
Data Structures and
Algorithms in Compiler

Optimization

Comp314 Lecture
Dave Peixotto

1

What is a compiler

Compilers translate between program
representations

Interpreters evaluate their input to
produce a result

Writing a compiler makes large use of
different data structures such as
graphs, trees, and sets

2

High Level Organization

Front End Back End
IR Target

Program

Source

Program
Optimizer

IR

3

Data Structures
Front End

Abstract Syntax Tree

Created during parsing and usually replaced by another IR
that is better for analysis

IR

Control Flow Graph

Usually remains throughout the life of the compiler

Back End

Data flow analysis Sets

Created and destroyed during compiler optimization.
Attached to nodes of the CFG to hold facts about the
program at that point in the graph

4

Intermediate
Representations

Graph Based - the program is represented as a
graph.

Example: AST, DAG

Linear - the program is represented as a straight
line sequence of instructions

Example: assembly code with jumps and
branches for an abstract machine

Hybrid - the program is represented as a
combination of linear and graph structures.

5

+

a d

P

if=

q F = =

+

a 8

e +

a 7

e

+

a d

=

v

AST IR
q = a + d;

if false then
 e = b + 8;
else
 e = a + 7;

v = a + d;

Parsing

original code

6

Linear IR

ADD q a d
LDi c 1
BReq A B c

A:
ADDi e b 8
JMP C

B:
ADDi e a 7
JMP C

C:
ADD v a d

Parsing

original code

q = a + d;

if false then
 e = b + 8;
else
 e = a + 7;

v = a + d;
Translation

7

Hybrid IR
(Control Flow Graph)

ADD q a d
LDi c 1

ADDi e b 8 ADDi e a 7

ADD v a d

q = a + d

if false then
 e = b + 8
else
 e = a + 7

v = a + d

Parsing
 +

Translation

original code

c = 0 c = 1

JMP JMP

8

Control Flow Graph
Terminology

ADD q a d
ADD b a d

ADDi e b 8 ADDi e a 7

ADD v a d

Nodes are basic blocks

Edges represent control flow
instructions

Basic block - maximal
sequence of straight
line instructions

If one instruction in
the basic block
executes they all
execute

9

A

B C

D

F

E

G

CFG Cont.
Extended Basic Blocks

Sequence of basic
blocks such that
each block (except
the first) has a
single predecessor

Forms a tree
rooted at the
entry to the EBB

10

A

B C

D

F

E

G

A

B C

D E

F

G

CFG Cont.
Extended Basic Blocks

Sequence of basic
blocks such that
each block (except
the first) has a
single predecessor

Forms a tree
rooted at the
entry to the EBB

EBB
EBB
EBB

10

SSA Form
(Static Single Assignment)

A particular way of choosing variable
names in the intermediate
representation

q = a + d
q = g + h

e = b + 8 e = a + 7

v = e + d

SSA

q0 = a0 + d0

q1 = g0 + h0

e0 = b0 + 8 e1 = a0 + 7

e2 = ϕ(e0, e1)
v0 = e2 + d0

11

SSA Form
Two invariants that characterize SSA

Each variable is defined (assigned a value)
exactly once

Every use refers to exactly one definition

Encodes information about control flow and data
flow into the variable names in the program

Phi-Nodes indicate join points in the CFG

Variable names show where a particular
definition is used

12

Why Use SSA?

Simplifies compiler optimizations by
providing strong links between
definitions and uses

Single transformation can be used for
analysis in many data flow problems

Makes detecting certain errors trivial
(e.g. variable used before it is initialized)

13

Compiler Optimization
Optimization is a misused word, we are
really talking about transformations of
the IR

Scope

Local - within a single basic block

Superlocal - within an extended block

Global - within an entire procedure

Interprocedural - between procedures
14

Example Optimization:
Value Numbering

This optimization finds and eliminates
redundant computations (common
subexpression elimination)

Instead of recomputing an answer we
save the value and reuse it in a later
computation

This is a standard optimization
performed by many compilers

15

a := b + c
b := a - d
d := a - d

a3 := b1 + c2

b5 := a3 - d4

d5 := a3 - d4

a := b + c
b := a - d
d := b

Local Value Numbering
Original Code Value Numbered

Value Number

Rewrite
Transformed Code

16

Value Numbering
Technique originally designed for linear
IRs, graphical IRs would use a DAG for
this optimization instead

Each expression is assigned a value
number

Value number is computed as a hash of
value numbers in the expression and the
operands

Hashtable maps expressions to value

17

Value Numbering
Algorithm

for each instruction
(assume instruction is of the form x := y op z)
 look up the value numbers of y and z
 build the hash key “yvn op zvn“

lookup key in the hash
if key in hash

replace the instruction with a copy operation
record value number for x

else
add key to hash with a new value number

18

a := b + c
b := a - d
b := d + a
d := a - d

a3 := b1 + c2

b5 := a3 - d4

b6 := a3 + d4

d5 := a3 - d4

a := b + c
b := a - d
b := a + d
d := ???

Local Value Numbering
(a problem)

Original Code Value Numbered

Value Number

Rewrite
Transformed Code

19

a0 := b0 + c0

b1 := a0 - d0

b2 := d0 + a0

d1 := a0 - d0

a03 := b01 + c02

b15 := a03 - d04

b26 := a03 + d04

d15 := a03 - d04

Local Value Numbering
With SSA

Original Code Value Numbered

Value Number

Rewrite
Transformed Code

a0 := b0 + c0

b1 := a0 - d0

b2 := d0 + a0

d1 := b1

20

Superlocal Value
Numbering

Operates over extended basic blocks
(EBBs)

Allows us to capture more redundant
computations

Treat individual paths through an EBB as
if it were a single basic block

21

A

B C

D E

F

G

Treat each path through
the EBB as a basic block

22

Treat each path through
the EBB as a basic block

A

B

A

C

D

A

C

E

F

G

A

B C

D E

F

G

22

Value Numbering Over
EBBs

Treat each path through the EBB as a
single basic block

Initialize the hash table from the
previous basic block in the path

Remove the entries from hash table for
the basic block when recursing up the
path

23

q0 = a0 + b0

r1 = c0 + d0

 e0 = b0 + 18
 s0 = a0 + b0

 u0 = e0 + f0

 e1 = a0 + 17
 t0 = c0 + d0

 u1 = e1 + f0

e2 = ϕ(e0, e1)
u2 = ϕ(u0, u1)
v0 = a0 + b0

w0 = c0 + d0

x0 = e2 + f0

m0 = a0 + b0

n0 = a0 + b0

p0 = c0 + d0

r0 = d0 + c0

r2 = ϕ(r0, r1)
y0 = a0 + b0

z0 = c0 + d0

Value Numbering Example

24

q0 = a0 + b0

r1 = c0 + d0

 e0 = b0 +18
 s0 = a0 + b0

 u0 = e0 + f0

 e1 = a0 + 17
 t0 = c0 + d0

 u1 = e1 + f0

e2 = ϕ(e0, e1)
u2 = ϕ(u0, u1)
v0 = a0 + b0

w0 = c0 + d0

x0 = e2 + f0

m0 = a0 + b0

n0 = a0 + b0

p0 = c0 + d0

r0 = c0 + d0

r2 = ϕ(r0, r1)
y0 = a0 + b0

z0 = c0 + d0

Local

Value Numbering Example

24

Local

q0 = a0 + b0

r1 = c0 + d0

 e0 = b0 + 18
 s0 = a0 + b0

 u0 = e0 + f0

 e1 = a0 + 17
 t0 = c0 + d0

 u1 = e1 + f0

e2 = ϕ(e0, e1)
u2 = ϕ(u0, u1)
v0 = a0 + b0

w0 = c0 + d0

x0 = e2 + f0

m0 = a0 + b0

n0 = a0 + b0

p0 = c0 + d0

r0 = c0 + d0

r2 = ϕ(r0, r1)
y0 = a0 + b0

z0 = c0 + d0

Superlocal

Value Numbering Example

24

Room for improvment

Still miss some opportunities because we
must discard the value table each time
we reach a node with multiple
predecessors

Would like to keep some information
about values we have already seen

There is another technique we can use to
find more opportunities for optimization

25

A

B C

D

F

E

G

A

B C

D F E

G

Control flow Graph Dominator Tree

A node m dominates a node n if
every path from the start node to
n goes through m.

By definition a node dominates
itself

Dominators

26

Dominator Based Value
Numbering

Preorder traversal of the dominator
tree

Initialize the value table with the blocks
immediate dominator in the tree

Remove the entries from the table
when returning from the block

27

q0 = a0 + b0

r1 = c0 + d0

 e0 = b0 + 18
 s0 = a0 + b0

 u0 = e0 + f0

 e1 = a0 + 17
 t0 = c0 + d0

 u1 = e1 + f0

e2 = ϕ(e0, e1)
u2 = ϕ(u0, u1)
v0 = a0 + b0

w0 = c0 + d0

x0 = e2 + f0

m0 = a0 + b0

n0 = a0 + b0

p0 = c0 + d0

r0 = d0 + c0

r2 = ϕ(r0, r1)
y0 = a0 + b0

z0 = c0 + d0

Local

Superlocal

Dominator

28

Can we do better?

Yes, using global value numbering.

Technique uses data flow analysis to
compute which expressions are available
at any point in the program

Take comp 512 for all the data flow
analysis you could ever want

29

Resources

Engineering a Compiler

Cooper and Torczon

The Dragon Book

Aho, Sethi and Ullman

Comp 412

30

