

Spending and Income

- Suppose Cathy consumes two goods 1 and 2.
- Quantity of good 1 consumed is x_{1}
- Quantity of good 2 consumed is x_{2}
- Let p_{1} and p_{2} denote the prices of good 1 and good 2, respectively
- Let m be Cathy's (money) income
- The amount she spends is $p_{1} x_{1}+p_{2} x_{2}$
- Ignoring the possibility of borrowing, she cannot spends more than her income
- That is: $p_{1} x_{1}+p_{2} x_{2} \leq m$

Econ 370 - Budgets

Budget Constraint: Intercepts	
$\begin{gathered} \mathrm{x}_{2} \\ \mathrm{~m} / \mathrm{p}_{2} \end{gathered}$	Budget constraint is $p_{1} x_{1}+p_{2} x_{2}=m$ Intercepts are $\boldsymbol{m} / \boldsymbol{p}_{1}$ and $\boldsymbol{m} / \boldsymbol{p}_{2}$

Slope of the Budget Constraint
Since $p_{I} x_{1}+p_{2} x_{2}=m$
Then $\quad x_{2}=\frac{m}{p_{2}}-\frac{p_{1}}{p_{2}} x_{1}$
Or $\quad \frac{d x_{2}}{d x_{1}}=-\frac{p_{1}}{p_{2}}$
- We can interpret this as the opportunity cost of a good
- If I want more of good x_{2}, I must give up $\left(p_{1} / p_{2}\right)$ units of
good x_{1} to get it.
Econ 370- Budgest

Changes in Budgets

- What happens if:
- Income increases
- Income decreases
- Price of good 1 increases
- Price of good 2 decreases
- All prices and income increase by 10%
- We can interpret this as the opportunity cost of a good

If I want more of good x_{2}, I must give up (p_{1} / p_{2}) units of $\operatorname{good} x_{1}$ to get it

Composite Commodities

- We can only conveniently analyze two goods in a budget set diagram.
- In practice people consume a wide variety of goods.
- Often we are interested in describing how some change in price or income affects the amount of one good that can be purchased e.g. loaves of bread.
- To consider this case, it is often convenient to treat all goods other than the good that is of interest as a single composite commodity whose quantity is measured in dollars.

Composite Commodities (cont)

- Let x_{1} represent loaves of bread
- Let x_{2} represent dollars spent on everything else
- As before, we have $p_{1} x_{1}+p_{2} x_{2}=m$
- Dividing through by p_{2} we get:

$$
-\left(p_{1} / p_{2}\right) x_{1}+x_{2}=\left(m / p_{2}\right)
$$

- One conclusion of this is that we can define prices based on any numeraire we want so long as we are consistent about it
- Also note that measuring the amount of other goods in dollars is valid only if the relative prices of these other goods is not changing

Non-Linear Budget Constraints

- Not all budget constraints are linear
- People may be prohibited from buying all of a good they can afford
- Prices may (and often do) vary depending on quantity purchased
- Example: the Food Stamp Program

The Food Stamp Program

- Popular income support program
- Coupons given to poor (used to be sold)
- Can be legally exchanged only for food
- Popular with some donors
- Popular with agricultural interests

The Food Stamp Program

- If food stamp program is generous, families may be at "kink" of budget set
- What if food stamps can be traded on a black market for $\$ 0.50$ each?

Quantity-Based Prices

- Price may be a function of quantity
- Quantity discounts for large buyers
- Penalties for buying "too much"
- Budget constraints "kinked" where p changes
- Suppose quantity discount:
- p_{2} constant at $\$ 1$ and $m=100$
$-p_{1}=\$ 2$ for $0 \leq x_{1} \leq 20 ;-p_{I} / p_{2}=-2$
$-p_{1}=\$ 1$ for $x_{1}>20 ; \quad-p_{1} / p_{2}=-1$
- What does the budget set look like?

Econ 370 - Budgets

Quantity Restrictions

- Suppose as follows:
$-p_{1}=\$ 2$
$-p_{2}=\$ 1$
$-m=100$
- But not allowed to buy more than $\$ 25$ of good 1
- What does the budget set look like?

Example

- Instead of budgeting Money, let's budget time
- Erika is choosing how much time to work per week
- If she works, she earns a wage of $\$ 25$ / hour
- In addition, she has $\$ 250$ in non-wage income
- "Available" bundle must meet all relevant constraints simultaneously
- What would this budget set look like?
- Budget set is intersection of each set formed by each separate constraint

