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1 Two person zero sum games

1.1 Introduction: strategic interdependency

In this section we study games with only two players. We also restrict attention
to the case where the interests of the players are completely antagonistic: at the
end of the game, one player gains some amount, while the other loses the same
amount. These games are called \two person zero sum games".
Military games such as pursuit-evasion problems, are a rich source of two-

person zero-sum games. While in most economics situations the interests of the
players are neither in strong con
ict nor in complete identity, this speci�c class of
games provides important insights into the notion of "optimal play". In some 2-
person zero-sum games,each player has a well de�ned \optimal" strategy, which
does not depend on her adversary decision (strategy choice). In other games,
no such optimal strategy exists. Finally, the founding result of Game Theory,
known as the minimax theorem, says that optimal strategies exist when our
players can randomize over a �nite set of deterministic strategies.

1.2 Two-person zero-sum games in strategic form

A two-person zero-sum game in strategic form is a triple G = (S; T; u), where
S is a set of strategies available to the player 1, T is a set of strategies available
to the player 2; and u : S � T ! R is the payo� function of the game G; i.e.,
u(s; t) is the resulting gain for player 1 and the resulting loss for player 2, if they
choose to play s and t respectively. Thus, player 1 tries to maximize u; while
player 2 tries to minimize it. We call any strategy choice (s; t) an outcome of
the game G.
When the strategy sets S and T are �nite, the game G can be represented

by an n by m matrix A; where n = jSj; m = jT j; and aij = u(si; tj):
The secure utility level for player 1 (the minimal gain he can guarantee him-

self, no matter what player 2 does) is given by

m = max
s2S

min
t2T

u(s; t) = max
i
min
j
aij :

A strategy s� for player 1 is called prudent, if it realizes this secure max-min
gain, i.e., if min

t2T
u(s�; t) = m:
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The secure utility level for player 2 (the maximal loss she can guarantee
herself, no matter what player 1 does) is given by

m = min
t2T

max
s2S

u(s; t) = min
j
max
i
aij :

A strategy t� for player 2 is called prudent, if it realizes this secure min-max
loss, i.e., if max

s2S
u(s; t�) = m:

The secure utility level is what a player can get for sure, even if the other
player behaves in the worst possible way. For each strategy of a player we
calculate what could be his or her worst payo�, resulting from using this strategy
(depending on the strategy choice of another player). A prudent strategy is one
for which this worst possible result is the best. Thus, by a prudent choice of
strategies, player 1 can guarantee that he will gain at least m, while player 2
can guarantee that she will loose at most m. Given this, we should expect that
m � m: Indeed:

Lemma 1 For all two-person zero-sum games, m � m:

Proof : m = max
s2S

min
t2T

u(s; t) = min
t2T

u(s�; t) � u(s�; t�) � max
s2S

u(s; t�) =

min
t2T

max
s2S

u(s; t) = m:

De�nition 2 If m = m; then m = m = m is called the value of the game G.
If m < m, we say that G has no value.
An outcome (s�; t�) 2 S � T is called a saddle point of the payo� function

u, if u(s; t�) � u(s�; t�) � u(s�; t) for all s 2 S and for all t 2 T .

Remark 3 Equivalently, we can write that (s�; t�) 2 S � T is a saddle point if
max
s2S

u(s; t�) � u(s�; t�) � min
t2T

u(s�; t)

When the game is represented by a matrix A, (s�; t�) will be a saddle point,
if and only if as�t� is the largest entry in its column and the smallest entry in
its row.
A game has a value if and only if it has a saddle point:

Theorem 4 If the game G has a value m, then an outcome (s�; t�) is a saddle
point if and only if s� and t� are prudent. In this case, u(s�; t�) = m: If G has
no value, then it has no saddle point either.

Proof. Suppose that m = m = m; and s� and t� are prudent strategies of
players 1 and 2 respectively. Then by the de�nition of prudent strategies

max
s2S

u(s; t�) = m = m = m = min
t2T

u(s�; t):

In particular, u(s�; t�) � m � u(s�; t�); hence, u(s�; t�) = m: Thus, max
s2S

u(s; t�) =

u(s�; t�) = min
t2T

u(s�; t); and so (s�; t�) is a saddle point. Conversely, suppose
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that (s�; t�) is a saddle point of the game, i.e., max
s2S

u(s; t�) � u(s�; t�) �
min
t2T

u(s�; t): Then, in particular, max
s2S

u(s; t�) � min
t2T

u(s�; t): But by the def-

inition of m as max
s2S

min
t2T

u(s; t) we have min
t2T

u(s�; t) � m; and by the de�ni-

tion of m as min
t2T

max
s2S

u(s; t) we have max
s2S

u(s; t�) � m: Hence, using Lemma

1 above, we obtain that min
t2T

u(s�; t) � m � m � max
s2S

u(s; t�): It follows

that m = max
s2S

u(s; t�) = u(s�; t�) = min
t2T

u(s�; t) = m. Thus, G has a value

m = m = m; and s� and t� are prudent strategies.
Example 1 Matching pennies is the simplest game with no value: each

player chooses Left or Right; player 1 wins +1 if their choices coincide, loses 1
otherwise.
Example 2 The noisy gun�ght is a simple game with a value. The two

players walk toward each other, with a single bullet in their gun. Let ai(t); i =
1; 2, be the probability that player i hits player j if he shoots at thime t. At
t = 0, they are far apart so ai(0) = 0; at time t = 1, they are so close that
ai(1) = 1; �nally ai is a continuous and increasing function of t. When player
i shoots, one of 2 things happens: if j is hit, , player iwins $1 from j and the
game stops (j cannot shoot any more); if i misses, j hears the shot, and realizes
that i cannot shoot any more so j waits until t = 1, hits i for sure and collects
$1from him. Note that the silent version of the gun�ght model (in the problem
set below) has no value.

In a game with a value, prudent strategies are optimal|using them, player
1 can guarantee to get at least m; while player 2 can guarantee to loose at most
m.
In order to �nd a prudent strategy:
{ player 1 solves the program max

s2S
m1(s), where m1(s) = min

t2T
u(s; t) (max-

imize the minimal possible gain);
{ player 2 solves the program min

t2T
m2(t), where m2(t) = max

s2S
u(s; t) (mini-

mize the maximal possible loss).
We can always �nd such strategies when the sets S and T are �nite.

Remark 5 (In�nite strategy sets) When S and T are compact (i.e. closed
and bounded) subsets of Rk; and u is a continuous function, prudent strategies
always exist, due to the fact that any continuous function, de�ned on a compact
set, reaches on it its maximum and its minimum.

In a game without a value, we cannot deterministically predict the outcome
of the game, played by rational players. Each player will try to guess his/her
opponent's strategy choice. Recall matching pennies.
Here are several facts about two-person zero-sum games in normal form.

Lemma 6 (rectangularity property) A two-person zero-sum games in normal
form has at most one value, but it can have several saddle points, and each
player can have several prudent (and even several optimal) strategies. Moreover,
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if (s1; t1) and (s2; t2) are saddle points of the game, then (s1; t2) and (s1; t2) are
also saddle points.

A two-person zero-sum games in normal form is called symmetric if S = T;
and u(s; t) = �u(t; s) for all s; t: When S; T are �nite, symmetric games are
those which can be represented by a square matrix A; for which aij = �aji for
all i; j (in particular, aii = 0 for all i).

Lemma 7 If a symmetric game has a value then this value is zero. Moreover,
if s is an optimal strategy for one player, then it is also optimal for another
one.

Proof. Say the game (S; T; u) has a value v, then we have

v = max
s
min
t
u(s; t) = max

s
f�max

t
u(t; s)g = �min

s
max
t
u(t; s) = �v

so v = 0. The proof of the 2d statement is equally easy.

1.3 Two-person zero-sum games in extensive form

A game in extensive form models a situation where the outcome depends on
the consecutive actions of several involved agents (\players"). There is a precise
sequence of individual moves, at each of which one of the players chooses an
action from a set of potential possibilities. Among those, there could be chance,
or random moves, where the choice is made by some mechanical random device
rather than a player (sometimes referred to as \nature" moves).
When a player is to make the move, she is often unaware of the actual choices

of other players (including nature), even if they were made earlier. Thus, a
player has to choose an action, keeping in mind that she is at one of the several
possible actual positions in the game, and she cannot distinguish which one is
realized: an example is bridge, or any other card game.
At the end of the game, all players get some payo�s (which we will measure

in monetary terms). The payo� to each player depends on the whole vector of
individual choices, made by all game participants.
The most convenient representation of such a situation is by a game tree,

where to non terminal nodes are attached the name of the player who has the
move, and to terminal nodes are attached payo�s for each player. We must also
specify what information is available of a player at each node of the tree where
she has to move.
A strategy is a full plan to play a game (for a particular player), prepared in

advance. It is a complete speci�cation of what move to choose in any potential
situation which could arise in the game. One could think about a strategy
as a set of instructions that a player who cannot physically participate in the
game (but who still wants to be the one who makes all the decisions) gives
to her "agent". When the game is actually played, each time the agent is to
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choose a move, he looks at the instruction and chooses according to it. The
representative, thus, does not make any decision himself!
Note that the reduction operator just described does not work equally well

for games with n -players with multiple stages of decisions.
Each player only cares about her �nal payo� in the game. When the set

of all available strategies for each player is well de�ned, the only relevant in-
formation is the pro�le of �nal payo�s for each pro�le of strategies chosen by
the players. Thus to each game in extensive form is attached a reduced game in
strategic form. In two-person zero sum games, this reduction is not conceptually
problematic, however for more general n-person games, it does not capture the
dynamic character of a game in extensive form, and for this we need to develop
new equilibrium concepts: see Chapter 5.
In this section we discuss games in extensive form with perfect information.
Example 3 Gale's chomp game: the player take turns to destroy a n �m

rectangular grid, with the convention that if player i kills entry (p; q), all entries
(p0; q0) such that (p0; q0) � (p; q) are destroyed as well. When a player moves, he
must destroy one of the remaining entries.The player who kills entry (1; 1) loses.
In this game player 1 who moves �rst has an optimal strategy that guarantees
he wins. This strategy is easy to compute if n = m, not so if n 6= m.
Example 4 Chess and Zermelo's theorem. The game of Chess has three

payo�s, +1;�1; 0. Although we do not know which one, one of these 3 numbers
is the value of the game, i.e., either White can guarantee a win, or Black can,
or both can secure a draw.

De�nition 8 A �nite game in extensive form with perfect information is given
by
1) a tree, with a particular node taken as the origin;
2) for each non-terminal node, a speci�cation of who has the move;
3) for each terminal node, a payo� attached to it.

Formally, a tree is a pair � = (N;�) where N is the �nite set of nodes, and
� : N ! N [ ; associates to each node its predecessor. A (unique) node n0
with no predecessors (i.e., �(n0) = ;) is the origin of the tree. Terminal nodes
are those which are not predecessors of any node. Denote by T (N) the set of
terminal nodes. For any non-terminal node r; the set fn 2 N : �(n) = rg is the
set of successors of r: The maximal possible number of edges in a path from the
origin to some terminal node is called the length of the tree �.
Given a tree �, a two-person zero-sum game with perfect information is

de�ned by a partition of N as N = T (N)[N1 [N2 into three disjoint sets and
a payo� function de�ned over the set of terminal nodes u : T (N)! R:
For each non-terminal node n; n 2 Ni (i = 1; 2) means that player i has

the move at this node. A move consists of picking a successor to this node.
The game starts at the origin n0 of the tree and continues until some terminal
node nt is reached. Then the payo� u(nt) attached to this node is realized (i.e.,
player 1 gains u(nt) and player 2 looses u(nt)).
We do not necessary assume that n0 2 N1. We even do not assume that if

a player i has a move at a node n; then it is his or her opponent who moves

5



at its successor nodes (if the same player has a move at a node and some of its
successors, we can reduce the game and eliminate this anomaly).
The term \perfect information" refers to the fact that, when a player has

to move, he or she is perfectly informed about his or her position in the tree.
If chance moves occur later or before this move, their outccome is revealed to
every player.
Recall that a strategy for player i is a complete speci�cation of what move

to choose at each and every node from Ni: We denote their set as S; or T; as
above.

Theorem 9 (Kuhn) Every �nite two-person zero-sum game in extensive form
with perfect information has a value. Each player has at least one optimal
(prudent) strategy in such a game.

Proof. The proof is by induction in the length l of the tree �. For l = 1
the theorem holds trivially, since it is a one-person one-move game (say, player
1 is to choose a move at n0; and any of his moves leads to a terminal node).
Thus, a prudent strategy for the player 1 is a move which gives him the highest
payo�, and this payo� is the value of the game. Assume now that the theorem
holds for all games of length at most l � 1; and consider a game G of length
l: Without loss of generality, n0 2 N1; i.e., player 1 has a move at the origin.
Let fn1; :::; nkg be the set of successors of the origin n0. Each subtree �i; with
the origin ni; is of length l � 1 at most. Hence, by the induction hypothesis,
any subgame Gi associated with a �i has a value, say, mi. We claim that the
value of the original game G is m = max

1�i�k
mi. Indeed, by moving �rst to ni

and then playing optimally at Gi; player 1 can guarantee himself at least mi.
Thus, player 1 can guarantee that he will gain at least m in our game G. But,
by playing optimally in each game Gi; player 2 can guarantee herself the loss
of not more than mi. Hence, player 2 can guarantee that she will lose at most
m in our game G. Thus max-min and min-max payo�s coincide and m is the
value of the game G.
The value of a �nite two-person zero-sum game in extensive form, as well as

optimal strategies for the players, are easily found by solving the game backward.
We start by any non-terminal node n, such that all its successors are terminal.
An optimal choice for the player i who has a move at n is clearly one which
leads to a terminal node with the best payo� for him/her (the max payo� if
i = 1, or the min payo� if i = 2). We can write down this optimal move for
the player i at the node n; then delete all subtree which originates at n; except
the node n itself, and �nally assign to n the best payo� player i can get. Thus,
the node n becomes the terminal node of so reduced game tree. After a �nite
number of such steps, the original game will reduce to one node n0, and the
payo� assigned to it will be the value of the initial game. The optimal strategies
of the players are given by their optimal moves at each node, which we wrote
down when reducing the game.

Remark 10 Consider the simple case, where all payo�s are either +1 or �1
(a player either \wins" or \looses"), and where whenever a player has a move
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at some node, his/her opponent is the one who has a move at all its successors.
An example is Gale's chomp game above. When we solve this game backward,
all payo�s which we attach to non-terminal nodes in this process are +1 or �1
(we can simply write \+" or \�"). Now look at the original game tree with \+"
or \�" attached to each its node according to this procedure. A \+" sign at a
node n means that this node (or \this position") is \winning" <for player 1>,
in a sense that if the player 1 would have a move at this node he would surely
win, if he would play optimally. A \�" sign at a node n means that this node
(or \this position") is \loosing" <for player 1>, in a sense that if the player 1
would have a move at this node he would surely lose, if his opponent would play
optimally. It is easy to see that \winning" nodes are those which have at least
one \loosing" successor, while \loosing" nodes are those whose all successors
are \winning". A number of the problems below are about computing the set of
winning and losing positions.

1.4 Mixed strategies

Penalty kicks in soccer, serves in tennis: in each case the receiver must antici-
pate the move of the sender to increase her chances of a winning move. So the
sender must use an appropriate mixture of shots.
Blu�ng in Poker When optimal play involves some blu�ng, the blu�ng

behavior needs to be unpredictable. This can be guaranteed by delegating a
choice of when to blu� to some (carefully chosen!) random device. Then even
the player herself would not be able to predict in advance when she will be
blu�ng. So the opponents will certainly not be able to guess whether she is
blu�ng. See the blu�ng game (problem 17) below.

Matching pennies: the matrix

�
1 �1
�1 1

�
; has no saddle point. Moreover,

for this game m = �1 and m = 1 (the worst possible outcomes), i.e., a prudent
strategy does not provide any of two players with any minimal guarantee. Here
a player's payo� depends completely on how well he or she can predict the choice
of the other player. Thus, the best way to play is to be unpredictable, i.e. to
choose a strategy (one of the two available) completely random. It is easy to see
that if each player chooses either strategy with probability 1=2 according to the
realization of some random device (and so without any predictable pattern),
then \on average" (after playing this game many times) they both will get
zero. In other words, under such strategy choice the \expected payo�" for each
player will be zero. Moreover, we show below that this randomized strategy is
also optimal in the mixed extension of the deterministic game.
Schelling's toy safe. Ann has 2 safes, one at her o�ce which is hard to crack,

another "toy" fake at home which any thief can open with a coat-hanger (as in
the movies). She must keep her necklace, worth $10,000, eithe at home or at
the o�ce. Bob must decide which safe to visit (he has only one visit at only one
safe). If he chooses to visit the o�ce, he has a 20% chance of opening the safe.
If he goes to ann's home, he is sure to be able to open the safe. The point of
this example is that the presence of the toy safe helps Ann, who should actually
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use it to hide the necklace with a positive probability.

Even when using mixed strategies is clearly warranted, it remains to deter-
mine which mixed strategy to choose (how often to blu�, and on what hands?).
The player should choose the probabilities of each deterministic choice (i.e. on
how she would like to program the random device she uses). Since the player
herself cannot predict the actual move she will make during the game, the pay-
o� she will get is uncertain. For example, a player may decide that she will
use one strategy with probability 1=3, another one with probability 1=6; and
yet another one with probability 1=2. When the time to make her move in
the game comes, this player would need some random device to determine her
�nal strategy choice, according to the pre-selected probabilities. In our exam-
ple, such device should have three outcomes, corresponding to three potential
choices, relative chances of these outcomes being 2 : 1 : 3. If this game is played
many times, the player should expect that she will play 1-st strategy roughly
1=3 of the time, 2-nd one roughly 1=6 of the time, and 3-d one roughly 1=2 of
the time. She will then get \on average" 1=3 (of payo� if using 1-st strategy)
+1=6 (of payo� if using 2-nd strategy) +1=2 (of payo� if using 3-d strategy).
Note that, though this player's opponent cannot predict what her actual

move would be, he can still evaluate relative chances of each choice, and this will
a�ect his decision. Thus a rational opponent will, in general, react di�erently
to di�erent mixed strategies.
What is the rational behavior of our players when payo�s become uncertain?

The simplest and most common hypothesis is that they try to maximize their
expected (or average) payo� in the game, i.e., they evaluate random payo�s
simply by their expected value. Thus the cardinal values of the deterministic
payo�s now matter very much, unlike in the previous sections where the ordinal
ranking of the outcomes is all that matters to the equilibrium analysis. We give
in Chapter 2 some axiomatic justi�cations for this crucial assumption.
The expected payo� is de�ned as the weighted sum of all possible payo�s

in the game, each payo� being multiplied by the probability that this payo�
is realized. In matching pennies, when each player chooses a \mixed strategy"
(0:5; 0:5) (meaning that 1-st strategy is chosen with probability 0.5, and 2-
nd strategy is chosen with probability 0.5), the chances that the game will
end up in each particular square (i; j); i.e., the chances that the 1-st player
will play his i-th strategy and the 2-nd player will play her j-th strategy, are
0:5 � 0:5 = 0:25: So the expected payo� for this game under such strategies is
1� 0:25 + (�1)� 0:25 + 1� 0:25 + (�1)� 0:25 = 0:

De�nition 11 Consider a general �nite game G = (S; T; u), represented by
an n by m matrix A; where n = jSj; m = jT j: The elements of the strategy
sets S and T (\sure" strategy choices, which do not involve randomization)
are called pure or deterministic strategies. A mixed strategy for the player is
a probability distribution over his or her deterministic strategies, i.e. a vector
of probabilities for each deterministic strategy which can be chosen during the
actual game playing. Thus, the set of all mixed strategies for player 1 is X =
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f(s1; :::; sn) :
Pn

i=1 si = 1; si � 0g; while for player 2 it is Y = f(y1; :::; ym) :Pm
i=1 yj = 1; yj � 0g:

Note that when player 1 chooses s 2 X and player 2 chooses y 2 Y; the
expected payo� of the game is equal to the matrix product sTAy:

sTAy = (s1; :::; sn)

0@ a11 ::: a1m
::: ::: :::
an1 ::: anm

1A0@ y1
:::
ym

1A =
nP
i=1

mP
j=1

siaijyj ,

and each element of this double sum is siaijyj = aijsiyj =
aij�Pro[1 chooses i]�Pro[2 chooses j] = aij�Pro[1 chooses i and 2 chooses j]:
The number sTAy is a weighted average of the expected payo�s for player 1

when he uses s against player's 2 pure strategies (where weights are probabilities
that player 2 will use these pure strategies).

sTAy = sT

0@ a11 ::: a1m
::: ::: :::
an1 ::: anm

1A0@ y1
:::
ym

1A = sT [y1A�1 + :::+ ymA�m] =

= y1
�
sTA�1

�
+ :::+ ym

�
sTA�m

�
= y1

�
sTAe1

�
+ :::+ ym

�
sTAem

�
:

Here A�j is j-th column of the matrix A; and e
j = (0; :::; 0; 1; 0; :::; 0) is

the (m-dimensional) vector, whose all coordinates are zero, except that its j-
th coordinate is 1, which represents the pure strategy j of player 2. Recall
A�j = Ae

j :
We de�ne the secure utility level for player 1<2> (the minimal gain he can

guarantee himself, no matter what player 2<1> does) in the same spirit as
before. The only change is that it is now the \expected" utility level, and that
the strategy sets available to the players are much bigger now: X and Y , instead
of S and T .
Let v1(s) = min

y2Y
sTAy be the minimum payo� player 1 can get if he chooses to

play s. Then v1 = max
s2X

v1(s) = max
s2X

min
y2Y

sTAy is the secure utility level for player

1. Similarly, we de�ne v2(y) = max
s2X

sTAy; and v2 = min
y2Y

v2(y) = min
y2Y

max
s2X

sTAy,

the secure utility level for player 2.
Given the above decomposition of sTAy, and v1(s) = min

y2Y
sTAy, the mini-

mum of sTAy; will be attained at some pure strategy j (i.e., at some ej 2 Y ).
Indeed, if sTAej > v1(s) for all j; then we would have s

TAy =
P
yj
�
sTAej

�
>

v1(s) for all y 2 Y . Hence, v1(s) = min
j
sTA�j , and v1 = max

s2X
min
j
sTA�j .

Similarly, v2(y) = max
i
Ai�y, where Ai� is the i-th row of the matrix A, and

v2 = min
y2Y

max
i
Ai�y.

As with pure strategies, the secure utility level player 1 can guarantee himself
(minimal amount he could gain) cannot exceed the secure utility level payer 2
can guarantee herself (maximal amount she could lose): v1 � v2. This follows
from Lemma 1.
Such prudent mixed strategies s and y are called maximin strategy (for

player 1) and minimax strategy (for player 2) respectively.
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Theorem 12 (The Minimax Theorem) v1 = v2 = v: Thus, if players can use
mixed strategies, any game with �nite strategy sets has a value.

Proof. Let n�m matrix A be the matrix of a two person zero sum game.
The set of all mixed strategies for player 1 is X = f(s1; :::; sn) :

Pn
i=1 si =

1; si � 0g; while for player 2 it is Y = f(y1; :::; ym) :
Pm

i=1 yj = 1; yj � 0g: Let
v1(s) = min

y2Y
s � Ay be the smallest payo� player 1 can get if he chooses to play

s. Then v1 = max
s2X

v1(s) = max
s2X

min
y2Y

s �Ay is the secure utility level for player 1.
Similarly, we de�ne v2(y) = max

s2X
s �Ay; and v2 = min

y2Y
v2(y) = min

y2Y
max
s2X

s �Ay is
the secure utility level for player 2. We know that v1 � v2:
Consider the following closed convex sets in Rn:
L = fz 2 Rn : z = Ay for some y 2 Y g is a convex set, since Ay =

y1A�1 + :::+ ymA�m, where A�j is j-th column of the matrix A; and hence L is
the set of all convex combinations of columns of A; i.e., the convex hull of the
columns of A. Moreover, since it is a convex hull of m points, L is a convex
polytope in Rn with m vertices (extreme points), and thus it is also closed and
bounded.
Cones Kv = fz 2 Rn : zi � v for all i = 1; :::; ng are obviously convex and

closed for any v 2 R. Further, it is easy to see that Kv = fz 2 Rn : s � z � v for
all s 2 Xg:
Geometrically, when v is very small, the cone Kv lies far from the bounded

set L; and they do not intersect. Thus, they can be separated by a hyperplane.
When v increases, the cone Kv enlarges in the direction (1; :::; 1), being \below"
the set L; until the moment when Kv will \touch" the set L for the �rst time.
Hence, v; the maximal value of v for which Kv still can be separated from L; is
reached when the cone Kv �rst \touches" the set L: Moreover, Kv and L have
at least one common point z, at which they \touch". Let y 2 Y be such that
Ay = z 2 L \Kv:
Assume that Kv and L are separated by a hyperplane H = fz 2 Rn : s � z =

cg; where
Pn

i=1 si = 1. It means that s � z � c for all z 2 Kv, s � z � c for all
z 2 L; and hence s � z = c. Geometrically, since Kv lies \below" the hyperplane
H, all coordinates si of the vector s must be nonnegative, and thus s 2 X.
Moreover, since Kv = fz 2 Rn : s � z � v for all s 2 Xg, s 2 X and z 2 Kv, we
obtain that c = s � z � v. But since vector (v; :::; v) 2 Kv we also obtain that
c � s � (v; :::; v) = v

Pn
i=1 si = v. It follows that c = v.

Now, v1 = max
s2X

min
y2Y

s �Ay � min
y2Y

s �Ay � v (since s � z � c = v for all z 2 L;
i.e. for all z = Ay, where y 2 Y ). Next, v2 = min

y2Y
max
s2X

s � Ay � max
s2X

s � Ay =
max
s2X

s � z = max
i=1;��� ;n

zi � v (since z 2 Kv).

We obtain that v2 � v � v1. Together with the fact that v1 � v2; it gives us
v2 = v = v1; the desired statement. Note also, that the maximal value of v1(s)
is reached at s; while the minimal value of v2(y) is reached at y: Thus, s and y
constructed in the proof are optimal strategies for players 1 and 2 respectively.
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1.5 Computation of optimal mixed strategies

How can we �nd the maximin strategy s, the minimax strategy y; and the value
v of a given game?
If the game with deterministic strategies (the original game) has a saddle

point, then v = m, and the maximin and minimax strategies are deterministic.
Finding them amounts to �nd an entry aij of the matrix A which is both the
maximum entry in its column and the minimum entry in its row.
When the original game has no value, the key to computing optimal mixed

strategies is to know their supports, namely the set of strategies used with
strictly positive probability. Let s; y be a pair of optimal strategies, and v =
sTAy. Since for all j we have that sTAej � min

y2Y
sTAy = v1(s) = v1 = v, it

follows that v = sTAy = y1
�
sTAe1

�
+ ::: + ym

�
sTAem

�
� y1v + ::: + ymv =

v (y1 + :::+ ym) = v, and the equality implies sTA�j = sTAej = v for all j
such that yj 6= 0. Thus, player 2 receives her minimax value v2 = v by playing
against s any pure strategy j which is used with a positive probability in her
minimax strategy y (i.e. any strategy j; such that yj 6= 0).
Similarly, player 1 receives his maximin value v1 = v by playing against y

any pure strategy i which is used with a positive probability in his maximin
strategy s (i.e. any strategy i; such that si 6= 0). Setting S� = fijsi > 0g and
T � = fjjyj > 0g, we see that s; y solve the following system with unknown s; y

sTA�j = v for all j 2 T �;Ai:y = v for all i 2 S�

nX
i=1

si = 1; si � 0;
mX
i=1

yj = 1; yj � 0

The di�culty is to �nd the supports S�; T �, because there are 2n+m possible
choices, and no systematic way to guess! However we expect the two supports
to be of the same size, and in fact for any game there exists an equilibrium (a
saddle point in mixed strategies) where both supports have the same cardinality
(exercise: prove this claim).
In many n�n games (each player has n pure strategies), one can get an idea

about the support of an optimal pair by assuming a full support and solving
the corresponding system of equalities (as above, except for si � 0 and yj � 0).
If its solution is non negative, it is a pair of optimal strategies. If not, the
set of pure strategies i; j where si � 0 and yj � 0 gives plausible bounds of
the support of an optimal strategy. But this trick is not always going to work.
Consider the 3� 3 game with payo�s24 8 0 �1

�3 4 7
0 �2 0

35
where the trick suggests to give zero weight to the middle column, when in fact
the opatimal strategy puts weight on the left and middle columns (and on the
top and middle rows).
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A more rigorous approach to simplify the search for the supports of opti-
mal mixed strategies uses the successively elimination of dominated rows and
columns.

De�nition 13 We say that the i-th row of a matrix A dominates (resp. strictly
dominates) its k-th row, if aij � akj for all j and aij > akj for at least one j
(resp. aij > akj for all j). Similarly, we say that the j-th column of a matrix
A dominates (resp. strictly dominates) its l-th column, if aij � ail for all i and
aij > ail for at least one i (resp. aij > ail for all i).

In other words, a pure strategy (represented by a row or a column of A)
dominates another pure strategy if the choice of the �rst (dominating) strategy
is at least as good as the choice of the second (dominated) strategy, and in some
cases it is strictly better. A player can always �nd an optimal mixed strategy
using only undominated strategies.

Proposition 14 If the row i of a matrix A is strictly dominated, then any
optimal strategy s of player 1 has si = 0. If the row i of a matrix A is dominated,
then player 1 has an optimal strategy s such that si = 0. Moreover, any optimal
strategy, for any player, in the game obtained by removing dominated rows from
A will also be an optimal strategy in the original game. The same is true for
strictly dominated and dominated columns of player 2.

Removing dominated rows of A gives a smaller matrix A1: Removing dom-
inated columns of A1 leaves us with a yet smaller matrix A2: We continue by
removing dominated rows of A2; etc., until we obtain a matrix which does not
contain dominated rows or columns. The optimal strategies and the value for
the game with this reduced matrix will still be the optimal strategies and the
value for the initial game represented by A. This process is called \iterative
elimination of dominated strategies". See the problems for examples of appli-
cation of this technique.

1.5.1 2� 2 games

Suppose that A =

�
a11 a12
a21 a22

�
. This game does not have saddle point if and

only if [a11; a22]\ [a12; a21] = ?. In this case, a pure strategy cannot be optimal
for either player (check it!). It follows that optimal strategies (s1; s2) and (y1; y2)
must have all components positive. Let us repeat the argument above for the
2� 2 case. We have v = sTAy = a11s1y1 + a12s1y2 + a21s2y1 + a22s2y2, or

s1(a11y1 + a12y2) + s2(a21y1 + a22y2) = v:

But a11y1 + a12y2 � v and a21y1 + a22y2 � v (these are the losses of player 2
against 1-st and 2-nd pure strategies of player 1; but since y is player's 2 optimal
strategy, she cannot lose more then v in any case). Hence, s1(a11y1 + a12y2) +
s2(a21y1 + a22y2) � s1v + s2v = v. Since s1 > 0 and s2 > 0; the equality

12



is only possible when a11y1 + a12y2 = v and a21y1 + a22y2 = v: Similarly
a11s1 + a21s2 = v and a12s1 + a22s2 = v: We also know that s1 + s2 = 1 and
y1 + y2 = 1.
We have a linear system with 6 equations and 5 variables s1; s2; y1; y2 and

v: The minimax theorem guarantees us that this system has a solution with
s1; s2; y1; y2 � 0: One of these 6 equations is actually redundant. The system has
a unique solution provided the original game has no saddle point. In particular

v =
a11a22 � a12a21

a11 + a22 � a12 � a21
Note that the denominatior is non zero because [a11; a22] \ [a12; a21] = ?.

1.5.2 2�n games

By focusing on the player who has two strategies, one computes the value as
the solution of a tractable linear program. See the examples in Problem 9.

1.5.3 Symmetric games

The game with matrix A is symmetric if A = �AT (Exercise: check this). Recall
that the value of a symmetric game is zero (Lemma 7). Moreover, if s is an
optimal strategy for player 1, then it is also optimal for player 2.

1.6 in�nite games

When the sets of pure strategies are in�nite, mixed strategies can still be de�ned
as probability distributions over these sets, but the existence of a value for the
game in mixed strategies is no longer guaranteed.

Example 5: a silly game
Each player chooses an integer in f1; 2; � � � ; n; � � � g. The one who choooses the
largest integer wins $1 from the other, unless they choose the same number, in
which case no money changes hands. A mixed strategy is a probability distri-
bution x = (x1; x2; � � � ; xn; � � � ); xi � 0;

P1
1 xi = 1. Given any such strategy

chosen by the opponent, and any positive ", there exists n such that
P1

n xi � ",
therefore playing n guarantees a win with probability no less than 1 � ". It
follows that in the game in mixed strategies, max

x2X
min
y2Y

u(x; y) = �1 < +1 =

min
y2Y

max
x2X

u(x; y).

Theorem 15 (Glicksberg Theorem). If the sets of pure strategies S; T are con-
vex compact subsets of some euclidian space, and the payo� function u is con-
tinuous on S � T , then the game in mixed strategies (where each player uses a
probability distribution over pure strategies) has a value.

However, knowing that a value exists does not help much to identify optimal
mixed strategies, because the support of these mixed strategies can now vary in
a very large set!

13



An example where Glicksberg Theorem applies is the subject of Problem
13.2.
A typical case where Glicksberg Theorem does not apply is when S; T are

convex compacts, yet the payo� function u is discontinuous. Below are two
such examples: in the �rst one the game nevertheless has a value and optimal
strategies, in the second it does not.

Example 6 Mixed strategies in the silent gun�ght
In the silent gun�ght (Problem 5; see also the noisy version Example 2 in section
1.2), we assume a(t) = b(t) = t, so that the game is symmetric, and its value (if
it exists) is 0. The payo� function is

u(s; t) = s� t(1� s) if s < t
u(s; t) = �t+ s(1� t) if t < s
u(s; t) = 0 if s = t

It is enough to look for a symmetric equilibrium. Note that shooting near s = 0
makes no sense, as it guarantees a negative payo� to player 1. In fact the best
reply of player 1 to the strategy t by player 2 is s = 1 if t <

p
2� 1, s = t� " if

t >
p
2� 1.

This suggests that the support of an optimal mixed strategy will be [a; 1],
for some a � 0, and that the optimal strategy has a density f(t) over [a; 1]. We
compute player 1's expected payo� from the pure strategy s; a � s � 1, against
the strategy f by player 2

u(s; f) =

Z s

a

(s(1� t)� t)f(t)dt+
Z 1

s

(s(1 + t)� t)f(t)dt

The equilibrium condition is that u(s; f) = 0 for all s 2 [a; 1]. This equality is
rearranged as

s� (1 + s)f
Z s

a

tf(t)dtg � (1� s)f
Z 1

s

tf(t)dtg = 0

Setting H(s) =
R 1
s
tf(t)dt, this writes

s = (1 + s)(H(a)�H(s)) + (1� s)H(s), H(s) = H(a)
1 + s

2s
� 1
2

Taking H(1) = 0 into account gives H(a) = 1
2 , then

H(s) =
1� s
4s
) f(s) =

1

4s3

Finally we �nd a from

1 =

Z 1

a

f(t)dt) a =
1

3

Example 7 Campaign funding
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Each player divides his $1 campaign budget between two states A and B. The
challenger (player 1) wins the overall game (for a payo� $1) if he wins (strictly) in
one state, where the winner in state A is whomever spends the most money, but
in state B the incumbent (player 2) has an advantage of $0:5 so the challenger
only wins if his budget there exceeds that of the incumbent by more than $0:5.
Here is the normal form of the game:

S = T = [0; 1] s (resp. t) is spent by player 1 (resp. 2) in state A

u(s; t) = +1 if t < s or s+
1

2
< t

u(s; t) = �1 if s < t < s+ 1
2

u(s; t) = 0 if s = t or s+
1

2
= t

Clearly in the pure strategy game max
s
min
t
u(s; t) = �1 < +1 = min

t
max
s
u(s; t).

We claim that in the mixed strategy game we have

max
x2X

min
y2Y

u(x; y) =
1

3
<
3

7
= min

y2Y
max
x2X

u(x; y) (1)

Suppose �rst that player 2's mixed strategy y guarantees

sup
s2[0;1]

u(s; y) <
3

7
(2)

Applying (2) at s = 1 gives y(1) > 4
7 , and at s = 0

y(]
1

2
; 1])� y(]0; 1

2
[) <

3

7
(3)

Applying (2) at s = 1
2 � ", and letting " go to zero, gives

y([0;
1

2
[) + y(1)� y([1

2
; 1[) � 3

7

Summing the latter two inequalities yields

2y(1) + y(0)� y(1
2
) � 6

7

Combined with y(1) > 4
7 , this implies y(

1
2 ) �

2
7 , and (3) gives similarly y(]0;

1
2 [) >

1
7 . This is a contradiction as y(1) + y(

1
2 ) + y(]0;

1
2 [) � 1, hence inequality (2) is

after all impossible.
Next one checks easily that player 2's strategy

y� =
1

7
� 1
4
+
2

7
� 1
2
+
4

7
�1
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guarantees sup[0;1] u(s; y
�) = 3

7 .
To prove the other half of property (1), we assume the mixed strategy x is

such that

inf
t2[0;1]

u(x; t) >
1

3

and apply this successively to t = 1 and t = 1
2 � ", letting " go to zero. We get

x([0;
1

2
[)� x(]1

2
; 1[) >

1

3
and � x([0; 1

2
[) + x([

1

2
; 1]) � 1

3

Summming these two inequalities x( 12 )+x(1) >
2
3 , a contradiction of x([0;

1
2 [) >

1
3 . Finally player 1's strategy

x� =
1

3
�0 +

1

3
� 1
2
+
1

3
�1

guarantees inf [0;1] u(x
�; t) = 1

3 .

1.7 Von Neumann's Theorem

It generalizes the minimax theorem. The proof follows from the more general
Nash Theorem in Chapter 4.

Theorem 16 The game (S; T; u) has a value and optimal strategies if S; T are
convex compact subsets of some euclidian spaces, the payo� function u is con-
tinuous on S � T , and for all s 2 S; all t 2 T

t0 ! u(s; t0) is quasi-convex in t0; s0 ! u(s0; t) is quasi-concave in s0

Example 8 Borel's model of poker.
Each player bids $1, then receives a hand mi 2 [0; 1]. Hands are independently
and uniformly distributed on [0; 1]:Each player observes only his hand.Player 1
moves �rst, by either folding or bidding an additional $5. If 1 folds, the game is
over and player 2 collects the pot. If 1 bids, player 2 can either fold (in which
case 1 collects the pot) or bid $5 more to see: then the hands are revealed and
the highest one wins the pot.
A strategy of player i can be any mapping from [0; 1] into fF;Bg, however it

is enough to consider the following simple threshold strategies si : fold whenever
mi � si; bid whenever mi > si. Notice that for player 2, actual bidding
only occur if player 1 bids before him. Compute the probability �(s1; s2) that
m1 > m2 given that si � mi � 1 :

�(s1; s2) =
1 + s1 � 2s2
2(1� s2)

if s2 � s1

=
1� s2
2(1� s1)

if s1 � s2
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from which the payo� function is easily derived:

u(s1; s2) = �6s21 + 5s1s2 + 5s1 � 5s2 if s2 � s1

= 6s22 � 7s1s2 + 5s1 � 5s2 if s1 � s2
The Von Neumann theorem applies, and the utility function is continuously
di�erentiable. Thus the saddle point can be found by solving the system
@u
@si
(s) = 0; i = 1; 2. This leads to

s�1 = (
5

7
)2 = 0:51; s�2 =

5

7
= 0:71

and the value �0:51: player 2 earns on average 51 cents.
Two more simplistic models of poker are in the problems below.

1.8 Problems for two person zero-sum games

1.8.1 Pure strategies

Problem 1
Ten thousands students formed a square. In each row, the tallest student is
chosen and Mary is the shortest one among those. In each column, a shortest
student is chosen, and John is the tallest one among those. Who is taller|John
or Mary?

Problem 2
Compute m = minmax and m = maxmin values for the following matrices:

2 4 6 3
6 2 4 3
4 6 2 3

3 2 2 1
2 3 2 1
2 2 3 1

Find all saddle points.

Problem 3. Gale's roulette
a)Each wheel has an equal probability to stop on any of its numbers. Player 1
chooses a wheel and spins it. Player 2 chooses one of the 2 remaining wheels
(while the wheel chosen by 1 is still spinning), and spins it. The winner is the
player whose wheel stops on the higher score. He gets $1 from the loser.
Numbers on wheel #1: 2,4,9; on wheel #2: 3,5,7; on wheel #3: 1,6,8

Find the value and optimal strategies of this game
b) Variant: the winner with a score of s gets $s from the loser.

Problem 4 Land division game.
The land consists of 3 contiguous pieces: the unit square with corners
(0; 0); (1; 0); (0; 1); (1; 1), the triangle with corners (0; 1); (1; 1); (0; 2), the trian-
gle with corners (1; 0); (1; 1); (2; 1): Player 1 chooses a vertical line L with 1st
coordinate in [0; 1]: Player 2 chooses an horizontal line M with 2d coordinate
in [0; 1]. Then player 1 gets all the land above M and to the left of L; as well
as the land below M and to the right of L. Player 2 gets the rest. Both players
want to maximize the area of their land. Find the value and optimal strategies.
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Problem 5 Silent gun�ght
Now the duellists cannot hear when the other player shoots. Payo�s are com-
puted in the same way. If v is the value of the noisy gun�ght, show that in
the silent version, the values m = minmax and m = maxmin are such that
m < v < m.

Problem 6.1
Two players move in turn and the one who cannot move loses. Find the winner
(1-st or 2-nd player) and the winning strategy.
In questions a) and b), both players move the same piece.

a) A castle stays on the square a1 of the 8�8 chess board. A move consists in
moving the castle according to the chess rules, but only in the directions up or
to the right.
b) The same game, but with a knight instead of a castle.
In questions c) and d), a move consists of adding a new piece on the board.

c) A move consists in placing a castle on the 8 by 8 chess board in such a way,
that it does not threatens any of the castles already present.
d) The same game, but bishops are to be placed instead of castles.

Problem 6.2
Dominos can be placed on a m � n board so as to cover two squares exactly.
Two players alternate placing dominos. The �rst one who is unable to place a
domino is the loser.
a) Show that one of the two players, First or Second Mover, can guarantee a
win.
b) Who wins in the following cases:
n = 3;m = 3
n = 4;m = 4

c) Who wins in the following cases:
n and m even
n even, m odd

d) (much harder) Who wins if n = 1? If n and m are odd?

Problem 6.3
Two players move in turn until one of them cannot move. In the standard
version, that player loses; in the miser version, whoever was the last mover
loses. Find the winner (1-st or 2-nd moverer) and the winning strategy in both
standard and miser versions for the following games.
a) From a pile of n coins, the players take turns to remove one or two coins.
Show that n is a losing position i� n = 0(3) in the standard version, i� n = 1(3)
in the miser version.
b) Same as in a), but now the players can remove one or four coins?
c) Same as in a), but now the players can remove one, three or �ve coins?
d) We now have two piles, of size n and m, and the players take turns to remove
one or two coins from one of the piles. Show that n;m is losing in the standard
version i� n = m(3), i� n 6= m(3) in the miser version.
e) From one of the two piles as in d), the players can remove one or four coins.
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f) We still have two piles of size n;m, but now the players can remove any
number of coins (and at least one) from one of the piles.
g) Marienbad game: we have p piles of sizes n1; � � � ; np. A player can remove
any number of coins (and at least one) from one of the (non empty) piles. Show
that in the standard version, a position n1; � � � ; np is winning i�

for all t; 1 � t � T :
pX
k=1

atk is even; and

pX
k=1

atk > 0 for at least one t

when nk = a
T
k a

T�1
k � � � atk � � � a1k is the diadic representation of nk, augmented by

enough zeros on the left so that all nk have the same number of digits. What
is the solution of the miser version of this game?

Problem 6.4
a) The game starts with two piles, of respectively n and m coins. A move
consists in taking one pile away and dividing the other into two nonempty piles.
Solve the standard and miser versions of the game (de�ned in Problem 6.3).
b) n coins are placed on a line such that they touch each other. A move consists
in taking either one coin, or two adjacent (touching) coins. Solve the standard
and miser versions.
c) The initial position is 111111101111110111101, where a 1 is a match and 0 an
empty space. Players successively remove one match or three adjacent matches.
Solve the two versions of the game.

Problem 7
Show that, if a 2�3 matrix has a saddle point, then either one row domi-
nates another, or one column dominates another (or possibly both). Show by a
counter-example that this is not true for 3�3 matrices.
Problem 8 Shapley's criterion

Consider a game (S; T; u) with �nite strategy sets such that for every subsets
S0 � S; T0 � T with 2 elements each, the 2 � 2 game (S0; T0; u) has a value.
Show that the original game has a value. Hint: by contradiction. Assume
maxmin < minmax, and without loss maxmin < 0 < minmax. Then �nd a

sub-2x2 matrix of the type

�
+ �
� +

�
.

1.8.2 Mixed strategies

Problem 9
In each question you must check that the game in deterministic strategies (given
in the matrix form) has no value, then �nd the value and optimal mixed strate-
gies. Results in section 1.5 will prove useful.

a) A =

�
2 3 1 5
4 1 6 0

�
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b) A =

0BBBB@
12 0
0 12
10 6
8 10
9 7

1CCCCA
c) A =

0@ 2 0 1 4
1 2 5 3
4 1 3 2

1A
d) A =

0@ 1 6 0
2 0 3
3 2 4

1A
e) A =

0@ 0 1 �2
�1 0 3
2 �3 0

1A
f) A =

0@ 8 4 2
0 2 4
0 4 2

1A ; A =
0@ 5 4 2
0 2 4
0 4 2

1A
g) A =

0@ 2 4 6 3
6 2 4 3
4 6 2 3

1A
Problem 10 Rock, Paper, Scissors and Well

Two players choose simultaneously one of 4 pure strategies: Rock, Paper, Scis-
sors and Well. If their choices are identical, no money changes hands. Otherwise
the loser pays $1 to the winner.
The pattern of wins and losses is as follows. The paper is cut by (loses to)

the scissors, it wraps (beats) the rock and closes (beats) the well. The scissors
break on the rock and fall into the well (lose to both). The rock falls into (loses
to) the well . The same choice by both players is a tie (no money changes hand).
a) Solve the game in mixed strategies when the winner gets $1 from the loser.
b) Solve the game in mixed strategies when losing to the rock or the scissor
costs $2 to the loser, while losing to paper or well only costs $1.

Problem 11 Picking an entry

a) Player 1 chooses either a row or a column of the matrix

�
2 1
4 5

�
: Player 2

chooses an entry of this matrix. If the entry chosen by 2 is in the row or column
chosen by 1, player 1 receives the amount of this entry from player 2. Otherwise
no money changes hands. Find the value and optimal strategies.
b) Same strategies but this time if player 2 chooses entry s and this entry is not
in the row or column chosen by 1, player 2 gets $s from player 1; if it is in the
row or column chosen by 1, player 1 gets $s from player 2 as before.

Problem 12 Guessing a number
Player 2 chooses one of the three numbers 1,2 or 5. Call s2 that choice. One of
the two numbers not selected by Player 2 is selected at random (equal probability
1/2 for each) and shown to Player 1. Player 1 now guesses Player 2's choice: if
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his guess is correct, he receives $s2 form Player 2, otherwise no money changes
hand.
Solve this game: value and optimal strategies.
Hint: drawing the full normal form of this game is cumbersome; describe instead
the strategy of player 1 by three numbers q1; q2; q5. The number q1 tells what
player 1 does if he is shown number 1: he guesses 2 with probability q1 and 5
with proba. 1� q1; and so on.

Problem 13.1
Player 1, the catcher, and player 2, the evader, simultaneously and inde-

pendently pick a node in a given graph. If they choose the same node or two
adjacent nodes, player 2 is captured, otherwise he escapes. The payo� is the
probability of capture, which Player 1 maximizes, and player 2 minimizes. Solve
this game for the following graphs (hint; use domination arguments):
a) a line of arbitrary length.
b)
�  ! �
l l
�  ! �  ! �  ! �

c)
�  ! �  ! �  ! �

l l
�  ! �  ! �  ! �  ! �

d)
�  ! �
l l
�  ! �  ! �

l l
�  ! �

Problem 13.2 Catch me
a) Player 1 chooses a location x in [0; 1] and player 2 chooses simultaneously a
location y. Player 1 is trying to be as far as possible from player 2, and player
2 has the opposite preferences. The payo� (to player 1)is u(x; y) = (x� y)2.
Show the game in pure strategies has no value. Find the value and optimal
strategies for the game in mixed strategies.
b) Solve the similar game where the "board" is an arbitrary tree (connected
graph with no cycles).
c) Solve the similar game where the "board" is a circle.

Problem 14 Hiding a number
Fix an increasing sequence of positive numbers a1 � a2 � a3 � � � � � ap � � � � .
Each player chooses an integer, the choices being independent. If they both
choose the same number p; player 1 receives $p from player 2. Otherwise, no
money changes hand.
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a) Assume �rst
1X
p=1

1

ap
<1

and show that each player has a unique optimal mixed strategy.
b) In the case where

1X
p=1

1

ap
=1

show that the value is zero, that every strategy of player 1 is optimal, whereas
player 2 has only ""-optimal" strategies, i.e., strategies guaranteeing a payo�
not larger than ", for arbitrarily small ".

Problem 15
Asume that both players choose optimal (mixed) strategies x and y and thus the
resulting payo� in the game is v. We know that player 1 would get v if against
player 2's choice y he would play any pure strategy with positive probability in
x (i.e. any pure strategy i; such that si > 0), and he would get less then v if
he would play any pure strategy i; such that xi = 0: Explain why a rational
player 1, who assumes that his opponent is also rational, should not choose a
pure strategy i such that xi > 0 instead of x.

Problem 16
In a two-person zero-sum game in normal form with a �nite number of pure
strategies, show that the set of all mixed strategies of player 1 which are part of
some equilibrium of the game, is a convex subset of the set of player 1's mixed
strategies.

Problem 17 Blu�ng game
At the beginning, players 1 and 2 each put $1 in the pot. Next, player 1 draws a
card from a shu�ed deck with equal number of black and red cards in it. Player
1 looks at his card (he does not show it to player 2) and decides whether to raise
or fold. If he folds, the card is revealed to player 2, and the pot goes to player
1 if it is red, to player 2 if it is black. If player 1 raises, he must add $1 to the
pot, then player 2 must meet or pass. If she passes the game ends and player 1
takes the pot. If she meets, she puts $� in the pot. Then the card is revealed
and, again, the pot goes to player 1 if it is red, to player 2 if it is black..
Draw the matrix form of this game. Find its value and optimal strategies as
a function of the parameter �. Is blu�ng part of the equilibrium strategy of
player 1?

Problem 18 Another poker game
There are 3 cards, of value Low, Medium and High. Each player antes $1 to
the pot and Ann is dealt a card face down, with equal probability for each card.
After seeing her card, Ann announces "Hi" or "Lo". To go Hi costs her $2 to
the pot, and Lo costs her $1. Next Bill is dealt one of the remaining cards (with
equal probability) face down. he looks at his card and can then Fold or See. If
he folds the pot goes to Ann. If he sees he must match Ann's contribution to
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the pot; then the pot goes to the holder of the higher card if Ann called Hi, or
to the holder of the lower card if she called Lo.
Solve this game: how much would you pay, or want to be paid to play this game
as Ann? How would you then play?
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2 Nash equilibrium

In a general n-person game in strategic form, interests of the players are neither
identical nor completely opposed. As in the previous chapter information about
other players' preferences and behavior will in
uence my behavior. The novelty
is that this information may sometime be used cooperatively, i.e., to our mutual
advantage.
We discuss in this chapter the two most important scenarios justifying the

Nash equilibrium concept as the consequence of rational behavior by the players:

� the coordinated scenarios where players know a lot about each other's
strategic opportunities (strategy sets) and payo�s (preferences), and use
either deductive reasoning or non binding comunication to coordinate their
choices of strategies.

� the decentralized (competitive) scenarios where mutual information is min-
imal, to the extent that a player may not even know how many other
players are in the game or what their individual preferences look like.

Decentralized scenarios are realistic in games involving a large number of
players, each one with a relatively small in
uence on the overall outcome, so
that the "competitive" assumption that each player ignores the in
uence of
his own moves on other players' strategic choices is plausible. Coordination
scenarios are more natural in games with a small number of participants.
This chapter is long on examples and short on abstract proofs. The next

chapter is just the opposite.

De�nition 17 A game in strategic form is a list G = (N;Si; ui; i 2 N), where
N is the set of players, Si is player i's strategy set and ui is his payo�, a

mapping from SN =
Y
i2N

Si into R, which player i seeks to maximize.

An important class of games consists of those where the roles of all players
are fully interchangeable.

De�nition 18 A game in strategic form G = (N;Si; ui; i 2 N) is symmetri-
cal if Si = Sj for all i; j, and the mapping s ! u(s) from SjN j into RjN j is
symmetrical.

In a symmetrical game if two players exchange strategies, their payo�s are
exchanged and those of other players remain una�ected.

De�nition 19 A Nash equilibrium of the game G = (N;Si; ui; i 2 N) is a
pro�le of strategies s� 2 SN such that

ui(s
�) � ui(si; s��i) for all i and all si 2 Si
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Note that the above de�nition uses only the ordinal preferences represented
by the utility functions ui. We use the cardinal representation as payo� (utility)
simply for convenience. However when we speak of mixed strategies in the next
chapter, the choice of a cardinal utility will matter.
The following inequality provides a useful necessary condition for the exis-

tence of at least one Nash equilibrium in a given game G.

Lemma 20 If s� is a Nash equilibrium of the game G = (N;Si; ui; i 2 N), we
have for all i

ui(s
�) � min

s�i2S�i
max
si2Si

ui(si; s�i)

Example 1 duopoly a la Hoteling
The two competitors sell identical goods at �xed prices p1; p2 such that p1 < p2.
The consumers are uniformly spread on [0; 1], each with a unit demand. Firms
incur no costs. Firms choose independently where to locate a store on the
interval [0; 1], then consumers buy from the cheapest store, taking into account
a transportation cost of $s if s is the distance to the store. Assume p2�p1 = 1

4 .
Check that

min
S2
max
S1

u1 = p1;min
S1
max
S2

u2 =
p2
8

where the minS2 maxS1 u1 obtains from the copycat strategy s1 = s2 by player
1, and the minS1 maxS2 u2 is achieved by s1 =

1
2 , and s2 = 0 or 1. Observe now

that the payo� pro�le (p1;
p2
8 ) is not feasible, therefore the game has no Nash

equilibrium.

2.1 Coordinated scenarios

We now consider games in strategic form involving only a few players who use
their knowledge about other players strategic options to form expectations about
the choices of these players, which in turn in
uence their own choices. In the
simplest version of this analysis, each player knows the entire strategic form
of the game, including strategy sets and individual preferences (payo�s). Yet
at the time they make their strategic decision, they act independently of one
another, and cannot observe the choice of any other player.
The two main interpretations of the Nash equilibrium are then the self ful-

�lling prophecy and the self enforcing agreement.
The former is the meta-argument that if a "Book of Rational Conduct"

can be written that gives me a strategic advice for every conceivable game in
strategic form, this advice must be to play a Nash equilibrium. This is the
"deductive' argument in favor of the Nash concept.
The latter assumes the players engage in "pre-play" communication, and

reach a non committal agreement on what to play, followed by a complete break
up of communication.
Two conceptual di�culties suggest caution when we apply the Nash equi-

librium concept in the coordinated context. First a Nash equilibrium may be
ine�cient (Pareto inferior), as illustrated in the celebrated Prisoner's Dilemna:
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section 2.1.1. Then communication between the players drives them to move
away from the equilibrium, for the bene�t of every participant. Second, many
games have multiple Nash equilibria, hence a selection problem (section 2.1.2).
Under either scenario above, it may be unclear how the players will be able to
coordinate on one of them.
On the other hand, we can identify large classes of games in which selecting

the Nash outcome by deduction (covert communication) is quite convincing,
so that our con�dence in the predictive power of the concept remains intact.
These are the dominance-solvable games in section 2.1.3, and the games with a
dominant strategy equilibrium in section 2.1.4.

2.1.1 ine�ciency of the Nash equilibrium outcomes

Example 2 Prisonners Dilemna
Each player chooses a sel
ess strategy C or a sel�sh strategy D. Choosing C

brings a bene�t a to every other player and a cost of b to me. Playing D brings
neither bene�t nor cost to anyone. It is a dominant strategy to play D if b > 0.
If furthermore b < (n � 1)a, the unique Nash equilibrium is Pareto inferior to
the unanimously sel
ess outcome. This equilibrium is especially credible as each
player uses a dominant strategy (see 2.1.4 below).

Example 3 Pigou tra�c example
There are two roads (country, city) to go from A to B and n commuters want
to do just that. The country road entails no congestion: no matter how many
users travel on it, each incurs a delay of 1. The city road has linear congestion
costs: if x commuters use that road, each of them incurs a delay of x

m , where
we assume m � n. A Nash equilibrium is an outcome where m; or m � 1;
agents take the city road, and n � m; or n � m + 1; take the country road,
and all get a disutility of 1; or m�1

m . However total disutility is minimized by
sending only m

2 commuters on the city road, for a total delay of n �
m
4 , and a

Pareto improvement where m
2 city commuters are better o�, while the rest are

indi�erent to the change.

Example 4 the Braess paradox
There are two roads to go from A to B, and 6 commuters. The upper road goes
through C, the lower road goes through D. The 2 roads only meet at A and B.
On each of the four legs, AC;CB;AD;DB, the travel time depends upon the
number of users x in the following way:
on AC and DB : 50 + x, on CB and AD : 10x

Every player must choose a road to travel, and seeks to minimize his travel time.
The Nash equilibria of the game are all outcomes with 3 users on each road,
and they all give the same disutility 83 to each player. Next we add one more
link on the road network, directly between C and D, with travel time 10 + x.
In the new Nash equilibrium outcomes, we have two commuters on each of the
paths ACB;ADB;ADCB, and their disutility is 92. Thus the new road results
in a net increase of the congestion!
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2.1.2 the selection problem

When several (perhaps an in�nity of) Nash outcomes coexist, and the players'
preferences about them do not agree, they will try to force their preferred out-
come by means of tactical commitment. Two well known games illustrate the
resulting impossibility to predict the outcome of the game.

Example 5 crossing game (a.k.a. the Battle of the Sexes)
Each player must stop or go. The payo�s are as follows

stop 1; 1 1� "; 2
go 2; 1� " 0; 0

stop go

Each player would like to commit to go, so as to force the other to stop. A typical
way is unilateral communication (schelling): I am going to pass, I cannot hear
you anymore. There is a mixed strategy equilibrium as well, but it has its own
problems. See Section 3.3.

Example 6 Nash demand game
The two players share a dollar by the following procedure: each write the
amounts she demands in a sealed envelope. If the two demands sum to no
more than $1, they are honored. Otherwise nobody gets any money. In this
game the equal plit outcome stands out because it is fair, and this will su�ce
in many cases to achieve coordination. However, a player will take advantage of
an opportunity to commit to a high demand. More precisely, the pair s1; s2 is
a Nash equilibrum if and only if 0 � s1; s2 � 1 and s1 + s2 = 1, or s1 = s2 = 1.
Note that Examples 5 and 6 are symmetric games with (many) asymmetric

equilibria.
In both above examples and in the next one the key strategic intuition is

that the opportunity to commit to a certain strategy by "burning the bridges"
allowing us to play anything else, is the winning move provided one convinces
the other player that the bridges are indeed gone.

De�nition 21 Given two functions t ! a(t) and t ! b(t), the corresponding
game of timing is as follows. Each one of the two players must choose a time to
stop the clock between t = 0 and t = 1. If player i stops the clock �rst at time
t, his payo� is ui = a(t), that of player j is uj = b(t). In case of ties, each gets
the payo� 1

2 (a(t) + b(t)).

An example is the noisy duel of chapter 1, where a increases, b decreases,
and they intersect at the optimal stopping/shooting time (here optimality refers
to the saddle point property for this ordinally zero-sum game). Here is another
classic example.

Example 7 War of attrition
This is a game of timing where both a and b are continuous and decreasing,

a(t) < b(t) for all t, and b(1) < a(0). There are two Nash equilibrium outcomes.
Setting t� as the time at which a(0) = b(t�), one player commits to t� or more,
and the other concedes by stopping the clock immediately (at t = 0).
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The selection problem can often be alleviated by further arguments of salience,
Pareto dominance, or risk dominance. It is easy to agree on an equilibrium more
favorable to everyone: the Pareto dominance argument.

De�nition 22 A coordination game is a game G = (N;Si; ui; i 2 N) such that
all players have the same payo� function: ui(s) = uj(s) for all i 2 N; s 2 SN .

If, in a coordination game, there is a single outcome maximizing the common
payo�, this Nash equilibrium will be selected without explicit comunication. We
have no such luck in a coordination game where several outcomes are optimal,
as in Schelling's rendez-vous game. Two players living in a big city and unable
to communicate directly, must meet tomorrow at noon. If they show up at the
same salient location (e.g., the Ei�el tower in Paris), they both win a prize,
otherwise they get nothing. The problem here is that salience may not be a
deterministic criteria.
We illustrate �nally the risk dominance argument, in an important model

where it con
icts with Pareto dominance.

Example 8 Coordination failure
This is an example of a public good provision game by voluntary contributions
(example 26), where individual contributions enter the common bene�t function
as perfect complements:

ui(s) = min
j
sj � Ci(si)

Examples include the building of dykes or a vaccination program: the safety
provided by the dyke is only as good as that of its weakest link. Assume Ci is
convex and increasing, with Ci(0) = 0 and C

0
i(0) < 1, so that each player has

a stand alone optimal provision level s�i maximizing z � Ci(z). Then the Nash
equilibria are the outcomes where si = � for all i, and 0 � � � mini s�i . They are
Pareto ranked: the higher �, the better for everyone. However the higher �, the
more risky the equilibrium: if other players may make an error and fail to send
their contribution, it is prudent not to send anything (maxsi mins�i ui(s) = 0
is achieved with si = 0). Even if the probability of an error is very small,
a reinforcement e�ect will amplify the risk till the point where only the null
(prudent) equilibrium is sustainable.

2.1.3 dominance solvable games

Eliminating dominated strategies is the central coordination device performed
by independent deductions of players mutually informed about the payo� func-
tions. We repeat a de�nition already given for two-person zero-sum games
(De�nition 13).

De�nition 23 In the game G = (N;Si; ui; i 2 N), we say that player i's strat-
egy si is weakly dominated by his strategy s

0
i (or simply dominated) if

ui(si; s�i) � ui(s
0
i; s�i) for all s�i 2 S�i

ui(si; s�i) < ui(s
0
i; s�i) for some s�i 2 S�i
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We say that strategy si is strictly dominated by s
0
i if

ui(si; s�i) < ui(s
0
i; s�i) for all s�i 2 S�i

Given a subset of strategies Ti � Si we write WU i(TN ) (resp. Ui(TN )) for the
set of player i's strategies in the restricted game (N;Ti; ui; i 2 N) that are not
dominated (resp. not strictly dominated).

De�nition 24 We say that the game G is dominance-solvable (resp. strictly
dominance-solvable) if the sequence de�ned inductively by

wS0i = Si;
w St+1i =WU i(wStN ) (resp. S0i = Si;St+1i = Ui(StN )) for all i and t = 1; 2; � � �

and called the successive elimination of dominated (resp. strictly dominated)
strategies, converges to a single outcome s�:

\1t=1wStN = fs�g (resp. \1t=1 StN = fs�g)

If the strategy sets are �nite, or compact with continuous payo� functions,
the set of undominated strategies Ui(SN ) is non empty and closed, therefore
the sequence StN is well de�ned. On the other hand, the (smaller) set of weakly
undominated strategiesWU i(SN ) is non empty but it may not be closed. There-
fore the existence of the sequence wStN is not always guaranteed, except if the
strategy sets are �nite.
Despite their close similarities, the two types of elimination, of dominated

or of strictly dominated strategies, di�er in other important ways. The latter
never throws away a Nash equilibrium outcome, and so it is not a selection tool,
rather a way to identify games with a unique Nash equilibrium. The former, on
the other hand, is a genuine selection tool, but one that must be handled with
care.

Proposition 25 For any T the set \Tt=1StN contains all Nash equilibria of the
game. If \1t=1StN = fs�g, then s� is the single Nash equilibrium outcome of the
original game.
If \1t=1wStN = fs�g, then s� is a Nash equilibrium of the original game.

The successive elimination of strictly dominated strategies is very robust in
the sense that it never loses equilibria , whereas the successive elimination of
weakly dominated strategies may lose some, or even all Nash equilibria of the
original game (in the latter case, the game reduced to \Tt=1wStN contains no
equilibrium either). Here are two examples241; 0 2; 0 1; 5

6; 2 3; 7 0; 5
3; 1 2; 3 4; 3

35
where the elimination of weklay d.s. picks one of the two equilibria, and241; 3 2; 0 3; 1

0; 2 2; 2 0; 2
3; 1 2; 0 1; 3

35
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where the algorithm throws out the unique Nash equilibrium!
Another di�erence between the two successive elimination algorithms, based

on strict or weak domination, is their robustness with respect to partial elimi-
nation. Suppose that at each stage we only drop strictly dominated strategies,
i.e., we construct a sequence Rti such that R

t+1
i � Ui(RtN ) for all i and t. Then

it is easy to check that the limit set \1t=1RtN is una�ected, provided we do elim-
inate some strategies at each round (see Problem 10). On the other hand when
we only drop some weakly dominated strategies at each stage, the result of the
algorithm may well depend on which ones we drop. Here is an example:2664

2; 3 2; 3
3; 2 1; 2
1; 1 0; 0
0; 0 1; 1

3775
Depending on which strategy player 1 eliminates �rst, we wend up at the (3; 2)
or the (2; 3) equilibrium.
The bottom line is that the successive elimination of strictly dominated

strategies can be performed without thinking twice, while we must be cautious
in performing the successive elimination of strictly dominated strategies, that
can lead to paradoxical examples We use several classic examples to reinforce
this point.

Example 9 Guessing game
Each one of the n players chooses an integer si between 1 and 1000: Compute
the average response

s =
1

n

X
i

si

Each player receives a prize that strictly decreases with the distance of its own
strategy si to

2
3s

ui(s) = �f(jsi �
2

3
sj)

This game is strictly dominance solvable and

\1t=1StN = f(1; � � � ; 1)g

Observe that for any t = 0; 1; � � � ; if Sti � f1; � � � ; pg for some integer p, then
St+1i � f1; � � � ; d 23peg. To prove this claim we check that player i's strategy
s�i = d 23pe strictly dominates any strategy si such that si � s

�
i + 1. Assume

player i uses s�i and denote by es the average strategy of players other than i, so
that s = 1

ns
�
i +

n�1
n es. Simple computations give

es � p) s�i �
2

3
s and s�i �

2

3
s < si �

2

3
(
1

n
si +

n� 1
n

es)
so s�i is strictly closer to es than si. We can now apply the upper bound on St+1i

repeatedly:
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S1i � f1; � � � ; 667g; S2i � f1; � � � ; 445g; � � � ; S8i � f1; � � � ; 40g; � � � ; S16i �
f1; 2g. Finally if the game is reduced to the strategies 1 and 2 for everyone,
check that strategy 2 is at least 2

3 away from
2
3s, while strategy 1 is at most

1
3

away from 2
3s.

The guessing game has been widely tested in the lab, where the participants'
limited strategic sophistication lead them to perform only a couple (typically
two or three) of rounds of elimination. When playing the guessing game with
inexperienced opponents, it is therefore a good idea to choose a number between
( 23 )

250 and ( 23 )
350.

Example 10 Cournot duopoly
Firm i produces si units of output, at a unit cost of ci. The price at which the
total supply s1 + s2 clears is [A� (s1 + s2)]+. Hence the pro�t functions:

ui = [A� (s1 + s2)]+si � cisi for i = 1; 2

This game is strictly dominance-solvable.
In our next example, weak dominance solvability leads to a mildly paradox-

ical result.

Example 11 The chair's paradox
Three voters choose one of three candidates a; b; c. The rule is plurality with
the Chair, player 1, breaking ties. Hence each player i chooses from the set
Si = fa; b; cg, and the elected candidate for the pro�le of votes s is

s2 if s2 = s3; or s1 if s2 6= s3

Note that the Chair has a dominant strategy (De�nition 25 below) to vote for
her top choice. The two other players can only eliminate the vote for their
bottom candidate as (weakly) dominated.
Assume that the preferences of the voters exhibit the cyclical pattern known as
the Condorcet paradox, namely

u1(c) < u1(b) < u1(a)

u2(b) < u2(a) < u2(c)

u3(a) < u3(c) < u3(b)

Writing this game in strategic form reveals that after the successive elimination
of dominated strategies, the single outcome s = (a; c; c) remains. This is the
most plausible Nash equilibrium outcome when players know all preferences.
The paradox is that the chair's tie-breaking privilege result in the election of
her worst outcome! There are other equilibria; two examples are: everyone votes
for a, or everyone for b.

In spite of the shortcomings detailed above, in many important economic
games, a couple of rounds of elimination of weakly dominated strategiesf may
well be enough to select a unique Nash equilibrium, even though the elimination
algorithm is stopped and the initial game is not weakly dominance solvable.
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Example 12 First price auction
The sealed bid �rst price auction is strategically equivalent to the Dutch de-
scending auction.An object is auctioned between n bidders who each submit a
sealed bid si. Bids are in round dollars (so Si = N). The highest bidder gets
the object and pays his bid. In case of a tie, a winner is selected at random with
uniform probability among the highest bidders. Assume that the valuations of
(willingness to pay for) the object are also integers ui and that

u1 > ui for all i � 2

At a Nash equilibrium of this game, the object is awarded to player 1 at a price
anywhere between u1 � 1 and u2, and there is another bid just below player 1's
winning bid. However after two rounds of elimination we �nd a game where the
only Nash equilibrium has player 1 paying u2 for the object while one of the
players i, i � 2, such that ui = maxj 6=1 uj bids ui � 1. Thus player 1 exploits
his informational advantage to the full.

Example 13 Steinhaus cake division method
The referee runs a knife from the left end of the cake to its right end. Each one
of the two players can stop the knife at any moment. Whoever stops the knife
�rst gets the left piece,the other player gets the right piece.
If both players have identical preferences over the various pieces of the cake,
this is a game of timing structurally equivalent to the noisy duel, and its unique
Nash equilibrium is that they both stop the knife at the time t� when they are
indi�erent between the two pieces.
When preferences di�er, this is a variant of a game of timing. Call t�i the time
when player i is indi�erent between the two pieces, and assume t�1 < t�2. The
Nash equilibrium outcomes are those where player 1 stops the knife between t�1
and t�2 while player 2 is just about to stop it herself: player 1 gets the left piece
(worth more than the right piece to him) and player 2 gets the right piece (worth
more to her than the left piece). However after two rounds of elimination of
weakly dominated strategies, we are left with S21 = [t

�
2�"; 1]; S22 = [t�2; 1] (where

our notation is loose; for a precise statement, it is easier to give a discrete version
of the model). Although the elimination process stops there, the outcome of the
remaining game is not in doubt: s�1 = t�2 � "; s�2 = t�2. Indeed the remaining
game is inessential (see Problem 29, question a).

2.1.4 dominant strategy equilibrium

One instance where the successive elimination of weakly dominated strategies
is convincing is when each player has a dominant strategy. Put di�erently, the
following is a compelling equilibrium selection.

De�nition 26 In the game G = (N;Si; ui; i 2 N), we say that player i's strat-
egy s�i is dominant if

ui(s
�
i ; s�i) � ui(si; s�i) for all s�i 2 S�i, all si 2 Si
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We say that s� is a dominant strategy equilibrium if for each player i, s�i is a
dominant strategy.

There is a huge di�erence in the interpretation of a game where dominance
solvability (whether in the strict or weak form) identi�es a Nash equilibrium,
versus one where a dominant strategy equilibrium exists.
The former requires complete information about mutual preferences and

more: I know your preferences, I know that you know that I know your pref-
erences, etc..You know my preferences, I know that you know my preferences,
you know that I know ...
In the latter, all a player has to know are the strategy sets of other players;

their preferences or their actual strategic choices do not matter at all to pick
his dominant strategy. Strategic choices are truly decentralized. Information
about other players' payo�s or moves is worthless, as long as our player is unable
to in
uence their choices ( no direct communication channel allows to convey a
threat of the kind "if you do this I will do that", or this threat is not enforceable).
The Prisoner's Dilemna (Example 1) is the most famous instance of a game

with a dominant strategy equilibrium.
Dominant strategy equilibria are rare because the strategic interaction is

often more complex. However they are so appealingly simple that when we
design a procedure to allocate resources, elect one of the candidates to a job, or
divide costs, we would like the corresponding strategic game to have a dominant
strategy equilibrium as often as possible. In this way we are better able to
predict the behavior of our participants. The two most important examples
of such strategy-proof allocation mechanisms follow. In both cases the game
has a (weakly but not strictly) dominant strategy equilibrium for all preference
pro�les, and the corresponding outcome is e�cient (Pareto optimal).

Example 14 Vickrey's second price auction
An object is auctioned between n bidders who each submit a sealed bid si. Bids
are in round dollars (so Si = N). The highest bidder gets the object and pays the
second highest bid. In case of a tie, a winner is selected at random with uniform
probability among the highest bidders (and pays the highest bid). If player i's
valuation of the object is ui, it is a dominant strategy to bid "sincerely", i.e.,
s�i = ui. The corresponding outcome is the same as in the Nash equilibrium
of the �rst price auction that we selected by dominance-solvability in example
12. But to justify that outcome we needed to assume complete information, in
particular the highest valuation player must know precisely the second highest
valuation. By contrast in the Vickrey auction, each player knows what bid to
slip in the envelope, whether or not she has any information about other players'
valuations, or even their number.
Note that in the second price auction game, there is a distressing variety of

other Nash equilibrium outcomes. In particular any player, even the one with
the lowest valuation of all, receives the object in some equilibrium. It is easy
to check that for any player i and for any price p, 0 < p < ai there is a Nash
equilibrium where player i gets the object and pays p.

Example 15 voting under single-peaked preferences
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The n players vote to choose an outcome x in [0; 1]. Preferences of player i over
the outcomes are single-peaked with the peak at vi: they are strictly increasing
on [0; vi] and strictly decreasing on [vi; 1]. Assume for simplicity n is odd. Each
player submits a ballot si 2 [0; 1], and the median outcome among s1; � � � ; sn is
elected: this is the number x = si� such that more than half of the ballots are
no less than x, and more than half of the ballots are no more than x.
It is a dominant strategy to bid "sincerely", i.e., s�i = vi. Again, any outcome

x in [0; 1] results from a Nash equilibrium, so the latter concept has no predictive
power at all in this game.

2.2 Decentralized behavior and dynamic stability

In this section we interpret a Nash equilibrium as the resting point of a dynami-
cal system. The players behave in a simple myopic fashion, and learn about the
game by exploring their strategic options over time. Their behavior is compati-
ble with total ignorance about the existence and characteristics of other players,
and what their behavior could be.
Think of Adam Smith's invisible hand paradigm: the price signal I receive

from the market looks to me as an exogenous parameter on which my own
behavior has no e�ect. I do not know how many other participants are involved
in the market, and what they could be doing. I simply react to the price by
maximizing my utility, without making assumptions about its origin.
The analog of the competitive behavior in the context of strategic games is

the best reply behavior. Take the pro�le of strategies s�i chosen by other players
as an exogeneous parameter, then pick a strategy si maximizing your own utility
ui, under the assumption that this choice will not a�ect the parameter s�i.
The deep insight of the invisible hand paradigm is that decentralized price

taking behavior will result in an e�cient allocation of resources (a Pareto e�-
cient outcome of the economy). This holds true under some speci�c microeco-
nomic assumptions in the Arrow-Debreu model, and consists of two statements.
First the invisible hand behavior will converge to a competitive equilibrium; sec-
ond, this equilibrium is e�cient. (The second statement is much more robust
than the �rst).
In the much more general strategic game model, the limit points of the best

reply behavior are the Nash equilibrium outcomes. Both statements, the best
reply behavior converges, the limit point is an e�cient outcome, are problematic.
The examples below show that the best reply behavior may not converge at all
If it converges, the limit Nash equilibrium outcome may well be ine�cient (as
we saw in section 2.1). Decentralized behavior may diverge, or it may converge
toward a socially suboptimal outcome.

2.2.1 Stable and unstable equilibria

De�nition 27 Given the game in strategic form G = (N;Si; ui; i 2 N), the
best-reply correspondence of player i is the (possibly multivalued) mapping bri

34



from S�i =
Y

j2N�fig

Sj into Si de�ned as follows

si 2 bri(s�i), ui(si; s�i) � ui(s0i; s�i) for all s0i 2 Si

De�nition 28 We say that the sequence st 2 SN ; t = 0; 1; 2; � � � , is a best
reply dynamics if for all t � 1 and all i, we have

sti 2 fst�1i g [ bri(s
t�1
�i ) for all t � 1

and sti 2 bri(st�1�i ) for in�nitely many values of t

We say that st is a sequential best reply dynamics if in addition at each
step at most one player is changing her strategy.

The best reply dynamics is very general, in that it does not require the
successive adjustments of the players to be synchronized. If all players use a
best reply at all times, we speak of myopic adjustment; if our players take turn
to adjust, we speak of sequential adjustment. For instance with two players the
latter dynamics is:

if t is even: st1 2 bri(st�12 ); st2 = s
t�1
2

if t is odd: st2 2 bri(st�11 ); st1 = s
t�1
1

But the de�nition allows much more complicated dynamics, where the timing
of best reply adjustments varies accross players. An important requirement is
that at any date t, every player will be using his best reply adjustment some
time in the future.
The �rst observation is an elementary result.

Proposition 29 Assume the strategy sets Si of each player are compact and
the payo� functions ui are continuous (this is true in particular if the sets Si
are �nite). If the best reply dynamics (st)t2N converges to s

� 2 SN , then s� is
a Nash equilibrium.

Proof. Pick any " > 0. As ui is uniformly continuous on SN , there exists
T such that

for all i; j 2 N and t � T : jui(stj ; s�j)� ui(s�j ; s�j)j �
"

n
for all s�j 2 S�j

Fix an agent i. By de�nition of the b.r. dynamics, there is a date t � T such
that st+1i 2 bri(st�i). This implies for any si 2 Si

ui(s
�) + " � ui(st+1i ; st�i) � ui(si; st�i) � ui(si; s��i)�

n� 1
n

"

where the left and right inequality follow by repeated application of uniform
continuity. Letting " go to zero ends the proof.

Observe that a limit point s� of the best reply dynamics (st)t2N is typically
not a Nash equilibrium! The second game in Example 16 below is a case in
point; see also Example 19.
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De�nition 30 We call a Nash equilibrium s strongly stable if any best reply
dynamics (starting form any initial pro�le of strategies in SN ) converges to s.
Such an equilibrium must be the unique equilibrium.
We call a Nash equilibrium sequentially stable if any sequential best reply

dynamics (starting form any initial pro�le of strategies in SN ) converges to it.
Such an equilibrium must be the unique equilibrium.

We give a series of examples illustrating these de�nitions.

Example 16: Two-person zero sum games
Here a Nash equilibrium is precisely a saddle point. In the following game, a
saddle point exists and is strongly stable244 3 5

5 2 0
2 1 6

35
Check that 3 is the value of the game. To check stability check that from the
entry with payo� 1, any b.r. dynamics converges to the saddle point; then the
same is true from the entry with payo� 6; then also from the entry with payo�
0, and so on.
In the next game, a saddle point exists but is not even sequentially stable:244 1 0

3 2 3
0 1 4

35
Starting from (top,left), say, we cycle on the four coprners of the matrix, each
one of them a limit point of the sequential b.r. dynamics, but we never reach
the saddle point (middle,middle).

Stability in �nite a (not necessarily zero-sum) two person game (S1; S2; u1; u2)
is easy to analyze. De�ne f = br2 � br1 the composition of the two best reply
correspondences. A �xed point of f is s2 2 S2 such that s2 2 f(s2), and a
cycle of length T is a sequence of distinct elements st2; t = 1; � � � ; T such that
st+12 2 f(st2) for all t = 1; � � � ; T � 1; and s12 2 f(sT2 ).

Proposition 31 The Nash equilibrium s� of the �nite game (S1; S2; u1; u2) is
strongly stable if and only if it is sequentially stable. This happens if and only
if f has a unique �xed point and no cycle of length 2 or more.

Proof. If the game is sequentially stable, a sequence st2 with an arbitrary
starting point s2 and such that s

t+1
2 2 f(st2), converges to the same limit s�2;

and the corresponding sequence st1 also has a unique limit s
�
1. Thus (s

�
1; s

�
2) is

the unique Nash equilibrium outcome and s�2 the unique �xed point of f . To
check strong stability, consider any best reply dynamics st. At some t � 1,
st+11 2 br1(st2), so st reaches the set br1(S2)�S2, and never leaves it thereafter.
at some t0 > t, st

0+1
2 2 br2(st

0

1 ), so the sequence s
t reaches the set br1(S2)�f(S2),
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never to leave it. Repeating the argument, we see that the sequence reaches
br1 � f(S2) � f(S2), then br1 � f(S2) � f2(S2), and so on, which ensures its
convergence to (s�1; s

�
2).

The easy proof of the second statement is omitted.
Example 17 price cycles in the Cournot oligopoly

The demand function and its inverse are

D(p) = (a� bp)+ , D�1(q) =
(a� q)+

b

Firm i incurs the cost Ci(qi) =
q2i
2ci

therefore its competitive supply given the
price p is Oi(p) = cip, and total supply is O(p) = (

P
N ci)p. Assume there

are many agents, each one small w.r.t. the total market size (i.e., each ci is
small w.r.t.

P
N cj), so that the competitive price-taking behavior is a good

approximation of the best reply behavior. Strategies here are the quantities qi
produced by the �rms, and utilities are

ui(q) = D
�1(
X
N

qj)qi � Ci(qi)

The equilibrium is unique, at the intersection of the O and D curves. If bc > 1

it is strongly stable; if bc < 1 it is sequentially but not strongly stable.

Example 18: Schelling's model of binary choices
Each player has a binary choice, Si = f0; 1g, and the game is symmetrical,
therefore it is represented by two functions a(:); b(:) as follows

ui(s) = a(
1

n

X
N

si) if si = 1

= b(
1

n

X
N

si) if si = 0

Assuming a large number of agents, we can draw a; b as continuous functions
and check that the Nash equilibrium outcomes are at the intersections of the 2
graphs, at s = (0; � � � ; 0) if a(0) � b(0), and at s = (1; � � � ; 1) if a(1) � b(1).
Whether a cust b from above or below makes a big di�erence in the stability

of the corresponding equilibrium outcome.
Example 18a: vaccination Strategy 1 is to take the vaccine, strategy 0 to

avoid it. Both a and b are strictly increasing: the risk of catching the disease
diminishes as more people around us vaccinate. If 1n

P
N si is very small, a > b,

as the risk of catching the disease is much larger than the risk of complications
from the vaccine; this inequality is reversed when 1

n

P
N si is close to 1. So the

intersection of the two curves is the sequentially stable, but not strongly stable,
equilibrium outcome1.

1Note that this is a statement in utilities, as the Nash equilibrium property only determines
the number of players using each strategy, but not their identity. Yet all equilibrium outcomes
yield the same utility pro�le, which allows us to state those stability properties.
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Example 18b: tra�c Each player chooses to use the bus (si = 1) or his own
car (si = 0); for a given congestion level 1

n

P
N si, tra�c is equally slow in

either vehicle, but more comfortable in the car, so a(t) < b(t) for all t; however
a and b both increase in t, as more people riding the bus decreases congestion.
If a(1) > b(0) the equilibrium in dominant strategies si = 0 for all i is Pareto
inferior.
Example 18c Now a and b intersect only once, and a cuts b from below. Now

we have three equilibrium outcomes, at t = 0; 1 and at the intersection of a and
b. The latter is unstable, and the former two are stable in a "local" sense2.

2.2.2 strictly dominance-solvable games

We saw in section 2.1.3 that in such games the Nash equilibrium exists and is
unique. We can say more.

Proposition 32 If the game G = (N;Si; ui; i 2 N) is strictly dominance solv-
able, its unique Nash equilibrium \1t=1StN = fs�g is globally stable.

The unique equilibrium obtains both as the result of the (timeless) deductive
process of successive elimination of strategies by fully informed players, and also
as the limit of any best reply dynamics by players with very limited knowledge
of their environment who naively "best reply" to the observed behavior of the
other players (unaware of those players' preferences).
See section 2.1.3 for examples.

2.2.3 potential games

Potential games generalize the pure coordination games (De�nition 21) where
all players have the same payo� functions. As shown in the following example,
strong stability is problematic in a coordination game but sequential stability
is not.

Example 19 a simple coordination game
The game is symmetrical and the common strategy space is Si = [0; 1]; the
payo�s are identical for all n players

ui(s) = g(
nX
i=1

si)

where g is a continuous function on [0; n].
Suppose �rst that g has a unique maximum z� and no other local maxima (g
is single-peaked). All s such that

Pn
i=1 si = z� are Nash equilibria, therefore

none is strongly stable. The single exceptions are z� = 0 or 1, because then the

2We measure the deviation from an equilibrium by the number of agents who are not
playing the equilibrium strategy. We say that a a Nash equilibrium s� is locally stable in
population if for any number �; 0 < � < 1; there exists �; 0 < � < 1; such that if a fraction
not larger than � of the agents change strategies, any sequential b.r. dynamics converges to
an equlibrium where at most � of the players have changed from the original equilibrium.
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Nash equilibrium is unique, and strongly stable. For z� such that 0 < z� < 1,
the game is sequentially stable in utilities (Example 18), because along any
sequential best reply dynamics, the common utility increases and converges to
g(z�). However, even in the restricted sense of convergence in utilities, the game
is not strongly stable, because, for instance, simultaneous best reply sequences
cycle around z� without reaching it.

De�nition 33 A game in strategic form G = (N;Si; ui; i 2 N) is a potential
game if there exists a real valued function P de�ned on SN such that for all i
and s�i 2 S�i we have

ui(si; s�i)� ui(s0i; s�i) = P (si; s�i)� P (s0i; s�i) for all si; s0i 2 Si

or equivalently there exists P and for all i a real valued function hi de�ned on
SN�fig such that

ui(s) = P (s) + hi(s�i) for all s 2 SN

The original game G = (N;Si; ui; i 2 N), and the game P = (N;Si; P; i 2 N)
with the same strategy sets as G and identical payo�s P for all players, have
the same best reply correspondences therefore the same Nash equilibria. Call
s� a coordinate-wise maximum of P if for all i, si ! P (si; s

�
�i) reaches its

maximum at s�i . Clearly s is a Nash equilibrium (of G and P) if and only if it
is a coordinate-wise maximum of P .
If P reaches its global maximum on SN at s, this outcome is a Nash equi-

librium of P and therefore of G. Thus potential games with continuous payo�
functions and compact strategy sets always have at least a Nash equilibrium.
Moreover, these equilibria have appealing stability properties.

Proposition 34 Let G = (N;Si; ui; i 2 N) be a potential game where the sets
Si are compact and the payo� functions ui are continuous. If the best reply func-
tion of every player is single valued and continuous, and the Nash equilibrium
is unique, the game G is sequentially stable.

Proof. (sketch) For any sequential b.r. dynamics st if st 6= st+1, we have
P (st) < P (st+1).If the sequence st has more than one limit point, one construc-
tas a cycle of the sequential best reply dynamics, which contradicts the fact that
P strictly increases along such dynamics. Thus st converges, and by continuity
of P it must be a coordinate-wise maximum of P , namely a Nash equilibrium.

Example 20 public good provision by voluntary contributions
Each player i contributes an amount of input si toward the production of a
public good, at a cost Ci(si). The resulting level of public good is B(

P
i si) =

B(sN ). Hence the payo� functions

ui = B(sN )� Ci(si) for i = 1; � � � ; n
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The potential function is

P (s) = B(sN )�
X
i

Ci(si)

therefore existence of a Nash equilibrium is guaranteed if B;Ci are continuous
and the potential is bounded over RN+ .
Remark The public good provision model is a simple and compelling argu-

ment in favor of centralized control of the production of pure public goods. To
see that in equilibrium the level of production is grossly ine�cient, assume for
simplicity identical cost functions Ci(si) =

1
2s
2
i and B(z) = z. The unique Nash

equilibrium is s�i = 1 for all i, yielding total utilityX
i

ui(s
�) = nB(s�N )�

X
i

Ci(s
�
i ) = n

2 � n
2

whereas the outcome maximizing total utility is esi = n, bringingPi ui(es) = n3

2 ,
so each individual equilibrium utility is less than 2

n of its "utilitarian" level.

The much more general version of Example 20 where the common bene�t
is an arbitrary function B(s) = B(s1; � � � ; sn), remains a potential game for
P = B �

P
i Ci; therefore existence of a Nash equilibrium is still guaranteed.

See Example 8 and Problem 7 for two alternative choices of B, respectively
B(s) = min si and B(s) = max si.

Example 21 congestion games
These games generalize both Pigou's model (Example 3) and Schelling's

model (Example 18). Each player i chooses from the same strategy set and her
payo� only depends upon the number of other players making the same choice.
Examples include choosing a travel path between a source and a sink when delay
is the only consideration, choosing a club for the evening if crowding is the only
criteria, and so on.
Si = S for all i; ui(s) = fsi(nsi(s)) where nx(s) = jfj 2 N jsj = xgj and fx

is arbitrary. If f is decreasing, we have a negative congestion externality, as in
tra�c examples. If f is increasing we have the opposite e�ect where we want
more players to choose the same strategy as our own, as in the club example.
In the latter we can also think of f as single-peaked (some crowding is good, up
to a point).
Here the potential function is

P (s) =
X
x2S

nx(s)X
m=1

fx(m)

See Problems 16 to 19 for illustrations and variants.

2.3 problems on chapter 2

Problem 1
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In Schelling's model (example 18) �nd the Nash equilibrium outcomes and an-
alyze their stability in the following cases:
a) a(t) = 8t(1� t); b(t) = t
b) a(t) = 8t(1� t); b(t) = 1� t
c) a(t) = 8t(1� t); b(t) = 1

2

Problem 2 Games of timing (De�nition 20)
a) We have two players, a and b both increase, are continuous, and a intersects
b from below only once. Perform the successive elimination of (weakly and
strictly) dominated strategies, and �nd all Nash equilibria. Can they be Pareto
improved?
b) We extend the war of attrition (example 7) to n players. If player i stops
the clock �rst at time t, his payo� is ui = a(t), that of all other players is
uj = b(t). Both a and b are continuous and decreasing, a(t) < b(t) for all t, and
b(1) < a(0). Answer the same questions as in a).
c) We have n players as in question b), but this time a increases, b decreases,
and they intersect.

Problem 3 Example 13 continued
The interval [0; 1] is a nonhomogeneous cake to be divided between two players.
The utility of player 1 for a share A � [0; 1] is v1(A) =

R
A

�
3
2 � x

�
dx: The

utility of player 2 for a share B � [0; 1] is v2(B) =
R
B

�
1
2 + x

�
dx: When time

runs from t = 0 to t = 1; a knife is moved at the speed 1 from x = 0 to x = 1.
Each player can stop it at any time. If the knife is stopped at time t by player
i; this player gets the share [0; t], while the other player gets the share [t; 1].
Analyze the game as in Example 13. What strategic advice would you give

to each player? Distinguish the two cases where this player knows his opponent's
utility and that where she does not.

Problem 4
One hundred people live in the village, of whom 51 support the conservative
candidate and 49 support the liberal candidate. A villager gets utility +9 if her
candidate wins, -11 if her candidate looses, and 0 if they are tied. In addition,
she gets a disutility of -1 for actually voting, but no disutility for staying home
(so if her canddate wins and she voted, net utility is 10, etc..).
a) Why it is not Nash equilibrium for everybody to vote?
b) Why it is not Nash equilibrium for nobody to vote?
c) Find a Nash equilibrium where all conservatives use the same strategy, and
all liberals use the same strategy.
d) What can you say about other possible Nash equilibria of this game?

Problem 5 third price auction
We have n bidders, n � 3, and bidder i's valuation of the object is ui. Bids are
independent and simultaneous. The object is awarded to the highest bidder at
the third highest price. Ties are resolved just like in the Vickrey auction, with
the winner still paying the third highest price. We assume for simplicity that
the pro�le of valuations is such that u1 > u2 > u3 � ui for all i � 4.
a) Find all Nash equilibria.
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b) Find all dominated strategies of all players and all Nash equilibria in undom-
inated strategies.
c) Is the game dominance-solvable?

Problem 6 tragedy of the commons
A pasture produces 100 units of grass, and a cow transforms x units of grass

into x units of meat (worth $x), where 0 � x � 10, i.e., a cow eats at most 10
units of grass. It cost $2 to bring a cow to and from the pasture (the pro�t from
a cow that stays at home is $2). Economic e�ciency requires to bring exactly
10 cows to the pasture, for a total pro�t of $80. A single farmer owning many
cows would do just that.
Our n farmers, each with a large herd of cows, can send any number of cows

to the commons. If farmer i sends si cows, sN cows will share the pasture and
each will eat minf 100sN ; 10g units of grass.
a) Write the payo� functions and show that in any Nash equilibrium the

total number sN of cows on the commons is bounded as follows

50
n� 1
n
� 1 � sN � 50

n� 1
n

+ 1

b) Deduce that the commons will be overgrazed by at least 150% and at most
400%, depending on n, and that almost the entire surplus will be dissipated in
equilibrium. (Hint: start by assuming that each farmer sends at most one cow).

Problem 7 a public good provision game.
The common bene�t function is B(s) = maxj sj : a single contributor is enough.
Examples include R&D, ballroom dancing (who will be the �rst to dance) and
dragon slaying (a lone knight must kill the dragon). Costs are quadratic, so the
payo� functions are

ui(s) = max
j
sj �

1

2�i
s2i

where �i is a positive parameter di�erentiating individual costs.
a) Show that in any Nash equilibrium, only one agent contributes.
b) Show that there are p such equilibria, where p is the number of players i such
that

�i �
1

2
max
j
�j

c) Compute strictly dominated strategies for each player. For what pro�les (�i)
is our game (strictly) dominance-solvable?

Problem 8 the lobbyist game
The two lobbyists choose an 'e�ort' level si; i = 1; 2, measured in money (the
amount of bribes distributed) and the indivisible prize worth $a is awarded ran-
domly to one of them with probabilities proportional to their respective e�orts
(if the prize is divisible, no lottery is necessary). Hence the payo� functions

ui(s) = a
si

s1 + s2
� si if s1 + s2 > 0;ui(0; 0) = 0
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a) Compute the best reply functions and show there is a unique Nash equilib-
rium.
b) Perform the successive elimination of strictly dominated strategies, and check
the game is not dominance-solvable. However, if we eliminate an arbitrarily
small interval [0; "] from the strategy sets, the reduced game is dominance solv-
able.
c) Show that the Nash equilibrium (of the full game) is strongly stable.

Problem 9
Two players share a well producing x liters of water at a cost C(x) = 1

2x
2.

Player i requests xi liters of water, and the cost C(x1 + x2) of pumping the
total demand of water is divided in proportion to individual demands: player i

pays xi
C(x1+x2)
x1+x2

.
Player i's utility for xi liters of water at cost ci is

vi(xi) = 84 log(1 + xi)� ci

a) Write the normal form of the game where each player chooses independently
how much water to request.
b) Compute the quantities minxj maxxi ui(xi; xj) and �nd the Nash equilib-

rium outcome. Show it is unique.
c) Is the Nash equilibrium outcome Pareto optimal? If not, compute the

outcome maximizing total utility and compute the welfare loss at the equilibrium
outcome.
d) Perform the successive elimination of strictly dominated strategies and

comment on the result.

Problem 10
a) Prove Proposition 24.
b) Prove the statement discussed two paragraphs later. Given a game (N;Si; ui; i 2
N) with �nite strategy sets, we write S1N = \1t=1StN for the result of the succes-
sive elimination of strictly dominated strategies. Consider any �nite decreasing
sequence RtN � SN such that R0N = SN and Rt+1i � Ui(RtN ) for all i and t.
Then show that (RTN )

1 = S1N .
c) Prove Proposition 31.

Problem 11
There are 10 locations with values 0 < a1 < a2 < ::: < a: Player i (i = 1:2) has
ni < 10 soldiers and must allocate them among the locations (no more then one
soldier per location). The payo� at location p is ap to the player whose soldier
is unchallenged, and �ap to his opponent; if they both have a soldier at location
p, or no one does, the payo� is 0. The total payo� of the game is the sum of all
locational payo�s.
Show that this game has a unique equilibrium in dominant strategies. What if
some ap are equal?

Problem 12 price competition
The two �rms have constant marginal cost ci; i = 1; 2 and no �xed cost. They
sell two substitutable commodities and compete by choosing a price si; i = 1; 2.
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The resulting demands for the 2 goods are

Di(s) = (
sj
si
)�i

where �i > 0. Show that there is an equilibrium in dominant strategies and
discuss its stability.

Problem 13 examples of best reply dynamics
a) We have a symmetric two player game with Si = [0; 1] and the common best
reply function

br(s) = minfs+ 1
2
; 2� 2sg

Show that we have three Nash equilibria, all of them locally unstable, even for
the sequential dynamics.
b) We have three players, Si = R for all i, and the payo�s

u1(s) = �s21 + 2s1s2 � s22

u2(s) = �9s22 + 6s2s3 � s23
u3(s) = �16s21 � 9s22 � s23 + 24s1s2 � 6s2s3 + 8s1s3

Show there is a unique Nash equilibrium and compute it. Show the sequential
best reply dynamics where players repeatedly take turns in the order 1; 2; 3 does
not converge to the equilibrium, whereas the dynamics where they repeatedly
take turns in the order 2; 1; 3 does converge from any initial point. What about
the myopic adjustment where each player uses his best reply at each turn?

Problem 14 stability analysis in two symmetric games
a) This symmetrical n-person game has the strategy set Si = [0;+1[ for all i
and the payo� function

u1(s) = s2s3 � � � sn(s1e�(s1+s2+���+sn) � 1)

(other payo�s deduced by the symmetry of the game).
Find all dominated strategies if any, and all Nash equilibria (symmetric or not)
in pure strategies. Is this a potential game? Discuss the stability of the best
reply and sequential best reply dynamics in this game.
b) Answer the same questions as in a) for the following symmetric game with
the same strategy sets:

u1(s) = s2s3 � � � sn(2e�(s1+s2+���+sn) + s1)

Problem 15
Consider the following N players game. The set of pure strategies for each
player is Ci = f1; :::; Ng, thus the game consists in each player announcing
(simultaneously and independently) an integer between 1 and N . To each pair
of players i; j corresponds a number vij(= vji); interpreted as the utility both
players could derive from being together (note that vij can be negative). Players
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are together if and only if they announce the same number. Thus, the payo� to
each player i is the sum of vij over all players j who announced the same number
as i: Prove that this game is a potential game and �nd all Nash equilibria.

Problem 16 Congestion (variant of Example 3)
We have n agents who travel from A to B at the same time. Agent i can

use a private road at cost ci = i (that does not depend upon other agents'
actions), or use the public road. If k agents travel on that road, they each pay
a congestion cost k.
a) Describe the Nash equilibrium outcome (or outcomes) of this game.
b) Is this (are these) equilibrium outcome (s) Pareto optimal? Does it max-

imize total surplus? If not, compute the fraction of the e�cient surplus wasted
in equilibrium.
c) Show this is a potential game. Discuss the stability of the equilibrium

outcome(s). Is the game dominance solvable (strictly or weakly)?
d) Now the private costs ci are arbitrary numbers s.t. 1 � ci � n. Answer

questions a) and c) above.

Problem 17 Cost sharing
We have n agents labeled 1; 2; � � � ; n, who want to send a signal from A to B.

Agent i can send her message via a private carrier at cost ci =
1
i (independently

of other agents' choices), or use the public link. If k agents use the public link,
they each pay 1

k .
a) Show that there is one Pareto inferior Nash equilibrium outcome and

one Pareto optimal one. Show that the game is a potential game. Discuss the
stability of these equilibrium outcomes.
c) Variant: the public link costs 1+"k to each user, where " is a small positive

number. Show that the game is now strictly dominance solvable. Compute the
ine�ciency loss, i.e., the ratio of the total cost in equilibrium to the e�cient
(minimal) cost of sending all messages.
e) Now the private costs ci are arbitrary numbers s.t. 0 � ci � 1. Find the

Nash equilibrium or equilibria, discuss their e�ciency and whether the game is
a potential game, or is dominance solvable.

Problem 18 more congestion games
We generalize the congestion games of Example 21. Now each player chooses
among subsets of a �xed �nite set S, so that si � 2S . The same congestion
function fx(m) applies to each element x in S. The payo� to player i is

ui(s) =
X
x2si

fx(nx(s)) where nx(s) = jfj 2 N jx 2 sjgj

Interpretation: each commuter chooses a di�erent route (origin and destination)
on a common road network represented by a non oriented graph. Her own delay
is the sum of the delays on all edges of the network.
Show that this game is still a potential game.

Problem 19 A di�erent congestion game
There aremmen and n women who must choose independently which one of two
discos to visit. Let na; nb be the number of women choosing to visit respectively
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disco A and disco B, and de�ne similarly ma;mb. Each player only cares about
the number of visitors of the opposite gender at the disco he or she visits.
a) Assume �rst the following payo� functions:

ui = nx if i is a man choosing disco X; vj = mx if j is a woman choosing disco X

Discuss the Nash equilibria of the game and their stability (strong and weak).
It will help to show �rst that this game is a potential game.
b) Now the strategies of the m+ n players are the same but the payo�s are:

ui = nx if i is a man choosing disco X; vj = �mx if j is a woman choosing disco X

In other words men want to be in the disco with more women, while women
seek the disco with fewer men (remember this is a theoretical example).
Discuss the Nash equilibria of the game and their stability (strong and weak).
Show that this game is not a potential game.

Problem 20 ordinal potential games
Let � be the sign function �(0) = 0; �(z) = 1 if z > 0;= �1 if z < 0. Call
a game G = (N;Si; ui; i 2 N) an ordinal potential game if there exists a real
valued function P de�ned on SN such that for all i and s�i 2 S�i we have

�fui(si; s�i)� ui(s0i; s�i)g = �fP (si; s�i)� P (s0i; s�i)g for all si; s0i 2 Si

a)Show that the following Cournot oligopoly game is an ordinal potential game.
Firm i chooses a quantity si, and D

�1 is the inverse demand function. Costs
are linear and identical:

ui(s) = siD
�1(sN )� csi for all i and all s

b) Show that Proposition 33 still holds for ordinal potential games.

Problem 21 Cournot duopoly with increasing or U-shaped returns
In all three questions the duopolists have identical cost functions C.
a) The inverse demand is D�1(q) = (150� q)+ and the cost is

C(q) = 120q � 2
3
q2 for q � 90;= 5; 400 for q � 90

Show that we have three equilibria, two of them strongly locally stable.
b) The inverse demand is D�1(q) = (130� q)+ and the cost is

C(q) = minf50q; 30q + 600g

Compute the equilibrium outcomes and discuss their stability.
c)The inverse demand is D�1(q) = (150� q)+ and the cost is

C(q) = 2; 025 for q > 0;= 0 for q = 0

Show that we have three equilibria and discuss their stability.

Problem 22 Cournot oligopoly with linear demand and costs
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The inverse demand for total quantity q is

D�1(q) = p(1� q
q
)+

where p is the largest feasible price and q the supply at which the price falls to
zero. Each �rm i has constant marginal cost ci and no �xed cost.
a) If all marginal costs ci are identical, show there is a unique Nash equilibrium,
where all n �rms are active if p > c, and all are inactive otherwise.
b) If the marginal costs ci are arbitrary and c1 � c2 � � � � � cn, let m be zero
if p � c1 and otherwise be the largest integer such that

ci <
1

m+ 1
(p+

iX
1

ck)

Show that in a Nash equilibrium outcome, exactly m �rms are active and they
are the lowest cost �rms.

Problem 23 Hoteling competition in location
The consumers are uniformly spread on [0; 1], and each wants to buy one unit.
Each �rm charges the �xed exogenous price p and chooses its location si in the
interval. Production is costless. Once locations are �xed, each consumer shops
in the nearest store. The tie-breaking rule: the demand is split equally between
all stores choosing the same location
a) Show that with two competing stores, the unique Nash equilibrium is that
both locate in the center. Show the game is not dominance-solvable. However,
it is dominance solvable if each �rm must locate in one of the n + 1 points
0; 1n ;

2
n ; � � � ; 1.

b) Show that with three competing stores, the game has no Nash equilibrium.
c) Show that with four competing stores, the game has a Nash equilibrium. Is
it unique?
d) What is the situation with �ve stores?

Problem 24 Hoteling competition in location: probabilistic choice
a) Two stores choose a location on the interval [0; 100]. Customers are uniformly
distributed on this interval, with at most a unit demand, and will shop from
the nearest store if at all. If the distance between a customer and the store is
t, he will buy with probability p(t) = 2p

t+4
. Thus if a store is located at 0 and

is the closest store to all customers in the interval [0; x], it will get from these
customers the revenue

r(x) =

Z x

0

p(t)dt = 4
p
x+ 4� 8

Stores maximize their revenues. Analyze the competition between the two stores
and compute their equilibrium locations. Compare them to the collusive out-
come, namely the choice of locations maximizing the total revenue of the two
stores.
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b) Generalize the model of question a). Now p(t) is unspeci�ed and so is its
primitive r(t). We assume that p is continuous, strictly positive, and strictly
decreasing from p(0) = 1.
Under what condition on p do both stores locate at the midpoint in the Nash
equilibrium of the game?
Show that if in equilibrium the stores choose di�erent locations, they will never
locate on [0; 25] or [75; 100].

Problem 25 Hoteling competition in prices: two �rms
The 1000 consumers are uniformly spread on [0; 3] and each wants to buy one
unit and has a very large reservation price. The two �rms produce costlessly
and set arbitrary prices si. Once these prices are set consumers shop from the
cheapest �rm, taking into account the unit transportation cost t. A consumer
at distance di from �rm i buys

from �rm 1 if s1 + td1 < s2 + td2, from �rm 2 if s1 + td1 > s2 + td2

(the tie-breaking rule does not matter)
a) If the �rms are located at 0 and 3, show that there is a unique Nash equilib-
rium pair of prices. Is it strongly/sequentially stable?
b) If the �rms are located at 1 and 2, show that there is no Nash equilibrium
(hint: check �rst that a pair of two di�erent prices can't be an equilibrium).

Problem 26 Hoteling competition in prices: three �rms
The consumers are uniformly spread over the interval [0; 3] and each wants to
buy one unit of the identical good produced by the three �rms. The �rms are
located respectively at 0; 1 and 3 and they produce costlessly. The transporta-
tion cost is 1 per unit. As usual consumers shop at the �rm where the sum of
the price and the transportation cost is smallest.
a) Write the strategic form of the game where the three �rms choose the prices
s1; s2; s3 respectively.
b) Show that the game has a unique Nash equilibrium and compute it.
c) Is the equilibrium computed in b) strongly/sequentially stable?.

Problem 27 price war
Two duopolists (a la Bertrand) have zero marginal cost and capacity c. The
demand d is inelastic, with reservation price p. Assume c < d < 2c. We also �x
a small positive constant " (" < p

10 ).
The game is de�ned as follows. Each �rm chooses a price si; i = 1; 2 such that
0 � si � p. If si � sj � ", �rm i sells its full capacity at price si and �rm j sells
d � c at price sj . If jsi � sj j < " the �rms split the demand in half and sell at
their own price (thus " can be interpreted as a transportation cost between the
two �rms). To sum up

u1(s) = cs1 if s1 � s2 � "
= (d� c)s1 if s1 � s2 + "

=
d

2
s1 if s2 � " < s1 < s2 + "
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with a symmetric expression for �rm 2.
Set p� = d�c

c p and check that the best reply correspondence of �rm 1 is

br1(s2) = p if s2 < p
� + "

= fp; p�g if s2 = p� + "
= s2 � " if s2 > p� + "

Show that the game has no Nash equilibrium, and that the sequential best reply
dynamics describes a cyclical price war.

Problem 28 Bertrand duopoly
The �rms sell the same commodities and have the same cost function C(q), that
is continuous and increasing. They compete by setting prices si; i = 1; 2. The
demand function D is continuous and decreasing. The low price �rm captures
the entire demand; if the 2 prices are equal, the demand is equally split between
the 2 �rms. Hence the pro�t function for �rm 1

u1(s) = s1D(s1)� C(D(s1)) if s1 < s2; = 0 if s1 > s2

=
1

2
s1D(s1)� C(

D(s1)

2
) if s1 = s2

and the symmetrical formula for �rm 2.
a) Show that if s� is a Nash equilibrium, then s�1 = s

�
2 = p and

AC(
q

2
) � p � 2AC(q)�AC(q

2
)

where q = D(p) and AC(q) = C(q)
q is the average cost function.

b) Assume increasing returns to scale, namely AC is (strictly) decreasing. Show
there is no Nash equilibrium s� = (p; p) where the corresponding production q
is positive. Find conditions on D and AC such that there is an equilibrium with
q = 0.
c) In this and the next question assume decreasing returns to scale, i.e., AC
is (strictly) increasing. Show that if s� = (p; p) is a Nash equilibrium, then
p� � p � p+ where p� and p+ are solutions of

p� = AC(
D(p�)

2
) and p+ = 2AC(D(p+))�AC(

D(p+)

2
)

Check that the �rms have zero pro�t at (p�; p�) but make a positive pro�t at
(p+; p+) if p� < p+. Hint: draw on the same �gure the graphs of D

�1(q); AC( q2 )and
2AC(q)�AC( q2 ).
d) To prove that the pair (p+; p+) found in question c) really is an equilibrium we
must check that the revenue function R(p) = pD(p)�C(D(p)) is non decreasing
on [0; p+]. In particular p+ should not be larger than the monopoly price.
Assume C(q) = q2, D(p) = (�� �p)+ and compute the set of Nash equilib-

rium outcomes, discussing according to the parameters �; �.

Problem 29
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In the game G = (N;Si; ui; i 2 N) we write

�i = max
si
min
s�i

ui(si; s�i);�i = min
s�i

max
si
ui(si; s�i)

and assume the existence for each player of a prudent strategy si, namely �i =
mins�i ui(si; s�i).
a) Assume � = (�i)i2N is a Pareto optimal utility pro�le: there exists es 2 SN
such that

� = u(es) and for all s 2 SN : fu(s) � u(es)g ) u(s) = u(es)
Show that � = � and that any pro�le of prudent strategies is a Nash equilibrium.
Then we speak of an inessential game.
b) Assume that the strategy sets Si are all �nite, and � = (�i)i2N is a Pareto
optimal utility pro�le. Show that if each function ui is one-to-one on SN then
the outcome es such that � = u(es) is a Nash equilibrium. Give an example of a
game with �nite strategy sets (where payo�s are not one-to-one) such that � is
Pareto optimal and yet the game has no Nash equilibrium.
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