dynamics (s')ien converges to s* € Sy, then s* is
a Nash equilibrium.

12



Proof. Pick any € > 0. As w; is uniformly continuous on Sy, there exists T'
such that

for all 4,5 € N and t > T |u;(s},s_;) — u(s]

T8 < % forall s_; € S_;

Fix an agent ¢. By definition of the b.r. dynamics, there is a date t > T such
that s§+1 € bri(s';). This implies for any s; € S;

n—1

3

where the left and right inequalities follow by repeated application of uniform
continuity. Letting € go to zero ends the proof. m

Observe that a limit point s* of the best reply dynamics (s!);eny may not
be a Nash equilibrium! Indeed if strategy sets are compact, any best reply
dynamics has some limit points, while the initial game may not have any Nash
equilibrium, and in that case Proposition 29 says that no best reply dynamics
ever converges. The second game in Example 16 below is a case in point; see
also Example 19.

Definition 14 We call a Nash equilibrium s strongly stable if any best reply
dynamics (starting form any initial profile of strategies in Sn) converges to s.
Such an equilibrium must be the unique equilibrium.

We call a Nash equilibrium sequentially stable if any sequential best reply
dynamics (starting form any initial profile of strategies in Sy ) converges to it.
Such an equilibrium must be the unique equilibrium.

We give a series of examples illustrating these definitions.

Example 16: Two-person zero sum games
Here a Nash equilibrium is precisely a saddle point. In the following game, a
saddle point exists and is strongly stable

4 3 5
5 2 0
2 1 6

Check that 3 is the value of the game. To check stability check that from the
entry with payoff 1, any b.r. dynamics converges to the saddle point; then the
same is true from the entry with payoff 6; then also from the entry with payoff
0, and so on.

In the next game, a saddle point exists but is not even sequentially stable:

4 1 0
3 2 3
0 1 4

Starting from (top,left), say, we cycle on the four corners of the matrix, each
one of them a limit point of the sequential b.r. dynamics, but we never reach
the saddle point (middle,middle).
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Stability in finite a (not necessarily zero-sum) two person game (51, Sa, u1, uz)
is easy to analyze. Define f = bro o br; the composition of the two best reply
correspondences. A fixed point of f is so € Sy such that so € f(s2), and a
cycle of length T is a sequence of distinct elements s, ¢ = 1,---,7T such that
sbtle f(sh) forallt =1,--- , T —1, and s} € f(s3).

Proposition 15 The Nash equilibrium s* of the finite game (S1, Sa,u1,us) is
strongly stable if and only if it is sequentially stable. This happens if and only
if f has a unique fized point and no cycle of length 2 or more.

Proof. If the game is sequentially stable, a sequence sb with an arbitrary
starting point sp and such that s5™ € f(sb), converges to the same limit s5,
and the corresponding sequence st also has a unique limit s¥. Thus (s, s3) is
the unique Nash equilibrium outcome and s the unique fixed point of f. To
check strong stability, consider any best reply dynamics s. At some t > 1,
st € bry(sh), so st reaches the set bri(Sy) x Sy, and never leaves it thereafter.
at some t' > t, sgﬂ € bra(st), so the sequence s reaches the set bry (S2) x £(S2),
never to leave it. Repeating the argument, we see that the sequence reaches
bry o f(S2) x f(S2), then bry o f(So) x f2(S2), and so on, which ensures its
convergence to (s}, s3).

The easy proof of the second statement is omitted. m

Example 17 price cycles in the Cournot oligopoly
The demand function and its inverse are

_ a—q
D(p) = (a—bp)+ & D7 '(q) = %
Firm 4 incurs the cost C;(g;) = 2‘102 therefore its competitive supply given the

price p is O;(p) = ¢;p, and total Zsupply is O(p) = (D_n ci)p. Assume there
are many agents, each one small w.r.t. the total market size (i.e., each ¢; is
small w.r.t. >y ¢;), so that the competitive price-taking behavior is a good
approximation of the best reply behavior. Strategies here are the quantities g;
produced by the firms, and utilities are

ui(g) = D' (O a))ai — Cila)
N

The equilibrium is unique, at the intersection of the O and D curves: the myopic
adjustment dynamics follows ¢ — D71(q¢) =p — O(p) =¢ — D7(¢') — ---
Set ¢ = > y¢j; if % > 1 the equilibrium is strongly stable; if % < 1itis
sequentially but not strongly stable.

Example 18: Schelling’s model of binary choices
Each player has a binary choice, S; = {0,1}, and the game is symmetrical,
therefore it is represented by two functions a(.),b(.) as follows

ui(s) = a(%Zsi) ifs; =1
N
- b(lzsi)ifsizo

n
N

14



Assuming a large number of agents, we can draw a,b as continuous functions
and check that the Nash equilibrium outcomes are at the intersections of the 2
graphs, at s = (0,---,0) if a(0) < b(0), and at s = (1,---,1) if a(1) > b(1).

Whether a cust b from above or below makes a big difference in the stability
of the corresponding equilibrium outcome.

Ezxample 18a: wvaccination Strategy 1 is to take the vaccine, strategy 0 to
avoid it. Both a and b are strictly increasing: the risk of catching the disease
diminishes as more people around us vaccinate. If % >N Si is very small, a > b,
as the risk of catching the disease is much larger than the risk of complications
from the vaccine; this inequality is reversed when % > Si is close to 1. So the
intersection of the two curves is the sequentially stable, but not strongly stable,
equilibrium outcome’.

Ezample 18b: traffic Each player chooses to use the bus (s; = 1) or his own
car (s; = 0); for a given congestion level %Z N Si, traffic is equally slow in
either vehicle, but more comfortable in the car, so a(t) < b(¢) for all ¢; however
a and b both increase in ¢, as more people riding the bus decreases congestion.
If a(1) > b(0) the equilibrium in dominant strategies s; = 0 for all ¢, is Pareto
inferior. It is strongly stable.

Ezample 18¢c Now a and b intersect only once, and a cuts b from below. We
have three equilibrium outcomes, at ¢t = 0,1 and at the intersection of a and b.

The latter is unstable, and the former two are stable in a ”local” sense?.

2.2 strictly dominance-solvable games

We saw in section 2.1.3 that in such games the Nash equilibrium exists and is
unique. We can say more.

Proposition 16 If the game G = (N, S;,u;,t € N) is strictly dominance solv-
able, its unique Nash equilibrium N2, S = {s*} is strongly stable.

The unique equilibrium obtains both as the result of the (timeless) deductive
process of successive elimination of strategies by fully informed players, and also
as the limit of any best reply dynamics by players with very limited knowledge
of their environment who naively ”best reply” to the observed behavior of the
other players (unaware of those players’ preferences).

See section 2.1.3 for examples.

1Note that this is a statement in utilities, as the Nash equilibrium property only determines
the number of players using each strategy, but not their identity. Yet all equilibrium outcomes
yield the same utility profile, which allows us to state those stability properties.

2We measure the deviation from an equilibrium by the number of agents who are not
playing the equilibrium strategy. We say that a a Nash equilibrium s* is locally stable in
population if there exists a number \,0 < A < 1, such that if no more than a fraction A of the
population deviates from it, any sequential dynamics converges back to s*.
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2.3 potential games

Potential games generalize the pure coordination games (Definition 21) where
all players have the same payoff functions. As shown in the following example,
strong stability is problematic in a coordination game but sequential stability
is not.

Example 19 a simple coordination game

The game is symmetrical and the common strategy space is S; = [0, 1]; the
payoffs are identical for all n players

n

ui(s) = Q(Z 8i)

i=1
where ¢ is a continuous function on [0, n].
Suppose that g has a unique maximum z* and no other local maxima (g is
single-peaked). All s such that > ; s; = z* are Nash equilibria, therefore none
is strongly stable. The single exceptions are z* = 0 or 1, because then the
Nash equilibrium is unique, and strongly stable. For z* such that 0 < z* < 1,
the game is sequentially stable in wutilities (Example 18), because along any
sequential best reply dynamics, the common utility increases and converges to
g(z*). However, even in the restricted sense of convergence in utilities, the game
is not strongly stable, because, for instance, simultaneous best reply sequences
cycle around z* without reaching it.

Definition 17 A game in strategic form G = (N, S;,u;,i € N) is a potential
game if there exists a real valued function P defined on Sy such that for all i
and s_; € S_; we have

wi(8i,8—i) — ui(sh,5_;) = P(si,s_;) — P(s},s_;) for all s;,s, € S;

or equivalently there exists P and for all i a real valued function h; defined on
SN~ {i} such that

u;i(s) = P(s) 4+ hi(s—;) for all s € Sy

The original game G = (N, S;, u;,7 € N), and the game P = (N, S;, P,i € N)
with the same strategy sets as G and identical payoffs P for all players, have
the same best reply correspondences therefore the same Nash equilibria. Call
s* a coordinate-wise mazimum of P if for all 4, s; — P(s;,s*;) reaches its
maximum at s}. Clearly s is a Nash equilibrium (of G and P) if and only if it
is a coordinate-wise maximum of P.

If P reaches its global maximum on Sy at s, this outcome is a Nash equi-
librium of P and therefore of G. Thus potential games with continuous payoff
functions and compact strategy sets always have at least a Nash equilibrium.
Moreover, these equilibria have appealing stability properties.

Proposition 18 Let G = (N, S;,u;,i € N) be a potential game where the sets
S; are compact and the payoff functions u; are continuous. If the best reply func-
tion of every player is single valued and continuous, and the Nash equilibrium
s unique, the game G is sequentially stable.
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Proof. (sketch) For any sequential b.r. dynamics s if st # s'*1, we have
P(s') < P(s't1), because the best reply functions are single valued. If the
sequence s® has more than one limit point, one constructas a cycle of the se-
quential best reply dynamics, which contradicts the fact that P strictly increases
along such dynamics. Thus s’ converges, and by continuity of P it must be a
coordinate-wise maximum of P, namely a Nash equilibrium. =
Example 20 public good provision by voluntary contributions

Each player i contributes an amount of input s; toward the production of a
public good, at a cost C;(s;). The resulting level of public good is B(_, s;) =
B(sn). Hence the payoff functions

U; = B(SN) — Cz(sz) fori=1,---,n

The potential function is
P(s) = B(sy) — »_ Ci(s:)

therefore existence of a Nash equilibrium is guaranteed if B, C; are continuous
and the potential is bounded over Rf .

Remark The public good provision model is a simple and compelling argu-
ment in favor of centralized control of the production of pure public goods. To
see that in equilibrium the level of production is grossly inefficient, assume for
simplicity identical cost functions C;(s;) = 1s? and B(z) = z. The unique Nash
equilibrium is s} = 1 for all 4, yielding total utility

n

Zuz(s*) = TLB(S}kV) — ZCZ(S;F) —n2_ 5

whereas the outcome maximizing total utility is s; = n, bringing >, u,;(s) = "73,

so each individual equilibrium utility is less than % of its ”utilitarian” level.

The much more general version of Example 20 where the common benefit
is an arbitrary function B(s) = B(s1, - ,$n), remains a potential game for
P = B -3, C;, therefore existence of a Nash equilibrium is still guaranteed.
See Example 8 and Problem 7 for two alternative choices of B, respectively
B(s) = mins; and B(s) = maxs;.

Example 21 congestion games

These games generalize both Pigou’s model (Example 3) and Schelling’s
model (Example 18). Each player i chooses from the same strategy set and her
payoff only depends upon the number of other players making the same choice.
Examples include choosing a travel path between a source and a sink when delay
is the only consideration, choosing a club for the evening if crowding is the only
criteria, and so on.

S; = 8 for all 45 u;(s) = fs,(ns;(s)) where ny(s) = [{j € N|s; = z}| and f,
is arbitrary. If f is decreasing, we have a negative congestion externality, as in
traffic examples. If f is increasing we have the opposite effect where we want
more players to choose the same strategy as our own, as in the club example.

17



In the latter we can also think of f as single-peaked (some crowding is good, up
to a point).
Here the potential function is

See Problems 16 to 19 for illustrations and variants.

3 Problems on chapter 3

Problem 1
In Schelling’s model (example 18) find the Nash equilibrium outcomes and an-
alyze their stability in the following cases:

a) a(t) =8t(1 —¢);b(t) =t

b) a(t) =8t(1 —t);b(t) =1—1¢

c) a(t) =8t(1 —1t);b(t) = 3

Problem 2 Games of timing (Definition 20)
a) We have two players, a and b both increase, are continuous, and « intersects
b from below only once. Perform the successive elimination of (weakly and
strictly) dominated strategies, and find all Nash equilibria. Can they be Pareto
improved?
b) We extend the war of attrition (example 7) to n players. If player ¢ stops
the clock first at time ¢, his payoff is u; = a(t), that of all other players is
u; = b(t). Both a and b are continuous and decreasing, a(t) < b(t) for all ¢, and
b(1) < a(0). Answer the same questions as in a).
c) We have n players as in question b), but this time a increases, b decreases,
and they intersect.

Problem 3 Ezample 13 continued
The interval [0, 1] is a nonhomogeneous cake to be divided between two players.
The utility of player 1 for a share A C [0,1] is v1(4) = [, (3 —z) dz. The
utility of player 2 for a share B C [0,1] is v2(B) = [5 (3 + ) do. When time
runs from ¢ = 0 to ¢t = 1, a knife is moved at the speed 1 from z =0 to x = 1.
Each player can stop it at any time. If the knife is stopped at time t by player
i, this player gets the share [0, ¢], while the other player gets the share [¢, 1].

Analyze the game as in Example 13. What strategic advice would you give
to each player? Distinguish the two cases where this player knows his opponent’s
utility and that where she does not.

Problem 4
One hundred people live in the village, of whom 51 support the conservative
candidate and 49 support the liberal candidate. A villager gets utility +9 if her
candidate wins, -11 if her candidate looses, and 0 if they are tied. In addition,
she gets a disutility of -1 for actually voting, but no disutility for staying home
(so if her canddate wins and she voted, net utility is 10, etc..).
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a) Why it is not Nash equilibrium for everybody to vote?

b) Why it is not Nash equilibrium for nobody to vote?

¢) Find a Nash equilibrium where all conservatives use the same strategy, and
all liberals use the same strategy.

d) What can you say about other possible Nash equilibria of this game?

Problem 5 third price auction
We have n bidders, n > 3, and bidder ¢’s valuation of the object is u;. Bids are
independent and simultaneous. The object is awarded to the highest bidder at
the third highest price. Ties are resolved just like in the Vickrey auction, with
the winner still paying the third highest price. We assume for simplicity that
the profile of valuations is such that u; > us > usz > u; for all i > 4.
a) Find all Nash equilibria.
b) Find all dominated strategies of all players and all Nash equilibria in undom-
inated strategies.
¢) Is the game dominance-solvable?

Problem 6 tragedy of the commons

A pasture produces 100 units of grass, and a cow transforms x units of grass
into  units of meat (worth $x), where 0 < z < 10, i.e., a cow eats at most 10
units of grass. It cost $2 to bring a cow to and from the pasture (the profit from
a cow that stays at home is $2). Economic efficiency requires to bring exactly
10 cows to the pasture, for a total profit of $80. A single farmer owning many
cows would do just that.

Our n farmers, each with a large herd of cows, can send any number of cows
to the commons. If farmer i sends s; cows, sy cows will share the pasture and
each will eat min{%, 10} units of grass.

a) Write the payoff functions and show that in any Nash equilibrium the
total number sy of cows on the commons is bounded as follows

500

1 n—1
—1<sy<50—— +1
n n
b) Deduce that the commons will be overgrazed by at least 150% and at most
400%, depending on n, and that almost the entire surplus will be dissipated in
equilibrium. (Hint: start by assuming that each farmer sends at most one cow).

Problem 7 a public good provision game.
The common benefit function is B(s) = max; s;: a single contributor is enough.
Examples include R&D, ballroom dancing (who will be the first to dance) and
dragon slaying (a lone knight must kill the dragon). Costs are quadratic, so the
payoff functions are
u;(s) = maxs; — —s
’L( ) i X J 2)\2 7
where J\; is a positive parameter differentiating individual costs.
a) Show that in any Nash equilibrium, only one agent contributes.
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b) Show that there are p such equilibria, where p is the number of players ¢ such
that 1
Ai >~ max

2
c¢) Compute strictly dominated strategies for each player. For what profiles (\;)
is our game (strictly) dominance-solvable?

Problem 8 the lobbyist game

The two lobbyists choose an ’effort’ level s;,7 = 1,2, measured in money (the
amount of bribes distributed) and the indivisible prize worth $a is awarded ran-
domly to one of them with probabilities proportional to their respective efforts
(if the prize is divisible, no lottery is necessary). Hence the payoff functions

Sj
S1 + 8o

ui(s) =a —8; if 81 4+ 82 > 0;u;(0,0) =0

a) Compute the best reply functions and show there is a unique Nash equilib-
rium.

b) Perform the successive elimination of strictly dominated strategies, and check
the game is not dominance-solvable. However, if we eliminate an arbitrarily
small interval [0, e] from the strategy sets, the reduced game is dominance solv-
able.

c¢) Show that the Nash equilibrium (of the full game) is strongly stable.

Problem 9
Two players share a well producing x liters of water at a cost C(x) = %mz.
Player ¢ requests x; liters of water, and the cost C(x1 + x2) of pumping the

total demand of water is divided in proportion to individual demands: player %

C(z1+zx

Player i’s 2utility for x; liters of water at cost ¢; is
vi(x;) = 84log(1 + ;) — ¢;

a) Write the normal form of the game where each player chooses independently
how much water to request.

b) Compute the quantities min,; max,, u;(z;,2;) and find the Nash equilib-
rium outcome. Show it is unique.

¢) Is the Nash equilibrium outcome Pareto optimal? If not, compute the
outcome maximizing total utility and compute the welfare loss at the equilibrium
outcome.

d) Perform the successive elimination of strictly dominated strategies and
comment on the result.

Problem 10
a) Prove Proposition 25.
b) Prove the statement discussed two paragraphs later. Given a game (N, S;, u;,1 €
N) with finite strategy sets, we write S5 = M52, S% for the result of the succes-
sive elimination of strictly dominated strategies. Consider any finite decreasing
sequence Ry C Sy such that RS = Sy and RI™ C U;(RY) for all i and t.
Then show that (R%)> = S%F.
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¢) Prove Proposition 31.

Problem 11

There are 10 locations with values 0 < a; < ag < ... < a. Player i (i = 1.2) has
n; < 10 soldiers and must allocate them among the locations (no more then one
soldier per location). The payoff at location p is a, to the player whose soldier
is unchallenged, and —a,, to his opponent; if they both have a soldier at location
p, or no one does, the payoff is 0. The total payoff of the game is the sum of all
locational payoffs.

Show that this game has a unique equilibrium in dominant strategies. What if
some a, are equal?

Problem 12 price competition
The two firms have constant marginal cost ¢;,7 = 1,2 and no fixed cost. They
sell two substitutable commodities and compete by choosing a price s;,7 = 1, 2.
The resulting demands for the 2 goods are

Sj
s;i+1

Di(s) = ()™
where a; > 1. Show that there is an equilibrium in dominant strategies and
discuss its stability.

Problem 13 examples of best reply dynamics

a) We have a symmetric two player game with S; = [0, 1] and the common best
reply function

1
br(s) = min{s + 3 2 —2s}
Show that we have three Nash equilibria, all of them locally unstable, even for

the sequential dynamics.
b) We have three players, S; = R for all 4, and the payoffs

up(s) = —5% + 25159 — 55
uz(8) = —9s3 + 65253 — 53
u3(s) = —16s7 — 9s3 — 53 + 245155 — 65953 + 85153

Show there is a unique Nash equilibrium and compute it. Show the sequential
best reply dynamics where players repeatedly take turns in the order 1, 2, 3 does
not converge to the equilibrium, whereas the dynamics where they repeatedly
take turns in the order 2,1, 3 does converge from any initial point. What about
the myopic adjustment where each player uses his best reply at each turn?

Problem 14 stability analysis in two symmetric games
a) This symmetrical n-person game has the strategy set S; = [0, +o0[ for all
and the payoff function
U1 () = 5953 - - - sp (s (S1Fs2HFon) _ 1)

(other payoffs deduced by the symmetry of the game).
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Find all dominated strategies if any, and all Nash equilibria (symmetric or not)
in pure strategies. Is this a potential game? Discuss the stability of the best
reply and sequential best reply dynamics in this game.

b) Answer the same questions as in a) for the following symmetric game with
the same strategy sets:

U,l(S) = 8983 - Sn(2ef(s1+sg+.._+sn) n 31)

Problem 15

Consider the following N players game. The set of pure strategies for each
player is C; = {1,..., N}, thus the game consists in each player announcing
(simultaneously and independently) an integer between 1 and N. To each pair
of players i, j corresponds a number v;;(= vj;), interpreted as the utility both
players could derive from being together (note that v;; can be negative). Players
are together if and only if they announce the same number. Thus, the payoff to
each player 7 is the sum of v;; over all players j who announced the same number
as ¢. Prove that this game is a potential game and find all Nash equilibria.

Problem 16 Congestion (variant of Example 3)

We have n agents who travel from A to B at the same time. Agent i can
use a private road at cost ¢; = 4 (that does not depend upon other agents’
actions), or use the public road. If k agents travel on that road, they each pay
a congestion cost k.

a) Describe the Nash equilibrium outcome (or outcomes) of this game.

b) Is this (are these) equilibrium outcome (s) Pareto optimal? Does it max-
imize total surplus? If not, compute the fraction of the efficient surplus wasted
in equilibrium.

¢) Show this is a potential game. Discuss the stability of the equilibrium
outcome(s). Is the game dominance solvable (strictly or weakly)?

d) Now the private costs ¢; are arbitrary numbers s.t. 1 < ¢; < n. Answer
questions a) and ¢) above.

Problem 17 Cost sharing

We have n agents labeled 1,2, - - -, n, who want to send a signal from A to B.
Agent i can send her message via a private carrier at cost ¢; = % (independently
of other agents’ choices), or use the public link. If k agents use the public link,
they each pay %

a) Show that there is one Pareto inferior Nash equilibrium outcome and
one Pareto optimal one. Show that the game is a potential game. Discuss the
stability of these equilibrium outcomes.

b) Variant: the public link costs lkj to each user, where ¢ is a small positive
number. Show that the game is now strictly dominance solvable. Compute the
inefficiency loss, i.e., the ratio of the total cost in equilibrium to the efficient
(minimal) cost of sending all messages.

¢) Now the private costs ¢; are arbitrary numbers s.t. 0 < ¢; < 1. Find the
Nash equilibrium or equilibria, discuss their efficiency and whether the game is
a potential game, or is dominance solvable.

Problem 18 more congestion games
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We generalize the congestion games of Example 21. Now each player chooses
among subsets of a fixed finite set S, so that s; C 2%. The same congestion
function f,(m) applies to each element x in S. The payoff to player 7 is

u;i(s) = Z fz(nz(s)) where ny(s) = |{j € N|z € s;}|

RASE

Interpretation: each commuter chooses a different route (origin and destination)
on a common road network represented by a non oriented graph. Her own delay
is the sum of the delays on all edges of the network.

Show that this game is still a potential game.

Problem 19 A different congestion game
There are m men and n women who must choose independently which one of two
discos to visit. Let ng,np be the number of women choosing to visit respectively
disco A and disco B, and define similarly m,, my. Each player only cares about
the number of visitors of the opposite gender at the disco he or she visits.
a) Assume first the following payoff functions:

u; = ng if 7 is a man choosing disco X;v; = m, if j is a woman choosing disco X

Men (resp. women) want to be in the disco with more women (resp. men).
Discuss the Nash equilibria of the game and their stability (strong and weak).
It will help to show first that this game is a potential game.

b) Now the strategies of the m 4 n players are the same but the payoffs are:

u; = Ny if 4 is a man choosing disco X;v; = —m, if j is a woman choosing disco X

Here men want to be in the disco with more women, while women seek the disco
with fewer men (remember this is a theoretical example).
Discuss the Nash equilibria of the game and their stability (strong and weak).
Show that this game is not a potential game.

Problem 20 ordinal potential games
Let o be the sign function ¢(0) = 0,0(2) = 1if 2 > 0,= -1 if 2 < 0. Call
a game G = (N, S;,u;,i € N) an ordinal potential game if there exists a real
valued function P defined on Sy such that for all 7 and s_; € S_; we have

a{ui(si,s_i) —ui(sh,s_;)} = o{P(si,s_;) — P(s},s_;)} for all s;,s; € S;

a)Show that the following Cournot oligopoly game is an ordinal potential game.
Firm i chooses a quantity s;, and D~ is the inverse demand function. Costs
are linear and identical:

ui(s) = 8; D" (sy) — cs; for all i and all s

b) Show that Proposition 33 still holds for ordinal potential games.

Problem 21 Cournot duopoly with increasing or U-shaped returns
In all three questions the duopolists have identical cost functions C.
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a) The inverse demand is D~!(q) = (150 — ¢)+ and the cost is
2
C(q) = 120q — §q2 for ¢ < 90;= 5,400 for ¢ > 90

Show that we have three equilibria.
b) The inverse demand is D~!(g) = (130 — ¢)+ and the cost is

C(q) = min{50¢q, 30g + 600}

Compute the equilibrium outcomes.
c¢)The inverse demand is D~1(g) = (150 — ¢) and the cost is

C(q) =2,025 for ¢ > 0;=0for g =0

Compute the equilibrium outcomes.

Problem 22 Cournot oligopoly with linear demand and costs
The inverse demand for total quantity q is

—1 - 7g
D™ (q) =p(1 q)+

where P is the largest feasible price and g the supply at which the price falls to
zero. Fach firm ¢ has constant marginal cost ¢; and no fixed cost.

a) If all marginal costs ¢; are identical, show there is a unique Nash equilibrium,
where all n firms are active if p > ¢, and all are inactive otherwise.

b) If the marginal costs ¢; are arbitrary and ¢; < ¢p < -+ < ¢, let m be zero
if p < ¢; and otherwise be the largest integer such that

! i
¢i < (TH'ZCI@)
1

m+1

Show that in a Nash equilibrium outcome, exactly m firms are active and they
are the lowest cost firms.

Problem 23 Hoteling competition in location
The consumers are uniformly spread on [0, 1], and each wants to buy one unit.
Each firm charges the fixed exogenous price p and chooses its location s; in the
interval. Production is costless. Once locations are fixed, each consumer shops
in the nearest store. The tie-breaking rule: the demand is split equally between
all stores choosing the same location
a) Show that with two competing stores, the unique Nash equilibrium is that
both locate in the center. Show the game is not dominance-solvable. However,
it is dominance solvable if each firm must locate in one of the n + 1 points
07%5%3"' 71'
b) Show that with three competing stores, the game has no Nash equilibrium.
¢) Show that with four competing stores, the game has a Nash equilibrium. Is
it unique?
d) What is the situation with five stores?
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Problem 24 Hoteling competition in location: probabilistic choice
a) Two stores choose a location on the interval [0, 100]. Customers are uniformly
distributed on this interval, with at most a unit demand, and will shop from
the nearest store if at all. If the distance between a customer and the store is

t, he will buy with probability p(t) = \/%. Thus if a store is located at 0 and

is the closest store to all customers in the interval [0, z], it will get from these
customers the revenue

r(x) = /wp(t)dtzélx/x 4-8
0

Stores maximize their revenues. Analyze the competition between the two stores
and compute their equilibrium locations. Compare them to the collusive out-
come, namely the choice of locations maximizing the total revenue of the two
stores.

b) Generalize the model of question a). Now p(t) is unspecified and so is its
primitive r(t). We assume that p is continuous, strictly positive, and strictly
decreasing from p(0) = 1.

Under what condition on p do both stores locate at the midpoint in the Nash
equilibrium of the game?

Show that if in equilibrium the stores choose different locations, they will never
locate on [0, 25] or [75,100].

Problem 25 Hoteling competition in prices: two firms
The 1000 consumers are uniformly spread on [0, 3] and each wants to buy one
unit and has a very large reservation price. The two firms produce costlessly
and set arbitrary prices s;. Once these prices are set consumers shop from the
cheapest firm, taking into account the unit transportation cost t. A consumer
at distance d; from firm i buys

from firm 1 if s 4+ td; < s9 + tds, from firm 2 if s; + tdy > s + tds

(the tie-breaking rule does not matter)

a) If the firms are located at 0 and 3, show that there is a unique Nash equilib-
rium pair of prices. Is it strongly/sequentially stable?

b) If the firms are located at 1 and 2, show that there is no Nash equilibrium
(hint: check first that a pair of two different prices can’t be an equilibrium).

Problem 26 Hoteling competition in prices: three firms
The consumers are uniformly spread over the interval [0, 3] and each wants to
buy one unit of the identical good produced by the three firms. The firms are
located respectively at 0,1 and 3 and they produce costlessly. The transporta-
tion cost is 1 per unit. As usual consumers shop at the firm where the sum of
the price and the transportation cost is smallest.
a) Write the strategic form of the game where the three firms choose the prices
S1, So2, S3 respectively.
b) Show that the game has a unique Nash equilibrium and compute it.
¢) Is the equilibrium computed in b) strongly/sequentially stable?
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Problem 27 price war

Two duopolists (a la Bertrand) have zero marginal cost and capacity ¢. The
demand d is inelastic, with reservation price p. Assume ¢ < d < 2¢. We also fix
a small positive constant ¢ (¢ < &).

The game is defined as follows. Each firm chooses a price s;,7 = 1,2 such that
0<s; <p. If s; <s;j—e¢, firm ¢ sells its full capacity at price s; and firm j sells
d — c at price s;. If [s; — s;j| < € the firms split the demand in half and sell at
their own price (thus € can be interpreted as a transportation cost between the
two firms). To sum up

ui(s) = cs1if s <sy—¢
(d—c)s1if 1 > s9+¢

d .
= 5811f82—5<81<82+€

with a symmetric expression for firm 2.
Set p* = %f) and check that the best reply correspondence of firm 1 is

bri(sy) = pifsy<p*+e
= {pp'}ifsa=p +e
= sy—cifsy>p +e

Show that the game has no Nash equilibrium, and that the sequential best reply
dynamics describes a cyclical price war.

Problem 28 Bertrand duopoly
The firms sell the same commodities and have the same cost function C(q), that
is continuous and increasing. They compete by setting prices s;,7 = 1,2. The
demand function D is continuous and decreasing. The low price firm captures
the entire demand; if the 2 prices are equal, the demand is equally split between
the 2 firms. Hence the profit function for firm 1

ui(s) = s1D(s1) — C(D(s1)) if 81 < s2;=01if 51 > 59

D(s1)
2

1
= §SID(51) — C( ) if S1 = S92

and the symmetrical formula for firm 2.
a) Show that if s* is a Nash equilibrium, then sj = s5 = p and

ac(@) <p<24c() - Ac(d)

where ¢ = D(p) and AC(q) = % is the average cost function.

b) Assume increasing returns to scale, namely AC is (strictly) decreasing. Show
there is no Nash equilibrium s* = (p,p) where the corresponding production g
is positive. Find conditions on D and AC such that there is an equilibrium with
q=0.
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c¢) In this and the next question assume decreasing returns to scale, i.e., AC
is (strictly) increasing. Show that if s* = (p,p) is a Nash equilibrium, then
p— < p < py where p_ and py are solutions of

2

D(pf)) and py = 2AC(D(p4)) — AC(

p- = AC(—;

Check that the firms have zero profit at (p—,p_) but make a positive profit at

(p4+,p+) ifp— < p4. Hint: draw on the same figure the graphs of D~'(q), AC(%)and

24C(g) - AC(2).

d) To prove that the pair (p4, p4+) found in question ¢) really is an equilibrium we

must check that the revenue function R(p) = pD(p)— C(D(p)) is non decreasing

on [0,p+]. In particular p4 should not be larger than the monopoly price.
Assume C(q) = ¢*, D(p) = (o — Bp)4+ and compute the set of Nash equilib-

rium outcomes, discussing according to the parameters «, 3.

Problem 29
In the game G = (N, S;, u;,i € N) we write

o = max minu;($;, $—;); 5; = min max u;(s;, S—;)
S; S_; S—i Si
and assume the existence for each player of a prudent strategy s;, namely a; =
mins_, u;(3;, $—;).
a) Assume « = («;);en is a Pareto optimal utility profile: there exists 5 € Sy
such that

a =u(3) and for all s € Sy : {u(s) > u(9)} = u(s) = u(s)

Show that e = § and that any profile of prudent strategies is a Nash equilibrium.
Then we speak of an inessential game.

b) Assume that the strategy sets S; are all finite, and 8 = (5,)ien is a Pareto
optimal utility profile. Show that if each function w; is one-to-one on Sy then
the outcome $ such that 3 = u(5) is a Nash equilibrium. Give an example of a
game with finite strategy sets (where payoffs are not one-to-one) such that 5 is
Pareto optimal and yet the game has no Nash equilibrium.
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