

States of the world

- The different possibilities represent different possible states of the world that could obtain in the future
 - Think of them as alternate possible realities
- State *s*₁, in this case, represents the "blockbuster" case
 - $-c_1$ represents consumption in that state
- State *s*₂ represents the bankruptcy case - *c*₂ represents consumption in that state
- Represent graphically as follows

Econ 370 - Uncertainty

- We usually make our usual assumptions about choices of uncertain bundles
 - Complete
 - Transitive
 - Monotonicity
- These give us preferences over uncertain choices much like we have been analyzing all along
- If we make a couple of additional assumptions we can represent the utility function in a particularly useful way

```
Econ 370 - Uncertainty
```


Uniqueness

- The "utility of consumption" function, u(c), is unique only up to a linear transformation
- That is any function:
- v(c) = a + bu(c)
- will produce the exact same set of preferences

Econ 370 - Uncertainty

Budget Line (Continued)

• We had

 $-c_2^{\ l} = \$300,000 + (k-1)(\$500,000 - c_1^{\ l})$

- Rearranging gives us - $(k-1)c_1^l + c_2^l = $300,000 + $500,000(k-1)$
- If we define $k = 1 / \gamma$, then this modifies to - $(1 - \gamma)c_1^{\ l} + \gamma c_2^{\ l} = \$300,000\gamma + \$500,000(1 - \gamma)$
- If we let π represent the probability of the fire, we can rewrite this as

 $- (1 - \gamma)c_1^{\ l} + \gamma c_2^{\ l} = \text{EV} - \$200,000(\gamma - \pi)$

23

"Fair" Insurance

- "Fair" Insurance is defined as a policy that moves you along the "fair-odds" line
- Alternatively, "Fair" Insurance does not change the expected value of the outcomes—just the distribution of consumption levels across states
- That is, $\gamma = \pi$
- And the budget line is $-(1-\pi)c_1^{\ l} + \pi c_2^{\ l} = \text{EV}$

Econ 370 - Uncertainty

"Unfair" Insurance

