

- Now we have all the tools we need to analyze consumer choice
- Suppose a consumer faces the constraints $-p_1x_1 + p_2x_2 \le m$ and $x_1 \ge 0, x_2 \ge 0$.
- The consumer's problem is to choose and to *maximize utility* (i.e. to attain highest possible indifference curve) s.t. the above constraints,
- That is, the consumer is choosing the *most preferred* point in the budget set.

Econ 370 - Consumer Choice

1

Finding the Optimum • We will demonstrate two methods for finding the optimal choice - MRS = p_1/p_2 - Maximizing the Utility function • (At least) one other that I will not cover: $\frac{MU_1}{p_1} = \frac{MU_2}{p_2}$ - Mathematically, it is indistinguishable from the first

Econ 370 - Consumer Choice

Example• Assume for this example that
 - Preferences are Cobb-Douglass
 $- U = x^a y^{l-\alpha}$
 - Budget constraint is $p_x x + p_y y \le m$ Econ 370 - Consumer Choice8

MRS Solution (cont)We will use x^* and y^* to represent our solution $\frac{\alpha}{1-\alpha}\frac{y^*}{x^*} = \frac{p_x}{p_y}$ (from previous page)Solving for y^* : $y^* = \frac{1-\alpha}{\alpha}\frac{p_x}{p_y}x^*$ Since all money is spent, we also have: $p_xx^* + p_yy^* = m$ So: $p_xx^* + p_y\frac{1-\alpha}{\alpha}\frac{p_x}{p_y}x^* = p_xx^* + \frac{1-\alpha}{\alpha}p_xx^* = \frac{p_xx^*}{\alpha} = m$ Econ 370 - Consumer Choice

MRS Solution (cont 2)	
Finally: If $\frac{p_x x^*}{\alpha} = m$ Then $x^* = \frac{\alpha m}{p_x}$ Substituting this into $y^* = \frac{1 - \alpha}{\alpha} \frac{p_x}{p_y} x^*$ (from before)	
Gives $y^* = \frac{(1-\alpha)m}{p_y}$	
So, our solution is: $x^* = \frac{\alpha m}{p_x}$ $y^* = \frac{(1-\alpha)m}{p_y}$	
Econ 370 - Consumer Choice	11

	Maximization (cont)	
Rem	embering our calculus, maximizing a function requires:	
	$\frac{df(x)}{dx} = 0$ and $\frac{d^2f(x)}{dx^2} \le 0$	
So	$\max\left\{x^{\alpha}\left(m-p_{x}x\right)^{1-\alpha}p_{y}^{\alpha-1}\right\}$	
⇒	$\frac{d}{dx}x^{\alpha}(m-p_xx)^{1-\alpha}p_y^{\alpha-1}=0$	
\Rightarrow	$p_{y}^{\alpha-1}\left[\alpha x^{\alpha-1}(m-p_{x}x)^{1-\alpha}-p_{x}(1-\alpha)x^{\alpha}(m-p_{x}x)^{-\alpha}\right]=0$	
Econ 370 - Cor	nsumer Choice	13

- An "interior" solution was earlier described as:
 - involving strictly positive amounts of all goods
 - And all our assumptions (A1 A4) hold
- If a solution does not meet these requirements, it is called a "Corner" Solution

17

• Other methods have to be used to solve it

Econ 370 - Consumer Choice

