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1 Chapter 3: mixed strategies, correlated and

Bayesian equilibrium

1.1 Nash's theorem

Nash's theorem generalizes Von Neumann's theorem to n-person games.

Theorem 1 (Nash) If in the game G = (N;Si; ui; i 2 N) the sets Si are convex
and compact, and the functions ui are continuous over X and quasi-concave in
si, then the game has at least one Nash equilibrium.

For the proof we use the following mathematical preliminaries.

1) Upper hemi-continuity of correspondences
A correspondence f : A !! Rm is called upper hemicontinuous at x 2 A if
for any open set U such that f(x) � U � A there exists an open set V such
that x 2 V � A and that for any y 2 V we have f(y) � U . A correspondence
f : A !! Rm is called upper hemicontinuous if it is upper hemicontinuous at
all x 2 A.
Note that for a single-valued function f , this de�nition is just the continuity

of f .

Proposition 2 A correspondence f : A !! Rm is upper hemicontinuous if
and only if it has a closed graph and the images of the compact sets are bounded
(i.e. for any compact B � A the set f(B) = fy 2 Rm : y 2 f(x) for some
x 2 Bg is bounded).

Note that if f(A) is bounded (compact), then the upper hemicontinuity is
equivalent to the closed graph condition. Thus to check that f : A !! A
from the premises of Kakutani's �xed point theorem is upper hemicontinuous
it is enough to check that it has closed graph. I.e., one needs to check that for
any xk 2 A, xk ! x 2 A, and for any yk ! y such that yk 2 f(xk), we have
y 2 f(x).
2) Two �xed point theorems
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Theorem 3 (Brouwer's �xed point theorem) Let A � Rn be a nonempty convex
compact, and f : A ! A be single-valued and continuous. Then f has a �xed
point : there exists x 2 A such that x = f(x).

Extension to correspondences:

Theorem 4 (Kakutani's �xed point theorem)

Let A � Rn be a nonempty convex compact and f : A !! A be an upper
hemicontinuous convex-valued correspondence such that f(x) 6= ? for any x 2
A. Then f has a �xed point: there exists x 2 A such that x 2 f(x).
Proof of Nash Theorem.
For each player i 2 N de�ne a best reply correspondence Ri : S�i !! Si in

the following way: Ri(s�i) = argmax
�2Si

ui(�; s�i). Consider next the best reply

correspondence R : S !! S; where R(s) = R1(s�1)� :::� RN (s�N ). We will
check that R satis�es the premises of the Kakutani's �xed point theorem.
First S = S1�:::�SN is a nonempty convex compact as a Cartesian product

of �nite number of nonempty convex compact subsets of Rp.
Second since ui are continuous and Si are compact there always exist max

�2Si
ui(�; s�i).

Thus Ri(s�i) is nonempty for any s�i 2 S�i and so R(s) is nonempty for any
s 2 S:
Third R(s) = R1(s�1) � ::: � RN (s�N ) is convex since Ri(s�i) are convex.

The last statement follows from the (quasi-) concavity of ui(�; s�i). Indeed if
si; ti 2 Ri(s�i) = argmax

�2Si
ui(�; s�i) then ui(�si+(1��)ti; s�i) � �ui(si; s�i)+

(1� �)ui(ti; s�i) = max
�2Si

ui(�; s�i), and hence �si + (1� �)ti 2 Ri(s�i).
Finally given that S is compact to guarantee upper hemicontinuity of R we

only need to check that it has closed graph. Let sk 2 S, sk ! s 2 S, and
tk ! t be such that tk 2 R(sk). Hence for any k and for any i = 1; :::; N we
have that ui(t

k; sk�i) � ui(�; sk�i) for all � 2 Si. Given that (tk; sk�i)! (t; s�i)
continuity of ui implies that ui(t; s�i) � ui(�; s�i) for all � 2 Si. Thus t 2
argmax

�2Si
ui(�; s�i) = R(s) and so R has closed graph.

Now, Kakutani's �xed point theorem tells us that there exists s 2 S =
S1 � ::: � SN such that s = (s1; :::; sN ) 2 R(s) = R1(s�1) � ::: � RN (s�N ).
I.e. si 2 R(s�i) for all players i. Hence, each strategy in s is a best reply to
the vector of strategies of other players and thus s is a Nash equilibrium of our
game.�
A useful variant of the theorem is for symmetrical games.

Theorem 5 If in addition to the above assumptions, the game is symmetrical,
then there exists a symmetrical Nash equilibrium si = sj for all i; j.

Proof. The game is (N;S0; u) with S0 the common strategy set, and u : S0 �
S
N�f1g
0 ! R its common payo� function. Check that we can apply Kakutani's
theorem to the mapping R0 from S0 into itself:

R0(s0) = arg max
�2S0

ui(�; s0; s0; � � � ; s0)
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A �xed point of R0 is a symmetric Nash equilibrium.
The main application of Nash's theorem is to �nite games in strategic form

where the players use mixed strategies.
Consider a normal form game �f = (N; (Ci)i2N ; (ui)i2N ), where N is a

(�nite) set of players, Ci is the (nonempty) �nite set of pure strategies available
to the player i, and ui : C = C1� :::�CN ! R is the payo� function for player
i. Let Si = �(Ci) be the set of all probability distributions on Ci (i.e., the set of
all mixed strategies of player i). We extend the payo� functions ui from C to
S = S1� :::�SN by expected utility. The normative assumptions justifying this
type of preferences over uncertain outcomes are the subject of the next section.
In the resulting game Si will be convex compact subsets of some �nite-

dimensional vector space. Extended payo� functions ui : S ! R will be contin-
uous on S, and ui(�; s�i) will be be concave (actually, linear) on Si: Thus we
can apply the theorem above to show that

Theorem 6 �f always has a Nash equilibrium in mixed strategies.

Note that a Nash equilibrium of the initial game remains an equilibrium in
its extension to mixed strategies.
The Problems o�er several applications of Nash's theorem, in particular

problems ?/

1.2 Games with increasing best reply

A class of games closely related to dominance-solvable games consist of those
where the best reply functions (or correspondences) are non decreasing. In those
games existence of a Nash equilibrium is guaranteed by the general �xed point
theorem of Tarski, stating that an increasing function in a lattice must have at
least a �xed point. A simple instance of this result is that any non decreasing
function f from [0; 1]n into itself (i.e., x � x0 ) f(x) � f(x0)) has a �xed point.
We also know that it has a smallest �xed point, and a largest �xed point.
By way of illustration of Tarski's theorem, consider a symmetric game where

Si = [0; 1] and the (symmetric) best reply function s ! br(s; � � � ; s) is non de-
creasing. This function must cross the diagonal, which shows that a symmetric
Nash equilibrium exists.

Proposition 7 Let the strategy sets Si be either �nite, or real intervals [ai; bi].
Assume the best reply functions in the game G = (N;Si; ui; i 2 N) are single
valued and non decreasing

s�i � s0�i ) bri(s�i) � bri(s0�i) for all i and s�i 2 S�i

Then the game has a smallest Nash equilibrium outcome s� and s+ a largest
one s+. Any best reply dynamics starting from a converges to s�; any best reply
dynamics starting form b converges to s+.
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Proposition 8 Say that the payo� functions ui satisfy the single crossing prop-
erty if for all i and all s; s0 2 SN such that s � s0 we have

ui(s
0
i; s�i) > ui(si; s�i)) ui(s

0
i; s

0
�i) > ui(si; s

0
�i)

ui(s
0
i; s�i) � ui(si; s�i)) ui(s

0
i; s

0
�i) � ui(si; s0�i)

Under the SC property, de�ne br�i and br+i to be respectively the smallest and
largest element of the best reply correspondence. They are both non-decreasing.
The sequences st� and s

t
+ de�ned as

s0� = a; s
t+1
� = br�i (s

t
�); s

0
+ = b; s

t+1
+ = br+i (s

t
+)

are respectively non decreasing and non increasing, and they converge respec-
tively to the smallest Nash equilibrium s� and to the largest one s+. Finally the
successive elimination of strictly dominated strategies converges to [s�; s

+]

fs�; s+g � \1t=1StN � [s�; s+]

In particular if the game has a unique equilibrium outcome, it is strictly dominance-
solvable.

Note that if ui is twice di�erentiable the SC property holds if and only if

@2ui
@si@sj

� 0 on [a; b].

Example 1 Voluntary contribution to a public good (continued)
Consider Example 20 of chapter 2 where z ! B(z) is convex over R+. Then
the game has the SC property, therefore all the properties spelled above apply.
As the game is also a potential game, we conclude that it is strictly dominance
solvable if the potential function P (s) = B(sN ) �

P
i Ci(si) has a unique

coordinate-wise maximum. An example is B(x) = 1
2x

2; Ci(x) =
1
3
x3

a2i
.

Example 2 A search game
Each player exerts e�ort searching for new partners. The probability that player
i �nds any other player is si; 0 � si � 1, and when i and j meet, they derive
the bene�ts �i and �j respectively. The cost of the e�ort is Ci(si). Hence the
payo� functions

ui(s) = �isisN�fi) � Ci(si) for all i

Assuming only that Ci is increasing, we �nd that the game satis�es the single
crossing property. The strategy pro�le s� = 0 is always an equilibrium, and the
largest equilibrium s+ is Pareto superior to s�.
The game is a potential game as well, provided we rescale the utility functions
as

vi(s) =
1

�i
ui(s) = sisN�fi) �

1

�i
Ci(si)
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so the potential is

P (s) =
X
i 6=j

sisj �
X
i

1

�i
Ci(si)

Example 3 price competition
Each �rm has a linear cost production (set to zero without loss of generality)
and chooses a non negative price pi. The resulting demand and net payo� for
�rm i are

Di(p) = (Ai �
�i
3
p2i +

X
j 6=i

�jpj)+ and ui(p) = piDi(p)

Check that for any p�i, the best reply of player i is

bri(s�i) =
1
p
�i

s
Ai +

X
j 6=i

�jpj

so that the game has increasing best reply functions. On the other hand it does
not have the single crossing property.
In the symmetric case (Ai = A;�i = �; �i = �), one checks that its equilibrium
is unique and is strongly stable.

1.3 Von Neumann Morgenstern utility

We axiomatize preferences over random outcomes represented by an expected
utility function.
Notation:
C is the �nite set of outcomes (consequences), C = fc1; � � � ; cmg
� is the set of lotteries on C with generic element L = (p1; � � � ; pm); pj � 0

for all j and
Pm

1 pj = 1

De�nition 9 (compound lottery) Given K (simple) lotteries Lk 2 �; k =
1; � � � ;K, and a probability distribution � = (�1; � � � ; �K), the compound lot-
tery (Lk; k = 1; � � � ;K;�) is the random choice of an outcome in C where we
pick �rst a lottery Lk according to �, then an outcome in C according to Lk.

The simple lottery L =
PK

1 �kLk give the same ultimate probability dis-
tribution over outcomes as the compound lottery (Lk; k = 1; � � � ;K;�), yet it
is not unreasonable to distinguish these two objects from a decision-theoretic
viewpoint.

Consequentialist axiom: the preferences of our decision maker over a com-
pound lottery do not distinguish it from the associated simple lottery.

In view of this axiom, the preferences of our agent over the random outcomes
in C, obtained via compound lotteries of arbitrary order, are represented by a
rational preference (complete, transitive) � over �.
Continuity axiom: upper and lower contour sets of � are closed in �.
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By the classic Debreu theorem, the continuity axiom implies that these pref-
erences can be represented by a continuous utility function.

Independence axiom: for all L;L0; L00 2 �, for all � 2 [0; 1]

L � L0 , �L+ (1� �)L00 � �L0 + (1� �)L00

The independence axiom is very intuitive given consequentialism, and yet
extremely powerful. It is the mathematical engine driving th VNM theorem.

De�nition 10 The utility function U : �! R has the Von Neumann Morgen-
stern expected utility form if there exists real numbers u1; � � � ; um such that

U(L) =
mX
j=1

ujpj for all L = (p1; � � � ; pm) 2 �

An equivalent de�nition is that the function U is a�ne on �, namely

U(�L+ (1��)L0) = �U(L) + (1��)U(L0) for all L;L0 2 �, and all � 2 [0; 1]

An important invariance property of the VNM representation of a preference
relation on �: if U has the VNM form and represents �, so does �U + 
 for
any numbers � > 0 and 
 2 R. Conversely, such utility functions are the only
alternative VNM representations of �.
A consequence of this invariance is that di�erences in cardinal utilities have

meaning:

u1 � u2 > u3 � u4 ,
1

2
u1 +

1

2
u4 >

1

2
u2 +

1

2
u3

Theorem 11 (Von Neumann and Morgenstern) The preferences � over �
meet the Continuity and Independence axioms if and only if they are repre-
sentable in the expected utility form.

A consequence of the Independence axiom is the property that indi�erence
contours of these preferences are straight lines; this is the key argument in the
proof of the Theorem.
Critique of the independence axiom: the Allais paradox

Consider three outcomes

� c1: win a prize of 800K

� c2: win a prize of 500K

� c3: no prize.

Now consider the two choices between two pairs of lotteries

L1 = (0; 1; 0) versus L
0
1 = (0:1; 0:89; 0:01)

L2 = (0; 0:11; 0:89) versus L
0
2 = (0:1; 0; 0:9)

A commonly observed set of preferences are:

L1 � L01, L02 � L2
but these preferences are not compatible with VNM expected utility!
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1.4 mixed strategy equilibrium

Here we discuss a number of examples to illustrate both the interpretation and
computation of mixed strategy equilibrium in n-person games. We start with
two-by-two games ( two players have two strategies each).

Example 4 crossing games
We revisit the example 12 from chapter 2

stop 1; 1 1� "; 2
go 2; 1� " 0; 0

stop go

and compute the (unique) mixed strategy equilibrium

s�1 = s
�
2 =

1� "
2� " stop +

1

2� "go

with corresponding utility 2�2"
2�" for each player. So an accident (both player

go) occur with probability slightly above 1
4 . Both players enjoy an expected

utility only slightly above their secure (guaranteed) payo� of 1 � ". Under s�1,
on the other hand, player 1 gets utility close to 1

2 about half the time: for a tiny
increase in the expected payo�, our player incur a large risk.
The point is stronger in the following variant of the crossing game

stop 1; 1 1 + "; 2
go 2; 1 + " 0; 0

stop go

where the (unique) mixed strategy equilibrium is

s�1 = s
�
2 =

1 + "

2 + "
stop +

1

2 + "
go

and gives to each player exactly her guaranteed utility level in the mixed game.
Indeed a (mixed) prudent strategy of player 1 is

es1 = 2

2 + "
stop +

"

2 + "
go

and it guarantees the expected utility 2+2"
2+" , which is also the mixed equilibrium

payo�. Now the case for playing the equilibrium strategy in lieu of the pru-
dent one is even weaker, unless we maintain a strict interpretation of the VNM
preferences.

Computing the mixed equilibrium or equilibria of a �nite n-person game
follows the same general approach as for two-person zero-sum games. Here too
the di�culty is to identify the support of the equilibrium strategies. In a two-
person games, we can always �nd at least one equilibrium with two supports of
equal sizes, but this is not true any more with three or more players. Once this
is done we need to solve a system of linear equalities and inequalities.
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Unlike in two-person zero-sum games, we may have several mixed equilibria
with very di�erent payo�s. A deep theorem shows that for "most games", the
number of mixed or pure equilibria is odd.

Example 5 public good provision (Bliss and Nalebu�)
Each one of the n players can provide the public good (hosting a party, slaying
the dragon, or any other example where only one player can do the job) at a
cost c > 0. The bene�t is b to every agent if the good is provided. We assume
c < nb: the social bene�t justi�es providing the good. The players can divide
the burden of providing the good by the following use of lotteries. Each player
chooses to step forward (volunteer) or not. If nobody volunteers, the good is
not provided; if some players volunteer, we choose one of them with uniform
probability to provide the good.
If b < c, the game in pure strategies is a classic Prisoner's Dilemna (section

2.2.3) . If b > c, it resembles the war of attrition (sectione 2.2.1) in that we have
n pure strategy equilibria where one player provides the good and the other free
ride.
We look for a symmetrical equilibrium in mixed strategies in which every

player steps forward with probability p�; 0 < p� < 1. Then each player is
indi�erent between stepping forward or not. The latter gives the expected utility
b(1� (1� p)n�1), the former gives1

b� c(
n�1X
k=0

�
n�1
k

�
k + 1

pk(1� p)n�1�k) = b� c1� (1� p)
n

np

Therefore p� solves
nb

c
p =

1� (1� p)n
(1� p)n�1 = f(p)

Notice that f is convex, increasing, from f(0) = 0 to f(1) =1, and f 0(0) = n.
Therefore if b < c, the only solution of the equation above is p = 0 and we are
back to the Prisoner's Dilemna. But if b > c, there is a unique equilibrium in
mixed strategies. For instance if n = 2, we get

p�2 =
2(b� c)
2b� c and ui(p

�) =
2b(b� c)
2b� c

One checks that as n grows, p�n goes to zero as
K
n where K is the solution of

c

b
=

KeK

1� e�K

therefore the probability that the good be provided goes to 1 � e�K , but the
probability of volunteering of each player goes to zero.

1Setting f(p) = p � (
Pn�1
k=0

�
n�1
k

�
k+1

pk(1 � p)n�1�k), one checks f 0(p) = (1 � p)n�1 so that
f(p) =

1�(1�p)n
n

.
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Note that the game has many other equilibria, where only a subset of k
players step forward with the corresponding probability p�(k).

In�nite sets of pure strategies
Existence of a Nash equilibrium in mixed strategies holds under the same

assumptions as Glicksberg theorem for two person zero-sum games, namely
strategy sets are convex and compact, and utility functions are continuous.
Here is an example.

Example 6 war of attrition (a.k.a. all-pay second price auction)
We revisit the game of timing in Example 7 Chapter 2, specifying VNM utilities.
The n players compete for a prize worth $p by "hanging on" longer than everyone
else. Hanging on costs $1 per unit of time. Once a player is left alone, he wins
the prize without spending any more e�ort.

ui(s) = p�max
j 6=i

sj if si > max
j 6=i

sj ; = �si if si < max
j 6=i

sj ; =
p

K
� si if si = max

j 6=i
sj

where K is the number of largest bids.
In addition to the pure equilibria described in Example 7, Chapter 2, we

have one symmetrical equilibrium in completely mixed strategies where each
player independently chooses si in [0;1[ according to a cumulative distribution
function F . To compute F we assume that all players 2; � � � ; n choose si accord-
ing to F and consider the expected payo� of player 1 using the pure strategy
s1: Z s1

0

(p� t)
�
G(t)dt� s1(1�G(s1)), where G(t) = Fn�1(t)

Then we write that all pure strategies s1 give the same payo� to player 1, i.e.e,

the above expression is constant in s1. This gives p
�
G(t) + G(t) = 1 for all t,

hence
F (x) = (1� e�

x
p )

1
n�1

In particular the support of this distribution is [0;1[ and for any B > 0 there
is a positive probability that a player bids above B. The payo� to each player
is zero so the mixed strategy is not better than the prudent one (zero bid)
payo�wise. It is also more risky.

Example 7 lobbying game (a.k.a. all-pay �rst price auction)
The n players compete for a prize of $p and can spend $si on lobbying (bribing)
the relevant jury members. The largest bribe wins the prize; all the money
spent on bribes is lost to the players. Hence the payo� functions

ui(s) = p� si if si > max
j 6=i

sj ; = �si if si < max
j 6=i

sj ; =
p

K
� si if si = max

j 6=i
sj

The game has no equilibrium in pure strategies. In the symmetrical mixed Nash
equilibrium each player independently chooses a bid in [0; p] according to the
cumulative distribution function F . As in the previous example we compute
the expected payo� to player 1 using his pure strategy s1 against the mixed
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strategy of everyone else: (p�s1)Fn�1(s1)�s1(1�Fn�1(s1)). That this payo�
is independent of s1 2 [0; p] gives

F (x) = (
x

p
)

1
n�1

As in the above example the equilibrium payo� is zero, just like the guaranteed
payo� from a null bid.

1.5 correlated equilibrium

Given a �nite n-players game in strategic form � = (N; (Ci)i2N ; (ui)i2N ), a
correlation device is a lottery L over the set C = C1 � ::: � Cn of strategy
pro�les. The interpretation is that the lottery itself is a non binding agreement
to play according to its outcome. Thus the lottery is built jointly by the players
(much like we say that the players jointly reach an agreement to play a certain
Nash equilibrium), and once it draws an outcome x 2 C, the players are supposed
to play accordingly, namely player i chooses xi in Ci.
If the outcome of the lottery is publicly known, the agreement will be self

enforcing if and only if the support of the lottery consists of Nash equilibrium
outcomes (in pure strategies). Then the lottery is a simple coordination device
over a set of equilibria in pure strategies. This is a useful coordination device,
for instance to achieve a fair compromise between asymetric equil;ibria in a
symmetric game. In the crossing game of example 1, tossing a fair coin between
the two equilibria yields a payo� of 1:5� "

2 , much better than the payo� of the
only symmetric equilibrium, in mixed strategies. We can interpret a red light
as achieving precisely this kind of coordination when two lines of tra�c cross.
More interesting is the scenario where the distribution L is known to ev-

eryone, but the outcome of the lottery is only partially revealed to each player.
Speci�cally player i learns the i-th coordinate of the outcome x, but no more:
then she evaluates the random strategies chosen by other players according to
the conditional probability of L given xi. If other players are indeed following
the recommendation of the correlation device, this evaluation is correct. Now
the equilibrium (self-enforcing) property of the lottery L states that player i's
best reply to any recommendation xi is to comply.
Given a lottery L 2 �(C) we write its support [L] � C and the projection

of the support on Ci as projif[L]g. This set contains the strategies of player
i that the device recommends to play with positive probability. For any i and
xi 2 Ci, we denote by L(xi) the corresponding conditional probability of L on
CN�fig. Thus if Lx denotes the probability that L selects outcome x, we have

L(xi)x�i =
L(xi;x�i)P

y�i2CN�fig
L(xi;y�i)

for all xi 2 projif[L]g all x�i 2 CN�fig

De�nition 12 A lottery L 2 �(C) is a correlated equilibrium of the game
(N; (Ci)i2N ; (ui)i2N ) if for all i 2 N we have

ui(xi; L(xi)) � ui(yi; L(xi)) for all yi 2 Ci and all xi 2 projif[L]g

10



,
X

y�i2CN�fig

ui(xi; y�i)L(xi;y�i) �
X

y�i2CN�fig

ui(yi; y�i)L(xi;y�i) for all yi; xi 2 Ci

If s 2 �(C1)� :::��(Cn) is an equilibrium in mixed strategies, then the lottery
L = s1 � s2 � � � � � sn is a correlated equilibrium. This remark establishes that
a correlated equilibrium always exists in a �nite game.

The most important feature of the set C of correlated equilibria is that it
is a convex, compact subset of �(C). Indeed C is de�ned by a �nite set of
linear inequalities in �(C). Thus it contains all convex combinations of Nash
equilibria, pure and mixed.
In some games, that is all. For instance suppose each player has a strictly

dominant strategy: then the unique Nash equilibrium is also the unique corre-
lated equilibrium. Indeed the support of any correlated equilibrium must resist
the successive elimination of strictly dominated strategies. Furthermore, there
is always one correlated equilibrium of which the support resists the successive
elimination of weakly dominated strategies.
But as soon as we have several Nash equilibria (pure or mixed) not in a

rectangular position, there are more correlated equilibria. In some games this
only helps to average between pure equilibria, as in Example 4 above. In other
games, correlation allows a considerable improvement upon the Nash equilib-
rium outcomes.

Example 8 another Battle of the Sexes
home 10; 10 5; 13
theater 13; 5 0; 0

home theater
One of the spouses must stay home, lest they are both very unhappy to call
for a baby sitter. Both would prefer to go to the theater if the other stays
home. Each must commit to one of the two strategies before returning home,
and without the possibility to communicate with each other.
There are two equilibria in pure strategies, and a mixed equilibrium where each
player goes out with probability 3

8 . The expected payo� of the latter is 8:1 for
each. Tossing a fair coin before leaving to work between the two equilibria yields
the payo� 9 for each spouse.
There is a better correlated equilibrium, choosing (theater, home) and (home,
theater) each with probability 3

11 , and (home,home) with probability
5
11 . The

expected payo� is now 9:45 for each.

Example 9 musical chairs
We have n players and 2 "chairs" (locations), with n > 5. The game is symet-
rical. Each player chooses a chair. His payo� is +4 if he is alone to make this
choice, 1 if one other player (exactly) makes the same choice, and 0 otherwise
(i.e., if his choice is shared by at least 2 other players).
In a pure strategy equlibria of the game, each chair is �lled by two or more

players and all such outcomes are equilibria. The total payo� is 2 or 0. In the
symmetric mixed equilibrium each player chooses a chair with probability 0:5,
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and the resulting expected payo� is

4
1

2n
+ 1

n� 1
2n

=
2n� 1
2n

� 2

(there are no other mixed equilibria)
The best symmetric correlated equilibrium (i.e., the one giving the highest

total payo�) selects with probability � = 2
n�3 a distribution where one player

sits alone (and chooses with uniform probability among all such distributions),
and with probability 1�� = n�5

n�3 it picks a distribution where two players share
one chair (and chooses with uniform probability among all such distributions).
The total payo� is 2 + 4

n�3 .

1.6 games of incomplete information

A game in Bayesian form(or Bayesian game) speci�es

� the set N of players

� the set of pure strategies Xi for each player i

� the set of types Ti of each player i

� the set of beliefs of each player i, represented by a probability distribution
�i(�jti) over TN�fig: one distribution for each possible type of player i

� the payo� function ui(x; t) for each player i, where x 2 XN and t 2 TN .

A Bayesian equilibrium is decribed by a mixed strategy for each player,
conditional on his type: si(ti) 2 �(Xi). The equilibrium property is

8i; ti 2 Ti;8s0i 2 �(Xi) :X
t�i2TN�fig

�i(t�ijti)ui(s(t); t) �
X

t�i2TN�fig

�i(t�ijti)ui(s0i; s�i(t�i); t)

where we use the notation

s(t) 2 �i2N�(Xi); s�i(t�i) 2 �j2N�fig�(Xj) : sj(t) = sj(tj)

It is enough in the equilibrium property to consider deviations to pure strategies
xi 2 Xi. Therefore the number of inequalities characterizing the equilibrium isP

i jTijjXij.
Theorem: If the sets Xi and Ti are �nite, the game possesses at least one

Bayesian equilibrium.

This is a direct consequence of Nash's theorem, after observing that a Bayesian
equilibrium is a Nash equilibrium (in pure strategies) of the game with N =
�iTi, strategy set �(Xi) for each player (i; ti) 2 N and payo�s

eu(i;ti)(s) = X
t�i2TN�fig

�i(t�ijti)ui(s(i;ti); s(j;tj) j 2 N�fig)

12



This game meets all the assumptions of Nash's Theorem (in particular utility
is linear in own strategy).
The common prior, common knowledge assumption

In most examples , the individual beliefs are consistent, they are derived from a
common prior, namely a probability distribution � over TN , and each player i
learns her own type ti. Thus player i's beliefs are described by the conditional
probability �i(�jti) = �(�jti) of � upon learning one's type. This distribution �
is common knowledge, which means that player i knows it, i knows that player
j knows it, j knows that player i knows that player j knows it, and so on. More
generally, for any sequence i; j; k; � � � ; l of players (possibly with repetition): i
knows that j knows that k knows that � � � that l knows it.
The classic story of the 40 villagers illustrates the subtle role of the common
knowledge assumption.
In a Bayesian game where the beliefs are not consistent, the interpretation

of the equilibrium notion is more di�cult2.

Example 10:
Two players, player 1's type is known, that of player 2 is t1 with probability
0:6, t2 with probability 0:4:

T 1; 2 0; 1
B 0; 4 1; 3
t1 L R

T 1; 3 0; 4
B 0; 1 1; 2
t2 L R

Player 2 has a dominant strategy, hence the unique equilibrium is

x1 = T ;x2 = L if t1, = R if t2

Note that this is not the same as playing the unique Bayesian equlibrium in
each matrix separately, which makes no sense given player 1's information.
Another example with the same information structure:

T 0; 2 2; 0
B 2; 0 0; 2
t1 L R

T 1; 1 5; 0
B 0; 5 3; 3
t2 L R

Here the game under t1 is essentially matching pennies, and under t2 player 2
has a dominant strategy to play L. There is no pure strategy equilibrium, as
the sequences of best replies are: LL ! B ! RL ! T ! LL, and RR ! T ,
LR ! B. In the unique Bayesian equilibrium player 1's mixed strategy is the
optimal play for matching pennies, because under t2 player 2 plays L for sure:

s1 =
1

2
T +

1

2
B; s2 =

2

3
L+

1

3
R if t1, = L if t2

Another example with the same information structure:
T 0; 2 2; 0
B 2; 0 0; 2
t1 L R

T 2; 0 1; 2
B 0; 3 2; 0
t2 L R

2Consider a 2� 2 two-person zero-sum game where if t1 = t2 the game has a value of +1,
whereas if t1 6= t2 the value is �1. If player 1 (resp. player 2) believes t1 = t2 (resp. t1 6= t2)
for sure, both players, ex ante, "win".

13



Here again we have no pure strategy equilibrium, as the best reply sequence
is T ! LR ! B ! RL ! T . In the unique Bayesian equilibrium, player 1's
mixed strategy neutralizes player 2 in one but not both of the two 2x2 matrix
games. One computes:

s1 =
1

2
T +

1

2
B; s2 =

5

6
L+

1

6
R if t1, = L if t2

Example 11 a two-person zero sum betting game
Bob (column player) draws a card High or Low with equal probability 1

2 . Ann
(row player) has a Medium card (a fact known to Bob). Bob can raise (R) or
stay put (P ). After seeing Bob's move, Ann can see (S) or fold (F ). Payo�s
are as follows

S �10; 10 �4; 4
F �1; 1 1;�1

High R P

S 10;�10 4;�4
F �1; 1 1;�1
Low R P

Here Ann has 4 pure strategies denoted XY for do X if Bob raises, do Y if
he does not; Bob's strategy depends on his type, and is written similarly XY
for do X if High, do Y if Low.
Check �rst there is no pure strategy equilibrium, as the sequence of best

replies is

RR! SS (or SF )! RP (revealing)! FS ! RR; PR! SF ! RP ! � � � ; PP ! FF ! RP ! � � �

Bob has a dominant strategy to raise if his card is high; thus his P strategy
reveals to Ann that he is Low, in which case she wants to see. Therefore the
Bayesian equilibrium takes the form

Ann: p�S + p
0�F if Bob raises; S if Bob stays put

Bob: R if High; q�R + q
0�P if Low

The equilibrium conditions are

for Ann:
1

1 + q
(�10) + q

1 + q
(10) = �1) q =

9

11

for Bob: p(�10) + p0(1) = �4) p =
5

11

In equilibrium Ann expects to pay $ 611 to Bob: private information is more
valuable than second move.

Example 12: �rst price auction (Vickrey)
Each player draws a valuation in the [0; 100] interval. The draws are IID with
cumulative distribution function F . We asume that F is continuous: the un-
derlying distribution has no atoms.
The symmetrical equilibrium has player i bid x(ti) where ti is his (privately

known) valuation.The expected payo� to player i from bidding y, given that
other players use the equilibrium strategy x(�) is

ui(yjti) = (ti � y)�fx(tj) < y for all j 6= ig

14



Player i chooses his bid y = x(t) so as to maximize (ti � x(t))Fn�1(t). The
equilibrium property is that t = ti is such a maximizer.
Check �rst that x(�) must be increasing. Fix t; t0; t < t0, and set p =

�fx(tj) < x(t) for all j 6= ig, p0 = �fx(tj) < x(t0) for all j 6= ig. The equilibrium
conditions at t and t0 give respectively

f(t� x(t))p > (t� x(t0)p0, and (t0� x(t0))p0 > (t0�x(t)pg ) (t0� t)(p0� p) � 0

and the desired conclusion. Similar arguments show that x(�) must be continu-
ous and di�erentiable.
Now we write that z ! (t� x(z))Fn�1(z) reaches its maximum at t, for all

t. Di�erentiating:

x0(t)Fn�1(t)� (t� x(t))fFn�1(t)g0 = 0

The boundary condition is x(0) = 0. A zero valuation player does not want to
bid any positive amount. The di�erential equation writes

fx(t)Fn�1(t)g0 = tfFn�1(t)g0; x(0) = 0

Therefore

x(t) =

R t
0
zdFn�1(z)

Fn�1(t)
= E[t(2)jt(1) = t]

where t(k) is the k-th order statistics of the n variables ti. To check the second
equality, observe that for all a; t; a < t

�ft(2) � ajt(1) = tg = �ft�1 � ajt�1 � t; t1 = tg = �ft�1 � ajt�1 � tg =
Fn�1(a)

Fn�1(t)

(where the �rst inequality follows from the fact that types are identically dis-
tributed, and the second from the fact they are stochastically independent).
This says that the equilibrium bid is the expected value of the second highest
bid, conditional on your own bid winning the object.
For instance assume the uniform distribution on [0; 100], so that F (t) = t,

then x(t) = n�1
n t and the expected highest bid (revenue of the seller) is

E[x(t(1))] =
n� 1
n

E[t(1)] =
n� 1
n+ 1

100

Moreover the e�cient buyer (the one with the highest valuation) gets the object,
therefore the expected joint surplus to the seller and bidders is E[t(1)] =

n
n+1100.

This leaves only an expected gain of 1
n(n+1)100 per bidder!

Interestingly this sharing of the surplus between buyers and the seller is the
same as in Vickrey's second price auction, because there the revenue of the seller
is

E[t(2)] =

Z 100

0

E[t(2)jt(1) = t]dFn(t) =
Z 100

0

x(t)dFn(t) = E[x(t(1))]
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Example 13 sealed bids double auction (Myerson and Satterthwaite)
The object is worth a to the seller, b to the buyer. Both a and b are IID on
[0; 300] with uniform distribution. They play the sealed bid double auction game:
they independently and simulatneously send an ask price x (seller) and an o�er
price y (buyer). If x > y, no trade takes place; if x � y, trade takes place at
price p = x+y

2 .
One checks �rst that x(a) = a; y(b) = b is not an equilibrium. Suppose the

buyer plays y(b) = b, and the seller is of type a; his pro�t
R x
0
(a � x+b

2 )db is

maximized at x = 2
3a.

We compute the linear equilibrium, where each player uses a bid function
that is linear in own valuation

x(a) = �a+ �; y(b) = 
b+ �

If the buyer uses y(�) above, trade will occur if the seller's o�er x is such that
x � y(b), b � x��


 . The expected pro�t of a type a seller o�ering x isZ 300

x��



(
x+ 
b+ �

2
� a)db = 1

2

f�3
2
x2 + (300
 + 2a� �)x+ constantg

It is maximized at x = 1
3 (2a+ 300
 + �). Similarly if the seller uses x(�) above,

the expected pro�t of a type b buyer o�ering y isZ y��
�

0

(b� y + �a+ �
2

)da =
1

2�
f�3
2
y2 + (2b+ �)y + constantg

maximized at y(b) = 2b+�
3 . Thus the unique candidate linear equilibrium is

x(a) =
2

3
a+ 75; y(b) =

2

3
b+ 25

It remains to check that participation is voluntary, i.e., no one would prefer to
abstain from bidding. A buyer of type b < 75 bids above his own valuation,
y(b) > b, but as the seller's o�er is never below $75, such an o�er is never
accepted. Similarly a seller of type a > 225 bids x(a) < a, but again, this o�er
is irrelevant as y(b) � 225 for all b.
Finally we compute the welfare loss at this equilibrium. Trade occurs only

if x(a) � y(b), b � a+ 75. Therefore the loss is
1

3002

Z Z
a�b�a+75

(b� a)dadb = 125

16
' 7:8

so about 16% of the e�cient expected surplus

1

3002

Z Z
a�b
(b� a)dadb = 50

It is important to keep in mind that the liner equilibrium is but one equili-
brtium among many others, non linear equilibria. Computing all equilibria of
the double auction game is an open problem. See problem 20 for an example
and Problem 21 for alternative trade mechanisms in the same context.
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1.7 Problems for Chapter 3

Problem 1
a) In the two-by-two game

T 5; 5 4; 10
B 10; 4 0; 0

L R

Compute all Nash equilibria. Show that a slight increase in the (B;L) payo�
to the row player results in a decrease of his mixed equilibrium payo�.
b) Consider the crossing game of example 4

stop 1; 1 1� "; 2
go 2; 1� " 0; 0

stop go

and its variant where strategy "go" is more costly by the amount �; � > 0, to
the row player:

stop 1; 1 1� "; 2
go 2� �; 1� " ��; 0

stop go

Show that for � and " small enough, row's mixed equilibrium payo� is higher if
the go strategy is more costly.

Problem 2
Three plants dispose of their water in the lake. Each plant can send clean water
(si = 1) or polluted water (si = 0). The cost of sending clean water is c. If only
one �rm pollutes the lake, there is no damage to anyone; if two or three �rms
pollute, the damage is a to everyone, a > c.
Compute all Nash equilibria in pure and mixed strategies.

Problem 3
Give an example of a two-by-two game where no player has two equivalent pure
strategies, and the set of Nash equilibria is in�nite.

Problem 4
A two person game with �nite strategy sets S1 = S2 = f1; � � � ; pg is represented
by two p� p payo� matrices U1 and U2, where the row player is labeled 1 and
the column player is 2. The entry Ui(j; k) is player i's payo� when row chooses
j and column chooses k. Assume that both matrices are invertible and denote
by jAj the determinant of the matrix A. Then write eUi(j; k) = (�1)j+kjUi(j; k)j
the (j; k) cofactor of the matrix Ui, where Ui(j; k) is the (p�1)� (p�1) matrix
obtained from Ui by deleting the j row and the k column.
Show that if the game has a completely mixed Nash equilibrium, it gives to

player i the payo�
jUijP

1�j;k�p
eUi(j; k)
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Problem 5
In this symmetric two-by-two-by-two (three-person) game, the mixed strategy
of player i takes the form (pi; 1�pi) over the two pure strategies. The resulting
payo� to player 1 is

u1(p1; p2; p3) = p1p2p3 � 3p1(p2 + p3) + p2p3 � p1 � 2(p2 + p3)

Find the symmetric mixed equilibrium of the game. Are there any non sym-
metric equilibria (in pure or mixed strategies)?

Problem 6
Let(f1; 2g; C1; C2; u1; u2) be a �nite two person game and G = (f1; 2g; S1; S2; u1; u2)
be its mixed extension. Say that the set NE(G) of mixed Nash equilibrium out-
comes of G has the rectangularity property if we have for all s; s0 2 S1 � S2

s; s0 2 NE(G))(s01; s2); (s1; s02) 2 NE(G)

a) Prove that NE(G) has the rectangularity property if and only if it is a convex
subset of S1 � S2.
b) In this case, prove there exists a Pareto dominant mixed Nash equilibrium
s�:

for all s 2 NE(G))u(s) � u(s�)
Problem 7 all-pay second price auction

This is a variant of example 6 with only two players who value the prize respec-
tively at a1 and a2. The payo� are

ui(s1; s2) = ai � sj if sj < si; = �si if si < sj ; =
1

2
ai � si if sj = si;

For any two numbers b1; b2 in [0; 1] such that maxfb1; b2g = 1, consider the
mixed strategy of player i with cumulative distribution function

Fi(x) = 1� bie
� x
aj ; for x � 0

Show that the corresponding pair of mixed strategies (s1; s2) is an equilibrium
of the game.
Riley shows that these are the only mixed equilibria of the game.

Problem 8 all-pay �rst price auction
This is a variant of Example 7 with only two players who value the prize re-
spectively at a1 and a2. The payo�s are

ui(s1; s2) = ai � si if sj < si; = �si if si < sj ; =
1

2
ai � si if sj = si

Assume a1 � a2. Show that the following is an equilibrium:
player 1 chooses in [0; a2] with uniform probability;
player 2 bids zero with probability 1� a2

a1
, and with probability a2

a1
he chooses

in [0; a2] with uniform probability.
Riley shows this is the unique equilibrium if a1 > a2.
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Problem 9 �rst price auction
This is a variant of Example 12 Chapter 2 where the two players value the prize
respectively at a1 and a2. Each player bids $si, where si 2 R+ (instead of
integers in Example 12, Chapter 2).The payo�s are

ui(s1; s2) = ai � si if sj < si; = 0 if si < sj ; =
1

2
(ai � si) if sj = si

a) Assume a1 = a2. Show that the only Nash equilibrium of the game in mixed
strategies is s1 = s2 = ai.
b) Assume a1 > a2. Show there is no equilibrium in pure strategies. Show that
in any equilibrium in mixed strategies
player 1 bids a2
player 2 chooses in [0; a2] according to some probability distribution � such

that for any interval [a2 � "; a2] we have �([a2 � "; a2]) � "
a2�a1 .

Give an example of such an equilibrium.

Problem 10 a location game
Two shop owners choose the location of their shop in [0; 1]. The demand is
inelastic; player 1 captures the whole demand if he locates where player 2 is,
and player 2's share increases linearly up to a cap of 23 when he moves away from
player 1. The sets of pure strategies are Ci = [0; 1] and the payo� functions are:

u1(x1; x2) = 1� jx1 � x2j

u2(x1; x2) = minfjx1 � x2j;
2

3
g

a) Show that there is no Nash equilibrium in pure strategies.
b) Show that the following pair of mixed strategies is an equilibrium of the
mixed game:

s1 =
1

3
�0 +

1

6
� 1
3
+
1

6
� 2
3
+
1

3
�1

s2 =
1

2
�0 +

1

2
�1

and check that by using such a strategy, a player makes the other one indi�erent
between all his possible moves.

Problem 11 Correlated equilibrium
In the crossing game of example 4, compute all correlated eqilibria. Show that
the best symmetric one is a simple "red light".

Problem 12 more musical chairs
Consider three variants of example 9 where

� there are two chairs and 3 players

� there are two chairs and 4 players

� there are three chairs and n players, n � 7
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In each case discuss the equilibria in pure strategies, in mixed strategies, and
the best symmetric correlated equilibrium.

Problem 13 Correlated equilibrium
We have three players named 1; 2; 3, each with two strategies labeled A;B. The
game is symmetrical, and the payo�s are as follows:

(B;B;A) ! (2; 2; 0)

(A;A;A) or (B;B;B) ! (1; 1; 1)

(B;A;A) ! (0; 0; 0)

a) Find all equilibria in pure strategies, and all equilibria in mixed strategies.
b) Find the symmetrical correlated equilibrium with the largest common payo�.

Problem 14 a coordination game
There are q locations equally distributed on the oriented unit circle, q � 3, and
each of the two players chooses one location. The payo� to both players is 1
if they choose the same location, 0 if they choose two di�erent locations that
are not adjacent. If the two choices are adjacent, the player who precedes the
other (given the orientation of the circle) gets a payo� of 3, the other one gets
a payo� of 2.
Show that the game has no pure strategy equilibrium; compute its symmetric
equilibrium in mixed strategies and the corresponding payo�s.
Show there is no other equilibrium in mixed strategies.
Construct a correlated equilibrium where total payo� is maximal, anmely 2:5
for each player.

Problem 15
Find all equilibria in pure and mixed strategies of the following three person
game. Each player has two pure strategies, Ci = fxi; yig for all i = 1; 2; 3. The
payo� is zero to everybody, unless exactly one player i chooses yi, in which case
this player i gets 5, the player before i in the 1! 2! 3! 1 cycle gets 6; and
the player after i in this cycle gets 4. Note that the game is not symmetric in
the sense of De�nition 21 (Chapter 2), yet it is cyclically symmetric, i.e., with
respect to the cycle 1! 2! 3! 1.
Compute the (fully) symmetric correlated equilibria of the game and compare
their payo�s to those of the pure and mixed equilibria.

Problem 16 Bayesian equilibrium
a) The strategy sets and information structure is as in Example 10, and the
payo�s are

T 1; 2 0; 0
B 0; 0 2; 1
t1 L R

T 0; 0 3; 1
B 1; 3 0; 0
t2 L R

Check that we have two pure strategy equilibria. How many Bayesian equilibria
involving mixed strategies?
b) The payo�s are now
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T 1; 2 0; 0
B 0; 0 2; 1
t1 L R

T 4; 1 0; 0
B 0; 0 2; 3
t2 L R

Find all Bayesian equilibria.
c) Player 1 chooses a row and his type is known, player 2 chooses a column and
his type is t1 with probability

2
3 , t2 with probability

1
3 . Payo�s are:

T 2; 0 0; 2
B 0; 2 2; 0
t1 L R

T 0; 0 2; 2
B 3; 3 0; 0
t2 L R

Find all equilibria in pure strategies and all Bayesian equilibria.

Problem 17
Two opposed armies are poised to seize an island. Each army's general chooses
(simultaneously and independently) either to attack or not to attack. In addi-
tion, every army is either strong or weak, with equal probability, and the army's
type is known to its general (but not to the general of the opposed army). An
army captures the island if either it attacks it while its opponent does not at-
tack, or if it attacks while strong, whereas its rival is weak. If two armies of
equal strength both attack, neither captures the island.
Payo�s are zero initially; the island is worth 8 if captured; an army incurs a
cost of �ghting, which is 3 if it is strong and 6 if it is weak. There is no cost of
attacking if the rival does not attack, and no cost to not attacking.
Give the normal form of the game, eliminate dominated strategies if any, and
compute all Bayesian equilibria.

Problem 18
Mob becomes very strong in �ghting on the day he uses drugs, otherwise he

is weak. No matter, whether he used drugs or not, Mob is often involved in
con
icts of the type described below.
Bob has just insulted Mob in the bar, and Mob must decide whether to �ght

Bob immediately, or to leave and try to beat Bob after Bob leaves the bar in
a couple of hours. If Mob leaves and tries to catch up with Bob later outside,
then, if Mob is strong today, he beats Bob and gets utility 10. However, if Mob
is weak, Bob beats him and Mob gets -10.
If Mob decides to �ght immediately then it is Bob's choice whether to �ght

or to leave. If Bob leaves, Mob gets utility 5 from humiliating Bob. If they �ght
in the bar, then on the day Mob is strong he would beat Bob publicly and get
utility 20. However, on the day Mob is weak he would loose to Bob publicly
and get utility -30.
Mob knows whether he took drugs this day. Bob does not know it, but he

was told by the bar owner that Mob uses drugs on average one day out of three.
If Bob is challenged, he gets -10 from leaving, -15 if he �ghts and looses and

5 if he �ghts and wins. If the �ght is postponed Bob gets -6 from loosing it and
3 from winning.
a) Describe the set of pure strategies for each player, and write the game

matrix. Eliminate dominated strategies.
b) Find all Nash equilibria of this game.
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Problem 19 all-pay �rst price auction
The game is identical to that in Example 7, except for the fact that the valuation
ti of the object to player i is known only to this agent. Other agents know that
ti is drawn from the uniform probability distribution over [0; 100], and that all
draws are stochastically independent.
a) Show that if bidder i observes his type ti, contemplates the bid y and knows
that other bidders all use the same bidding function x(t), bidder i's expected
pay-o� is

ti�fx(tj) < y for all j 6= ig � y
b) Deduce the unique symmetrical equilibrium bidding function x(�). Compare
it to the symmetrical equilibrium of the �rst price auction.
c) Show that the expected revenue to the seller is the same as in the �rst price
auction (example 11) and in the second price auction. Compare the expected
pro�t of a bidder in these three auctions.

Problem 20 sealed bid double auction
In the game of Example 13, consider the following pair of strategies, where �
is a number in [0,300]:

seller x(a) = � if 0 � a � �; = 300 if � < a � 300
buyer y(b) = 0 if 0 � b < �; = � if � � b � 300

Show that it is a Bayesian equilibrium.
Compute its welfare loss and choose � so that it is minimal. Then compare it
to the welfare loss of the linear equilibrium found in example 13.

Problem 21 alternative trade mechanisms
As in Example 13, we have a buyer and a seller with IID valuations in [0; 300].
a) Consider the following take it or leave it mechanism: the seller chooses a
price x 2 [0; 300], which the buyer accepts or not. Compute its unique Bayesian
equilibrium, and compare its welfare loss to that found in Example 13, and in
Problem 19. also compare the division of the surplus between the two players.
b) Consider the following mechanism. After the seller and buyer independently
bid respectively x and y
trade occurs at price y

2 if y � 3x and x+ y � 300
trade occurs at price x

2 + 150 if y �
x
3 + 200 and x+ y > 300

no trade occurs, and no money changes hands, in every other case
Show that sincere report of one's valuation (x(a) = a and y(b) = b for all a; b) is
a Bayesian equilibrium. Compare the welfare loss of this mechanisms to those
found in Example 13 and in Problem 19.

Problem 22 the lemon problem
The seller's reservation price t is drawn in [0; 100] with uniform probability. The
buyer does not see t. Her reservation price for the object is 3

2x.
a) Suppose the buyer makes a "take it or leave it" o�er which the seller can only
accept or reject. Show that the only Bayesian equilibrium of this game has the
buyer o�ering a price of zero, which the seller always refuses.
b) What is the Bayesian equilibrium of the game where the seller makes a "take
it or leave it" o�er which the buyer can only accept or reject?
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2 Chapter 4: extensive form games

The general model of n-person games in extensive form is a straightforward
extension of the model in sectiion 1.3 for two-person zero sumgames.

2.1 De�nition

An n-person game in extensive form �e is given by:
1) a set of players N = f1; :::; ng;
2) a tree (a connected graph without cycles), with a particular node taken

as the root;
3) for each non-terminal node, a speci�cation of who has the move (one of

real players or \chance");
4) a partition of all nodes, corresponding to each particular player, into

information states, which specify what players know about their location on the
tree;
5) for each terminal node, a payo� attached to it.

Formally, a rooted tree is a pair (M;�) where M is the �nite set of nodes,
and � :M !M[; associates to each node its predecessor. A (unique) node m0

with no predecessors (i.e., �(m0) = ;) is the root of the tree. Terminal nodes
are those which are not predecessors of any node. Denote by T (M) the set of
terminal nodes. For any non-terminal node r; the set fm 2 M : �(m) = rg is
the set of successors of r:We call the edges, which connectm with its successors,
\alternatives" at m. The maximal possible number of edges in a path from the
root to some terminal node is called the length of the tree.
Given a rooted tree (M;�); the game in extensive form is speci�ed once we

label all the nodes and edges according to the following rules.
(a) Each non-terminal node (including the root) is labeled by number from

f0; 1; :::; ng, where i 2 f1; :::; ng = N represents a real player in the game, and
0 represents a \nature" or \chance" player. We denote by Mi the set of nodes
labeled by the player i. The interpretation is that when the game is played, we
start at the root and then for each node m 2Mi the player i is choosing which
edge to follow from this node.
(b) The alternatives at a node labeled by the chance player 0 are labeled by

numbers from [0; 1], so that those numbers over all the alternatives sum to 1.
They represent probabilities that chance would choose those alternatives.
(c) The alternatives at a node m 2 Mi; i 2 f1; :::; ng are labeled by \move

labels". Di�erent alternatives at the same node are labeled with di�erent labels.
(d) Each Mi, i 6= 0, is partitioned into information sets P i1; :::; P

i
ki
, Mi =S

j

P ij , P
i
j1
\ P ij2 = 0, with the following condition: any two nodes x; y from the

same information set must have the same number of successors, and the set of
move labels on the alternatives at x should coincide with the set of move labels
on the alternatives at y. The interpretation is that when a player i has to choose
an alternative at the node m 2Mi, he knows in what information set he is, but
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he does not know at what exact node from this information set he is making his
choice.
(e) Each terminal node m is labeled by a vector u(m) = (u1; :::; un) which

speci�es the payo�s for players 1; :::; n, if the game ends at this node. This
de�nes the payo� function u : T (M)! R.
The game starts at the root m0 of the tree. For each non-terminal node

m; m 2 Mi means that player i has the move at this node. A move for the
chance player consists in choosing the successor of m randomly according to
the probability distribution on the alternatives at m. A move for a real player
i 2 N consists in picking a move label for the successor of this node. Note that
when making the move, a player does not know where exactly he stands. He
only knows the information set he is at, and hence the set of the move labels.
Once a move label is picked, the game moves to the successor of the node m
which is connected to m by the alternative with the chosen move label. The
game continues until some terminal node mt is reached. Then a payo� u(mt);
attached to this node, is realized.

An important special case: When each information set of each player consists
of a single node, we say that this game has \perfect information". This
term refers to the fact that, when a player has to move, he possesses perfect
information about where exactly in the tree he is.

Normal form games as extensive form games: any normal form game can be
represented in extensive form, by ordering the players arbitrarily say 1; 2; � � � ; n,
have player 1 move �rst, after which the information set of other players "hides"
1's move, then player 2 moves, after which the information set of the remaining
players hides the �rst two moves, etc.. In this fashion we can also represent
multi stage games where at some nodes, several players move simultaneously.

Conversely there is a canonical normal form representation � of any exteten-
sive form game �e. A strategy for a player i is a complete speci�cation of what
move to choose at each and every information set from P = fP i1; :::; P ikig. The
set of all such possible speci�cations is the strategy set Ci for player i in �.
The payo� ui(c1; :::; cn) is the payo� to player i at the terminal node which is
reached after all players have chosen all their moves according to the strategies
c1; :::; cn. It is important to note that, since there are chance players in the
extensive form game who make their choice at random, the game could have
an uncertain outcome even when all real players use pure strategies. In this
case the game could end in di�erent terminal nodes, but we can calculate the
probability of our game to end in each terminal node (given choice of strate-
gies c1; :::; cn). Then, the payo� payo� ui(c1; :::; cn) will be the expected payo�
according to those probabilities.
As usual, we assume that players evaluate di�erent outcome on the basis of

a VNM (expected) utility function.
As for normal form games we de�ne the mixed strategy si 2 �(Ci) for

player i as a probability distribution on his set of pure strategies Ci. The
best response correspondence is de�ned by bri(s�i) to be the set of strategies
for player i that give him the best (expected) payo� against the vector s�i of
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strategies of other players. A Nash equilibrium of the extensive form game �e

is the vector s = (s1; :::; sn) of strategies, where each one is a best response to
the others.

2.2 Subgame perfection

In a game in extensive form, the set of the Nash equilibria is often very big and
some of those equilibria make little sense.
Consider for instance the extensive form variant of the Nash demand game

(example 6 in Chapter 2) with perfect information. Demands are in cents (they
divide $1), player 1 chooses his demand x, which is revealed to player 2, who can
only accept or reject it. For any integer x; 0 � x � 100, the pair of strategies
where player 1 demands x, and player 2 rejects if s1 > x, and accepts if s1 � x,
is a Nash equilibrium. But for x � 50, this equilibrium involves the unrealistic
refusal of a fair share of the pie.
The key concept of subgame perfection is an important re�nement that will

eliminate many such unrealistic outcomes. We de�ne it �rst, before illustrating
its predictive power and its limits in a handful of examples.
We assume that our game has perfect recall. Thus, in the course of the game

each player remembers his past moves. In particular, it implies some restrictions
on the information sets. Two nodes x; y cannot belong to the same information
set of the player i, if the choices in the game he made before reaching x or y
allow him to distinguish between the two. For example, no game path (a path
from the root to a terminal node) could contain several nodes from the same
informational set.
A proper subgame of an extensive form game �e is a subtree starting from

some non-terminal node, with all the labels, such that any information set which
intersects with the set of nodes in this subtree, is fully contained in that set of
nodes. Thus, the fact that a player knows that a subgame is being played does
not give him any additional information to re�ne his information structure.

De�nition 13 A subgame perfect equilibrium for the extensive form game �e is
a Nash equilibrium whose restriction to any subgame is also a Nash equilibrium
of this subgame.

in the variant of the Nas demand game just discussed, there are exactly two
subgame perfect equilibria: player 1 demands 100, and player 2 accepts any
demand; player 1 demands 99 and player 2 accepts any demand of 99 or less,
but rejects the demand 100. Note that an extensive experimental testing of this
game reveals that such a strategy typically fails, because the utility of player 2
depends on more than the amount of money he takes home.
Example 1 Consider the following extensive form game with perfect in-

formation. Player 1 decides whether to go left or right. Knowing his choice,
player 2decides whether to go up or down. The payo�s are u(left; up) = (3; 1);
u(left; down) = (0; 0), u(right; up) = (0; 0), u(right; down) = (1; 3):
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In this game player 1 has two strategies (left and right), while player 2
has four strategies, since one has to specify for her what to do if player 1
chooses left as well as what to do if he chooses right. Thus, her strategy set is
f(upl; upr); (upl; downr); (downl; upr); (downl; downr)g, where subindex l is for
her choice after player 1 goes left, and subindex r is for her choice after player
1 goes right. Note that if player 2 would not know the choice of player 1 at a
time she makes her own choice, then it would be the Battle of Sexes game, in
which each player has just two strategies.
This game has two proper subgames, in each only player 2 is to make a

move. The whole game has three Nash equilibria in pure strategies. They are
(left; (up; down)); (left; (up; up)), (right; (down; down)). However, only �rst of
them is subgame perfect. Player 2 would prefer the last one, where she gets
3, by threatening player 1 to choose terminal node with zero payo�s if he goes
left. But it is not sustainable under the subgame perfection assumption, since
if player 1 actually moves left player 2 will have strong incentive to choose the
node with payo�s (3; 1) and she has no way to pre-commit herself not to do it.

Theorem 14 Any �nite (i.e., based on a �nite tree) game �e in extensive form
has at least one subgame perfect equilibrium.

The proof is by induction in the number of proper subgames the game �e has.
If it has no proper subgames, then any Nash equilibrium of the corresponding
normal form game will be a subgame perfect equilibrium of �e. Now, consider a
subgame �e0 of �e which has no its own proper subgames. It has (at least one)
Nash equilibrium; pick up one of those. Substitute this whole subgame �e0 by
a new terminal node for �e; located at the root of this subgame �e0. Label this
new terminal node with the payo�s from the chosen Nash equilibrium of �e.
We thus constructed a new game �e1 which has less proper subgames, and hence
has a subgame perfect equilibrium vector of strategies by induction hypothesis.
Now, we add to the strategies in this equilibrium for �e1 vector the speci�cation
for each player of what to do in �e0, namely the prescription to play according
to the Nash equilibrium we have picked for �e0. It is easy to check that the
resulting vector of strategies will be the subgame perfect equilibrium of �e.

Theorem 15 Any �nite game �e in extensive form with perfect information
has at least one subgame perfect equilibrium in pure strategies. If for any player
all payo�s at all terminal nodes are distinct, then this equilibrium is unique.

It is easy to see that such subgame perfect equilibrium in pure strategies can
be always found by backward induction, starting from the end (by seeing for
every node, whose all successors are terminal nodes, what should be the choice
there, and then proceeding by induction).

Leader-follower equilibrium
Given a two person game in normal form (S1; S2; u1; u2), the extensive form

game where player i chooses his strategy si �rst, this choice is revealed to
player j who then chooses sj , is called the i�Leader,j�Follower game. When
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we speak below of the i�Leader,j�Follower equilibrium, we always mean its
subgame perfect equilibrium, or equilibria.
Comparing the i�L,j�F equilibrium with the Nash equilibrium (or equilib-

ria) of the initial normal form game, gives useful prediction about commitment
tactics in that game. Clearly player i always prefers (sometimes weakly) the
i�L,j�F equilibrium to any of the Nash equilibria. But there are no other
restrictions on the comparison of i's j�L,i�F equilibrium payo� with the two
above.
In two-person zero sum games with a value, or in a game with (strictly) dom-

inant strategy, the L-F equilibrium and Nash equilibrium coincide: it does not
matter if we choose strategies simultaneously and independently, or sequentially
with the �rst choice being revealed.
In the Battle of the Sexes, in the war of attrition (example 7 chapter 2 and

example 6 chapter 3), as well as in the simple Cournot duopoly of example 10
chapter 2, both players prefer to be the leader. In the former two, the leader-
follower equilibria coincide with the pure strategy Nash equilibria; in the latter
case i's payo� in the i�L,j�F equilibrium is larger than at the unique Nash
equilibrium, whereas j's payo� is lower.
In two-person zero sum games without a value, both players obviously prefer

to be follower. The same is true in the following game of timing.

Example 2 grab the dollar
This is a symmetrical game of timing with two players. Both functions a

and b increase with a(t) > b(t) for all t, and b(1) > a(0). Recall that a(t) is the
payo� to the player who cries stop at t. If both stop at t = 0, thay both get
a(0); if they both stop at t = 1, they both get b(1). The normal form game has
a unique Nash equilibrium; the Leader-Follower equilibrium favors the Follower,
but they both prefer it to the Nash equilibrium of the normal form.

A common di�culty with the interpretation of subgame perfect equilibrium
selection is that it involves imprudent strategies.
Consider Kalai's hat game: a hat passes around the n players; each can put

a dollar or nothing in the hat; if all do, they get back $2 each; if one or more
put nothing in the hat, all the money in the hat is lost. There are two Nash
equilibria: all put $1 or nobody does; the former is the s.p. equilibrium, but,
unlike the latter, its strategies are imprudent.
The next example is a celebrated paradoxical game.

Example 3 Selten's chain store paradox
There are 20 + 1 players. The incumbent meets successively the 20 small

potential entrants. At every meeting, the following game takes place: �rst
stage: the small �rm chooses to enters or stay out; in the latter case payo�s are
(0; 100) to small �rm and incumbent; if small �rm enters, the incumbent chooses
to collude or �ght, with corresponding payo�s (40; 50) and (�10; 0) respectively.
The only s.p. equilibrium is that all small �rms enter, and collusion occurs every
time.
Now suppose you are small �rm #17 and the incumbent has been challenged

5 times and has fought every time, what do you do? It is certainly imprudent to
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enter! The other Nash equilibrium where the incumbent is committed to �ght
every period seems more plausible.
On the other hand, the s.p. equilibrium may display excessive prudence as

in the following game.

Example 4 Rosenthal's centipede game
This is a multi-stage version of grab the dollar (example 2 above), where the

pot starts empty, and grows by 1 cent every period. In odd periods, player 1
can grab half of the pot plus one cent, and leave the rest of the pot to player 2,
or do nothing and let the pot grow till next period; in even periods player 2 can
grab half of the pot plus one cent, and leave the rest to player 1, or do nothing
and let the pot grow till next period. The game lasts for 100 periods. In the
last period player 2 gets 51c and player 1 gets 49c.
In the subgame perfect equilibrium, player 1 grabs 1c in period 1 and player

2 gets nothing. This is actually the only Nash equilibrium of the game!

2.3 Subgame perfect equilibrium in in�nite games

When the number of stages in the game is in�nite, the computation of s.p.
equilibria becomes more tricky, and can lead to much indeterminacy or to a
deterministic prediction. A famous example follows.

Example 5 Rubinstein's alternating o�ers bargaining
The two players divide a dollar by taking turns (starting with player 1)

making o�ers. The �rst accepted o�er is �nal. No money is handed out until
an o�er is accepted. Player i's discount rate is �i; 0 � �i � 1: receiving $x in
period k is worth $x(�i)

k�1 in period 1. (Alternative interpretation: after each
rejected o�er, there is a chance (1� �) that the game ends with no one getting
any money).
Case 1: no impatience, �1 = �2 = 1 (or no risk of the game terminating). If

the number of periods is �nite, whoever makes the last o�er acts as the Leader
in a Nash demand game, therefore keeps essentially the whole dollar. If the
game never stops, in�nite number of periods (and disagreement for ever yields
zero pro�t to both players), any division (x; 1 � x) of the dollar is a subgame
perfect equilibrium outcome. It is achieved by the in
exible strategies where
player 1 (resp. 2) refuses any o�er below x (resp. below 1� x) and accepts any
o�er weakly above x (resp. weakly above 1� x), and the �rst o�er is (x; 1� x).
Case 2: impatient players, �1 < �2 < 1
Check �rst that the in
exible strategies around (x; 1 � x) described above,

form a Nash equilibrium, but not not a subgame perfect equilibrium. Say in
his �rst move player 1 o�ers (y; 1 � y) where 1 � x > 1 � y > �2(1 � x).
Player 2's in
exible strategy is to say No, however in the subgame starting in
period 2 where in
exible strategies are used, player 2 cannot hope any more
than �2(1�x), therefore No to (y; 1� y) is not part of any equilibrium strategy
in this subgame. The in
exible strategies are not subgame perfect because they
contradict the equilibrium rationale in some out of equilibrium subgame.
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We show now the equilibrium is unique, and compute the corresponding
shares.
Observe �rst that in any s.p.eq. outcome, agreement takes place immedi-

ately. Indeed suppose for instance agreement takes place in period 2 at (z; ��z),
then player 1 can o�er (z + 1��

2 ;
1+�
2 � z) to player 2, a better result for both

players, which player 2 should accept under subgame perfection.
Next the set of s.p.eq. outcomes can be shown to be closed, hence compact,

so we can talk of the best or worst s.p. share for either agent.
In a s.p.eq. where 1 speaks �rst, if his o�er is rejected we go to a s.p.eq.

where 1 speaks second. Hence the best s.p.eq. for 1 when he speaks �rst is the
one followed by the worst s.p.eq. of 2 in the game where 2 speaks �rst. Let x
be 1's share in his best s.p.eq. when he speaks �rst, and y be player 1's share
in his best s.p.eq. when he speaks second. Because the o�er 1 � x is accepted
by 2 in that s.p.eq., we have

1� x = �2(1� y)

Next consider player 2: the worst s.p.eq. for 2 when he speaks �rst is the one
followed by the best s.p.eq. of 1 in the game where 1 speaks �rst. Because the
o�er y is accepted by 1 in that s.p.eq., we have

y = �1x

We can symmetrically look at the worst s.p.eq. share x0 for 1 in the game where
he speaks �rst, and worst s.p.eq. share y0 in the game where he speaks second.
Check that x0; y0 satis�es the same system of equations as x; y, implying x = x0

and y = y0, i.e., the s.p. equilibrium outcome is unique. When player 1 speaks
�rst it is

(x; 1� x) = ( 1� �2
1� �1�2

;
�2(1� �1)
1� �1�2

)

It remains to show that in the game where player 1 speaks �rst, the following
strategies form a s.p.eq.:
player 1 always o�ers (x; 1� x), rejects any o�er below y, accepts any o�er

y or more;
player 2 always o�ers (y; 1 � y), rejects any o�er below 1 � x, accepts any

o�er 1� x or more;
Our last example involves only two stages but many players. It illustrates

the techniques to compute s.p.equilibria in this context.

Example 6 durable goods monopoly
A monopolist produces at zero cost a durable good. There are 1000 con-

sumers, with reservation prices for the good uniformly distributed in the interval
[0; 100]. The common discount rate of the monopolist and consumers is �. If
the monopolist can commit himself to a �xed pricing policy at the beginning of
the game, his best choice is a constant price of 50. Consumers are impatient,
so the upper half will buy immediately, for a monopolist pro�t of 25,000 and
consumer surplus 12,500. However it is more realistic to assume the monopolist
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cannot commit ex ante for both periods; in period 2, he wants to cut his price
to extract a little more surplus from the consumers who did not buy in the
1st period. But p1 = 50; p2 = 25 is not an equilibrium, because a consumer
who values the object at $51 prefers to wait for the "sale" rather than buying
immediately.
Say p1 is the price charged in period 1, and all consumers with valuation

in ['(p1); 100] buy in period 1; then in period 2, a regular monopoly situation,

the price will be '(p1)
2 and all agents in ['(p1)2 ; '(p1)] will buy. Equilibrium

conditions in period 1:
for consumers

'(p1)� p1 = �('(p1)�
'(p1)

2
)() '(p1) =

p1

1� �
2

for the monopolist

p1 maximizes (100� '(p1))p1 + �(
'(p1)

2
)2

hence

p1 =
(1� �

2 )
2

1� 3�
4

50 < 50;'(p1) =
1� �

2

1� 3�
4

50 > 50

�nally both monopoly pro�t and consumer surplus go up, relative to the non
strategic p1 = 50; p2 = 25.

2.4 Other re�nements of Nash equilibrium.

When we represent an extensive form game in the normal form, the normal form
could have multiple equilibria which are \behaviorally" the same. For example,
assume that player 1 makes move two times. The �rst time he chooses a or b,
and the second time he chooses c or d. This results in four strategies (a; c), (a; d),
(b; c), and (b; d). The unique (behaviorally) mixed strategy \play a or b, with
probability 1/2 each, at the �rst move, and play c or d, with probability 1/2 each,
at the second move", can be represented in a continuum ways as a mixed strategy
in normal form representation, as p(a; c)+(1=2�p)(a; d)+(1=2�p)(b; c)+p(b; d)
for any p 2 [0; 1=2].
Another way to view Nash equilibrium of an extensive form game is looking

at its multiagent representation. Namely, assume that each player i is repre-
sented by several agents, one for each of his information sets. All those agents
have the same payo�s (same as player i). Each agent acts at most once in the
game | if and when the game path goes through the corresponding informa-
tion set | and at the moment this agent acts he has no additional information
compared with what he knew before the game started. Hence, we can regard
our game as a game where all players (i.e., all agents) simultaneously and inde-
pendently choose each a strategy from his strategy set (which is the set of move
labels for the information set for which an agent is responsible). This game
hence can be viewed as a normal form game.
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The Nash equilibria of the original extensive form game can be de�ned as
the Nash equilibria of thus constructed normal form game which is called its
multiagent representation. The problem with this de�nition is that agents are
precluded from cooperation. Thus, we get unrealistic equilibria.

Example 7 Consider an extensive form game where agent 1 �rst chooses a
or b: Without knowing his choice, agent 2 then chooses x or w. If agent 1 has
chosen b initially, then the game ends there. If agent 1 has chosen a initially, he
has now to choose between y and z, without knowing the choice of agent 2. The
payo�s are (3; 2) for (b; x), (2; 3) for (b; w), (4; 1) for (a; x; z), (2; 3) for (a; x; y),
(0; 5) for (a;w; z), and (3; 2) for (a;w; y). It is easy to check that (b; w; z) is
a Nash equilibrium of the multiagent representation of this game, but not an
equilibrium of its normal form. The last follows from the fact that player 1's
best response to w is not (b; z), but (a; y):

The way to deal with this is to consider as Nash equilibria of extensive form
game �e only those equilibria of its multiagent representation which survive as
Nash equilibria of the normal representation of initial game �e. These equilibria
are called Nash equilibria in behavioral strategies. They always exist for �nite
extensive form games.

2.4.1 Sequential rationality

Sequential rationality is a generalization of the subgame-perfect equilibrium):
the idea that the choice in each information set should be rational (i.e. a best
response), given what the player believes about what are the chances for him to
be at each particular node from this information set. These beliefs are assumed
to be formed by Bayesian update. This idea results in the notion of sequential
equilibrium (they always exist for �nite extensive form games).
A sequential equilibrium is (s; �); a vector of behavioral strategies plus a

vector of Bayesian consistent beliefs for all nodes (conditional probabilities that
we are at each particular node, given that we are in the information set including
this node), such that given those beliefs it is sequentially rational for the players
to follow the prescribed strategies. The proper de�nition includes the way to
de�ne the consistency of � for the nodes that have a zero probability to be on
the game path under s. It is done by assuming that there exists a sequence
of \tremblings" of s, which assign a positive probability to each pure strategy
and converge to s, such that the belief about the node with zero probability
is the limit of the Bayesian updated beliefs for those tremblings (see below the
de�nition of trembling hand equilibrium).

2.4.2 Trembling hand perfect equilibrium

Trembling hand perfection is the re�nement of Nash equilibrium which applies
to the normal form games. Consider � = (N; (Ci)i2N ; (ui)i2N ) with all Ci �nite,
Si = �(Ci). A vector of mixed strategies s 2 S is a (trembling hand) perfect
equilibrium of this game if there exists a sequence of sk 2 S, k = 1; 2; :::, such
that
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(1) Any ski is completely mixed strategy, i.e. all pure strategies from Ci
belong to its support (are used with positive probability)
(2) lim

k!1
ski (ci) = si(ci) for all i 2 N , all ci 2 Ci (i.e., sk converges to s)

(3) si 2 arg max
ti2Si

ui(ti; s
k
�i) for all i 2 N , and all k

I.e., s is a (trembling hand) perfect equilibrium if there exists a sequence
of \tremblings" (completely mixed strategies, ones which could end up in using
any pure strategy with positive probability, even the most unreasonable one),
such that this sequence converges to s, and that each strategy si in s is a best
response to any of those tremblings made by all players other then i.
The following theorems we will not prove.

Theorem 16 For any � = (N; (Ci)i2N ; (ui)i2N ) with all Ci �nite there exists
at least one (trembling hand) perfect equilibrium.

Theorem 17 If �e is an extensive form game with perfect recall, and s is a
trembling hand perfect equilibrium of the multiagent representation of �e, then
there exists a vector of beliefs �, such that (s; �) is a sequential equilibrium of
�e.

Note that the existence of sequential equilibria follows from these two theo-
rems.

2.5 Problems for Chapter 4

Problem 1 leader follower equilibrium
In each case, compare the two leader follower equilibria with the Nash equi-

librium (or equilibria) of the normal form game. If the game de�ned earlier is
among n players, simply consider the two player case.
a) variant of the grab the dollar game (example 2 chapter 4) where a and b

increase and b(t) > a(t) for all t:
b) in the coordination game example 8 chapter 2
c) in the public good provision game of example 20 chapter 2
d) in the war of attrition with mixed strategies, example 6 chapter 3
e) in the (mixed strategies) lobbying game of example 7 chapter 3.

Problem2 King Solomon
King Solomon hears from two mothers A and B who both claim the baby

but only one of them is the true mother. Both mothers know who is who, but
Solomon does not. However Solomon knows that the baby s worth v1 to the true
mother and v2 to the false one, with v2 < v1. He has them play the following
game.
Step 1 Mother A is asked to say "mine" or "hers". If she says "hers" mother

B gets the baby and the game stops. If she says "mine" we go to Step 2. Mother
B must "agree" or "challenge". If she agrees mother A gets the baby and the
game stops; if she challenges, mother B pays v and keeps the baby, whereas
mother A pays w. These two numbers are chosen so that v2 < v < v1 and
w > 0.
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Show that in the subgame perfect equilibrium of the game, the true mother
gets the baby. What about the money?

Problem 3 Bertrand duopoly
Two �rms are located town A and B respectively; in each town there is

d units of inelastic demand with reservation price p (the same in each town);
transportation cost between a and B is t. Thus we have a symmetrical game
with strategy set [0; p] and payo�

u1(s1; s2) = ds1 if js1 � s2j � t
= 2ds1 if s1 + t < s2; = 0 if s2 + t < s1

(note that when t is exactly the price di�erence, customers does not travel; the
opposite assumption would do just as well).
a) Show the game has no Nash equilibrium if 2t < p. Compute the Nash

equilibrium (or equilibria) if p � 2t.
b) Compute the Leader-Follower equilibria and show that a �rm always

prefers to be Follower.

Problem 4 leader-follower equilibrium
In this problem we restrict attention to �nite two-person games (S1; S2; u1; u2)

in pure strategies, such that the mappings u1 and u2 are one-to-one on S1�S2.
Therefore the best reply strategies are unique, and so are the 1�L,2�F and
2�L,1�F equilibria. Denote the corresponding payo�s Li and Fi.
Suppose Li = Fi for i = 1; 2. Show that the 1�L,2�F and 2�L,1�F equi-

libria coincide, are a Nash equilibrium, Pareto superior to any other Nash equi-
librium.

Problem 5 three way duel (Dixit and Nalebu�)
Larry, Mo and Curly play a two rounds game. In the 1st round, each has

a shot, �rst Larry then Mo then Curly. Each player, when given a shot, has
3 options: �re at one of the other players, or �re up in the air. After the 1st
round, any survivor is given a second shot, again beginning with Larry then Mo
then Curly.
For each duelist, best outcome is to be the sole survivor; next is to be one of

two survivors; inthird place is the outcome where no one gets killed; dead last
is that you get killed.
Larry is a poor shot, with only 30% chance of hitting a person at whom he

aims. Mo has 80% accuracy, and Curly has 100% accuracy.
Compute the subgame perfect equilibrium of this game, and the equilibrium

probabilities of survival.

Problem 6
Ten pirates (ranked from 10 to 1 from the oldest to the youngest) share 100

gold coins. The oldest �rst submits an allocation of his choice to a vote. If at
least half of the pirates (including the petitioner) approves of this allocation, it
is enforced. Otherwise, the oldest pirate walks away with no coin, and the same
game is repeated with nine pirates, etc. How would you recommend the players
to play? (Find the subgame-perfect Nash equilibrium outcomes)
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Problem 7
In an extensive form game, a behavior strategy for player i speci�es a prob-

ability distribution over alternatives at each information set of player i. Mixed
strategy, as always, is a probability distribution over the set of pure strategies.
Two strategies of player i are called equivalent if they generate the same payo�
for player i for all possible combinations c�i of pure strategies of other play-
ers. Prove that in a game of perfect recall, mixed and behavior strategies are
equivalent.
More precisely: every mixed strategy is equivalent to the unique behavior

strategy it generates, and each behavior strategy is equivalent to every mixed
strategy that generates it.

Problem 8 (di�cult!)
Prove that for a zero-sum game any Nash equilibrium is subgame perfect.

More precisely, for any outcome which is the result of a Nash equilibrium strat-
egy pro�le, there is a subgame perfect equilibrium strategy pro�le which results
in the same outcome (an outcome is a probability distribution over the terminal
nodes).

Problem 9 grab a shrinking dollar
One dollar is placed in the "pot" in period 1; its value will diminish by a

discount of � at each period (after k periods, it is worth �k�1 to both players).
The two players take turns, starting with player 1. When i has the move, she
has 2 choices: to stop the game, in which case 40% of the pot goes to i and
60% to player j, or to let player j have the next move. The game goes on until
someone stops, or if no one does both players get zero.
a) Show that if � is small enough, the only Nash equilibrium of the game is

that player 1 grabs the dollar immediately. Explain "small enough".
b) Is there any value of � such that in some Nash equilibrium of the corre-

sponding game, someone grabs the dollar after each player has declined to do
so at least once?
c) Show that if � is large enough, there is a subgame perfect equilibrium

where player 1 does not grab the dollar, and player 2 does in the next turn.
Explain "large enough".

Problem 10 bargaining with alternating o�ers
In this variant of Rubinstein's model (example 5), the only di�erence is that

after an o�er is rejected, the 
ip of a fair coin decides the player who makes the
next o�er. Successive draws are independent.
a) Assume �rst the players have a common discount factor �. Find the

symmetrical subgame perfect equilibrium of the game, and show it is the unique
s.p. equilibrium.
b) Now we have 2 di�erent discount factors. Compute similarly the s.p.

equilibrium or equilibria.
Note: for both questions you must describe the equilibrium o�er and accep-

tance strategies of both players.

Problem 11 durable goods monopoly
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In the model of example 6, we now assume the good is in�nitely durable
and the game lasts for ever. A strategy of the monopolist is a stream of prices
(p1; p2; � � � ) and his pro�t is

P1
t=1 �

tptqt, where qt is the quantity sold in period
t. A consumer with valuation v gets utility �t(v � pt) if she buys in period t.
Look for a linear stationary s.p. equilibrium: facing price pt at time t,

all consumers with valuation �pt or above (if any are left) buy, others don't.
facing an unserved demand [0; v] at time t, the monopolist charges the price �v.
Naturally the two constant �; � are such that � � 1; � � 1.
write the equilibrium condtions resulting in a system to compute �; �. Solve

the system numerically for � = 0:9 and � = 0:5. Deduce the optimal sequence
(p1; p2; � � � ) and discuss its rate of convergence. Compute the equilibrium pro�t
and consumer surplus.

Problem 12 last mover advantage in a �rst price auction
In the game of Example 12 chapter 3 with two bidders, recall that the unique

symmetrical equilibrium has a bid function x(t) = t
2 , and an expected gain of

$ 1006 for each player.
Suppose now player 2 has the last mover advantage: he observes player 1's

bid before bidding himself. Compute the unique subgame perfect equilibrium
of this game, and the corresponding expected gains of the players. Compare to
the case of simultaneous bids.
Suppose next that player 2 sees player 1's bid but player 1 is unaware of this

(and so he plays as in the case of simultaneous bids). Compute the corresponding
expected gains of both players.
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