

Game Theory: Introduction

- Game theory
- A means of modeling strategic behavior
- Agents act to maximize own welfare
- Agents understand their actions affect actions of other agents

Game Theory: Applications

- Game theory has been applied to analyze
- Oligopolies

Game Theory: Overview

- A game consists of
- a set of players (often two)
- Cartels: OPEC
- a set of strategies for each player
- Tax competition across jurisdictions, countries
- the payoffs to each player for all combinations of possible strategy choices by the players
- Externalities: using common resources like fishery

Two-Player Game: Example

- Players are A and B
- A has two strategies: "Up" and "Down"
- B has two strategies: "Left" and "Right"
- Payoff matrix - table showing payoffs to A and B for each of four possible strategy combinations

Econ 370 - Game Theory

Two-Player Game: Matrix	
Payoff matrix for game	
Player A Player B	
If A plays 'D', what will B do?	
Econ 370 - Game Theory	

Nash Equilibrium: Introduction

- Nash equilibrium
- a play where each strategy is a best response to the other
- Can be multiple Nash equilibria
- Example has two Nash equilibria
- (U,L) and
- (D,R)

Econ 370 - Game Theory

- (U,L) and (D,R) are both Nash equilibria
- But (U, L) is preferred to (D, R) by both A \& B
- (U,L) is Pareto preferred to (D,R)
- Is (U,L) the only (likely) equilibrium?
- NO

Econ 370 - Game Theory

Sequential Games

- Thus far, simultaneous play games
- Both players choose strategies simultaneously
- Sequential play games
- One player plays before the other player
- Leader - player who plays first
- Follower - player who plays second
- May be possible to choose among alternative Nash equilibria

Sequential Game: Extensive Form	
A plays first	
B plays second	
(3,9) (1,8) (0,0) (2,1)	
• Solution proceeds from the end to the beginning	
- Then "What will A do knowing how B will react?"'	
Econ 370 - Game Theory	

Mixed Strategies

- Thus far, all "pure" strategies
- Players choose a single strategy
- E.g., player A plays only U or only D
- Alternative: Mixed strategies
- Choose combination of stratgies
- Example: A chooses
- U with probability 0.25 and
- D with probability 0.75

Mixed Strategies: Player A

- Suppose Player A chooses mixed strategy
- with probability π_{U} Player A plays Up, and
- with probability $1-\pi_{U}$ Player A plays Down
- I.e., mixing pure strategies
- Mixed strategy has probability distribution
- $\left(\pi_{U}, 1-\pi_{U}\right)$
- Do pure strategy Nash equilibria exist?
- No

Econ 370 - Game Theory

Mixed Strategies: Player B

- Similarly, Player B has mixed strategy with probability distribution $\left(\pi_{L}, 1-\pi_{L}\right)$
- with probability π_{L} Player B plays Left and
- with probability $1-\pi_{L}$ Player B plays Right
- Nash Equilibrium in Mixed Strategies
- Each player chooses optimal probabilities, given opponent's probabilities
- Each set of expectations satisfied in eq'm.

Mixed Strategies

- Assuming players are risk-neutral
- They will pick the alternative with the highest expected value
- If they are randomizing
- Then they do not clearly prefer one option to another
- That is, Expected Values of both alternatives must be equal
- Assume both players randomize
- Player A plays alternative U with probability μ
- Player B plays alternative L with probability λ

Econ 370 - Game Theory

Calculating Mixed Strategies B

For player B to be indifferent between L and R
We must have: $2 \lambda+5(1-\lambda)=4 \lambda+2(1-\lambda)$
or $\lambda=0.6$

Econ 370 - Game Theor

Expected Payoffs	
Payoff $A=\frac{3}{4} \frac{3}{5} 1+\frac{1}{4} \frac{3}{5} 0+\frac{3}{4} \frac{2}{5} 0+\frac{1}{4} \frac{2}{5} 3=0.75$ Payoff $B=\frac{3}{4} \frac{3}{5} 2+\frac{1}{4} \frac{3}{5} 4+\frac{3}{4} \frac{2}{5} 5+\frac{1}{4} \frac{2}{5} 2=3.2$	
Econ 30 - Game Theory	21

Existence of Nash Equilibrium
- Consider game with
- finite number of players
- each with a finite number of pure strategies
- Such a game has
- at least one (pure or mixed strategy) Nash equilibrium
- If no pure strategy Nash equilibrium, then must have at
least one mixed strategy Nash equilibrium

