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Short Run v. Long Run

• Short Run
– Some inputs cannot be varied by the firm
– Free-entry into the market is limited

• Long Run
– All inputs can be varied
– Free-Entry into the market is unrestricted

• Example
– Boeing and Machine Tools
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Initial Assumptions

• Firms maximize profits
– Remember: maximizing profits means MR = MC

• Competitive Firm
– The firm treats all input and output prices as fixed

• Short Run
– In particular, the firm can only vary one input
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Variables

• The SR Profit Max Problem
– Choose production plan 
– to maximize profits 
– given production function 

• Let py = price of output

• Let pi = price of input i

• Let xi = Amount of input i supplied

• Let y = F(x1, x2) = output

• Assume amount of input 2 is fixed at x̃2
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Short-Run Iso-Profit Lines: Introduction

• Iso-profit line P is
– All production plans providing profit level P 
– Whether feasible or not

• Equation is
– Π ≡ pyy – p1x1 – p2x̃2 or
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Mathematical Analysis

• Revenue R = pyy = pyF(x1, x̃2)

• Costs C = p1x1 + p2x̃2
• Since optimal production requires MR = MC:
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Comparative Statics

• What happens if py increases/decreases

• What happens if p1 increases/decreases
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Long Run

• In the long run, all factors can be changed

• It turns out, in the long run, the marginal product 
rule applies to all inputs

• That is
– For all I
– pyMPi = pi

example
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Cost Minimization

• This is a different way of getting at profit 
maximization

• This approach asks
– Given a proposed output level
– What is the most efficient (least-cost) input mix

• Cost minimization is required for profit 
maximization to occur
– Why?

• Final result is a cost function c(y, p1, p2)
– Which we usually abbreviate to c(y)
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Problem Statement

• The Cost Minimization Problem is:
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• Solution x1*(p1,p2,y) and x2*(p1,p2,y) are firm’s 
conditional demands for inputs 1, 2

• Smallest possible total cost for producing y is:
c(p1,p2,y) = p1x1*(p1,p2,y) + p2x2*(p1,p2,y) 
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Iso-Cost Lines

• Iso-Cost Line contains all input bundles that cost 
same amount

• E.g., given p1 and p2, the iso-cost line for cost $c
has equation
– p1x1 + p2x2 = c
– Or x2 = (c / p2) – (p1 / p2)x1

• Slope is – (p1 / p2)

• Intercept is (c / p2) 

The Cost-Minimization Problem: Graph

• Given the relevant 
production isoquant

• Find the lowest iso-cost 
curve that touches it
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Mathematically

• Note from the previous graph…

• that for interior solutions…

• The slope of the iso-cost curve = the slope of the 
production isoquant at the optimal point

• That is
– TRS = (p1 / p2)

• Example: Cobb-Douglas
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Taxonomy of Costs

• We assume that the cost function can be broken 
into the form

• c(y) = cv(y) + cf
• Where

– cv(y) are variable costs
– cf are fixed costs

• We define
– Average (total) Costs = A(T)C = c(y) / y
– Average Variable Costs = AVC = cv(y) / y
– Average Fixed Costs = AFC = cf / y
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Total Costs: Graph
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Average Total Cost Curve: Graph

Marginal and Variable Cost Functions

• Since MC(y) is derivative of cv(y), then cv(y) must 
be integral of MC(y)
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Long Run v. Short Run

• All costs can be adjusted in the Long Run

• Long run Average Total Cost cannot be higher 
than short run Average Total Cost
– Why

• Example
– In Long Run, Demand of 100,000 units per year 

anticipated
– Built a manufacturing facility for sized for 100,000 

units
– In short run, there is a recession, and one year only 
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SR and LR Marginal Cost Curves: Graph SR and LR Marginal Cost Curves: Graph

For each y>0, 
LR-MC=SR-MC 
for SR chosen by firm
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