

Effects of a Price Decrease

- Can be broken down into two components
- Income effect
- When the price of one goods falls, w/ other constant;
- Effectively like increase in consumer's real income
- Since it unambiguously expands the budget set
- Income effect on demand is positive, if normal good
- Substitution effect
- Measures the effect of the change in the price ratio;
- Holding some measure of 'income' or well being constant
- Consumers substitute it for other now relatively more expensive commodities
- That is, Substitution effect is always negative
- Two decompositions: Hicks, Slutsky

Hicks and Slutsky Decompositions

- Hicks
- Substitution Effect: change in demand, holding utility constant
- Income Effect: Remaining change in demand, due to m change
- Slutsky
- Substitution Effect: change in demand, holding real income constant
- Income Effect: Remaining change in demand, due to m change

Hicks Substitution and Income Effects

- Due to Sir John Hicks (1904-1989; Nobel 1972)
- To get Substitution Effect: Hold utility constant and find bundle that reflects new price ratio
- Substitution Effect = change in demand due only to this change in price ratio (movement along IC)
- Income Effect = remaining change in demand to get back to new budget constraint (parallel shift)

x_{2}	Given a drop in Price: Insert an "imaginary" budget line tangent to original IC and parallel to new budget line	
Substitution Effect		x_{1}
Econ 370- ordinal Utility		

Slutsky Substitution and Income Effects

- Due to Eugene Slutsky (1880-1948)
- To get Substitution Effect: Hold purchasing power constant
- (that is, adjust income so that the consumer can exactly afford the original bundle)
- and find bundle that reflects new price ratio
- Substitution Effect = change in demand due only to this change in price ratio (movement along IC)
- Income Effect = remaining change in demand to get back to new budget constraint (parallel shift)

Signs of Substitution and Income Effects

- Sign of Substitution Effect is unambiguously negative as long as Indifference Curves are convex
- Income effect may be positive or negative
- That is, the good may be either normal or inferior
- For Normal goods, the income effect reinforces the substitution effect
- For Inferior goods, the two effects offset
- For Giffen Goods
- Remember, the Income effect is Negative
- And the income effect is greater than the substitution effect

Slutsky's Effects for Inferior Goods	
Econ 370 - Ordinal Utility	12

Mathematics of Slutsky Decomposition

- We seek a way to calculate mathematically the Income and Substitution Effects
- Assume:
- Income: m
- Initial prices: p_{1}^{0}, p_{2}
- Final prices: $p_{1}{ }^{1}, p_{2}$
- Note that the price of good two, here, does not change
- Given the demand functions, demands can be readily calculated as:
- Initial demands: $x_{i}^{0}=x_{i}\left(p_{1}{ }^{0}, p_{2}, m\right)$
- Final demands: $x_{i}{ }^{l}=x_{i}\left(p_{1}{ }^{l}, p_{2}, m\right)$

Econ 370 - Ordinal Utility

Slutsky Mathematics (cont)

- We need to calculate an intermediate demand that holds buying power constant
- Let m^{s} the income that provides exactly the same buying power as before at the new price
- Thus: $m^{s}=p_{1}{ }^{l} x_{1}{ }^{0}+p_{2} x_{2}{ }^{0}$
- The demand associated with this income is:

$$
-x_{i}^{s}=x_{i}\left(p_{1}{ }^{l}, p_{2}, m^{s}\right)=x_{i}^{s}\left(p_{1}{ }^{l}, p_{2}, x_{1}{ }^{0}, x_{2}{ }^{0}\right)
$$

- Finally we have:
- Substitution Effect:
$\mathrm{SE}=x_{i}^{s}-x_{i}^{0}$
- Income Effect:
$\mathrm{IE}=x_{i}{ }^{l}-x_{i}^{s}$

Hicks' Mathematics

- The only difference is between Hicks’ and Slutsky is in the calculation of the intermediate demand
- Let m^{h} the income that provides exactly the same utility as before at the new price
- If u^{0} is initial utility level, then
- Thus: m^{h} solves $u^{0}=u\left(x_{1}\left(p_{1}^{l}, p_{2}, m^{h}\right), x_{2}\left(p_{1}{ }^{l}, p_{2}, m^{h}\right)\right)$
- The demand associated with this income is:
$-x_{i}^{h}=x_{i}\left(p_{1}{ }^{1}, p_{2}, m^{h}\right)=x_{i}^{h}\left(p_{1}{ }^{l}, p_{2}, u^{0}\right)$
- Finally we have:
$\begin{array}{ll}\text { - Substitution Effect: } & \mathrm{SE}=x_{i}^{h}-x_{i}^{0} \\ \text { - Income Effect: } & \mathrm{IE}=x_{i}^{l}-x_{i}^{h}\end{array}$

Econ 370 - Ordinal Utility

$$
\begin{align*}
& \text { Calculating the Slutsky Decomposition } 2 \\
& \text { Since } m^{s}=\left[\alpha \frac{p_{x}^{1}}{p_{x}^{0}}(1-\alpha)\right]^{m} \\
& \text { We get: } \\
& x^{s}=\alpha \frac{m^{s}}{p_{x}^{1}}=\alpha \frac{m}{p_{x}^{1}}\left[\alpha \frac{p_{x}^{1}}{p_{x}^{1}}+(1-\alpha)\right]=\alpha^{2} \frac{m}{p_{x}^{0}}+\alpha(1-\alpha) \frac{m}{p_{x}^{1}} \\
& \text { or } \quad x^{s}=\alpha x^{0}+(1-\alpha) x^{1} \\
& \text { Finally, we get: } \\
& S E=x^{s}-x^{0}=\alpha x^{0}+(1-\alpha) x^{1}-x^{0}=(1-\alpha)\left(x^{1}-x^{0}\right) \\
& I E=x^{1}-x^{s}=x^{1}-\left\lfloor\alpha x^{0}+(1-\alpha) x^{1}\right]=\alpha\left(x^{1}-x^{0}\right) \tag{18}
\end{align*}
$$

Econ 370 - Ordinal Utility

Calculating the Hicks Decomposition
We need to calculate m^{h}, so
Substituting our demand functions back into utility we get:
$u=x^{\alpha} y^{1-\alpha}=\left(\alpha \frac{m}{p_{x}}\right)^{\alpha}\left((1-\alpha) \frac{m}{p_{y}}\right)^{1-\alpha}=\left(\frac{\alpha}{p_{x}}\right)^{\alpha}\left(\frac{1-\alpha}{p_{y}}\right)^{1-\alpha}{ }_{m}$
Then m^{h} solves: $\left(\frac{\alpha}{p_{x}^{1}}\right)^{\alpha}\left(\frac{1-\alpha}{p_{y}}\right)^{1-\alpha} m^{h}=\left(\frac{\alpha}{p_{x}^{0}}\right)^{\alpha}\left(\frac{1-\alpha \alpha}{p_{y}}\right)^{1-\alpha}{ }_{m}$
or $\quad m^{h}=\left(\frac{p_{x}^{1}}{p_{x}^{0}}\right)^{\alpha}{ }^{m}$

$$
\begin{aligned}
& \text { Calculating the Hicks Decomposition } 2 \\
& \text { Since } \quad m^{h}=\left(\frac{p_{x}^{1}}{p_{x}^{0}}\right)^{\alpha} m \\
& \text { We get: } \\
& x^{h}=\alpha \frac{m^{h}}{p_{x}^{1}}=\alpha \frac{m}{p_{x}^{1}}\left(\frac{p_{x}^{1}}{p_{x}^{0}}\right)^{\alpha}=\alpha \frac{m}{\left(p_{x}^{0}\right)^{\alpha}\left(p_{x}^{1}\right)^{1-\alpha}}
\end{aligned}
$$

Finally, we get:

$$
S E=x^{s}-x^{0}=x^{1}\left(\frac{p_{x}^{1}}{p_{x}^{0}}\right)^{\alpha}-x^{0} \quad I E=x^{1}-x^{s}=x^{1}-x^{1}\left(\frac{p_{x}^{1}}{p_{x}^{0}}\right)^{\alpha}
$$

Econ 370 - Ordinal Utility

Demand Curves	
- We have already met the Marshallian demand curve - It was demand as price varies, holding all else constant - There are two other demand curves that are sometimes used - Slutsky Demand - Change in demand holding purchasing power constant - The function $x_{i}^{s}=x_{i}\left(p_{1}{ }^{l}, p_{2}, m^{s}\right)$ we just defined - Hicks Demand - Change in demand holding utility constant - The function $x_{i}{ }^{h}=x_{i}\left(p_{1}{ }^{l}, p_{2}, m^{h}\right)$ we just defined	
Econ 370 - Ordinal Uuility	21

Demand Curves (cont)

- We mentioned before that with Giffen Goods, the Marshallian demand curve slopes upward
- However,
- Since the substitution effect is always negative, Then
- Both the Slutsky and Hicks Demands always slope downward—even with Giffen Goods
- Change in demand holding purchasing power constant
- The function $x_{i}^{s}=x_{i}\left(p_{1}{ }^{l}, p_{2}, m^{s}\right)$ we just defined

Hicks Demand

- Change in demand holding utility constant
- The function $x_{i}{ }^{h}=x_{i}\left(p_{1}{ }^{l}, p_{2}, m^{h}\right)$ we just defined

Demand Curves (cont)
- We mentioned before that with Giffen Goods, the
Marshallian demand curve slopes upward
- However,
- Since the substitution effect is always negative, Then - Both the Slutsky and Hicks Demands always slope downward-even with Giffen Goods
Econ 370 - Ordinal Utility

