Pata Structures and
Algorithms in Compiler
Optimization

Comp314 Lecture
Pave Peixotto




What is a compiler

* Gowmpilers translate between program
representations

* |nterpreters evalvate their input to
produce a result

* Writing a compiler makes large use of
different data structures such as
graphs, trees, and sets




Source

Program

High Level Organization

Target

4 iA
< J

Program




Pata Structures

* Front End

* Abstract Syntax Tree

* (reated during parsing and usually replaced by another IR
that is better for analysis

* IR

* Control Flow Graph

* Usually remains throughout the life of the compiler
* back End

* Pata flow analysis Sets

* (reated and destroyed during compiler optimization.
Attached to nodes of the CFG to hold facts about the
program at that point in the graph




Interwmediate
Representations

* Graph Based - the program is represented as a
graph.

* Example: AST, DAG

* Linear - the prograwm is represented as a straight
line sequence of instructions

* Example: assembly code with jumps and
branches for an abstract machine

* Hybrid - the program is represented as a
combination of linear and graph structures.




Qriginal c\ode AST IR

q=a+d

if false then

LEATE Parsing
ear7 \

vatd;

\- >




original code

-
qsa-l-d:

if false then

e=h+ 8
else
e=at7

va+d:
L

~N

J

Linear IR

AP gad
Llic 1
PReq AB ¢

A:
ADDieb 8
JMP(

b:
ADDiea7
JMP(

C:
ADPvad




Hybrid IR
(Control Flow Graph)

original code

q=a+d

= c=1
if false then \
ADDieh 8 ADDiea7

e=h+8
else

SELdEE: Parsing 22
va+d *

Translation




Control Flow Graph
Terwinology

* Nodes are basic blocks

* Edges represent control flow
instructions j i
* Basic block - maximal

AT b 4-7 sequence of straight
line instructions

ADDieb 8 AlDDiea 7

.

* |f one instruction in
the basic block
executes they all
execute




CFG Cont.
Extended Basic Blocks

% Sequence of basic
blocks such that
each block (except
the first) has a
single predecessor

%k Forws a tree
rooted at the
entry to the EBB




CFG Cont.
Extended Basic Blocks

% Sequence of basic
blocks such that
each block (except
the first) has a
single predecessor

%k Forws a tree
rooted at the
entry to the EBB




SSA Form

(Static Single Assignment)

A particular way of choosing variable
nawes in the intermediate
representation

ez = dleo, e1)
Vo =ez2*do




SSA Forw

* Two invariants that characterize SSA

* Each variable is defined (assigned a value)
exactly once

* Every use refers to exactly one definition

* Encodes information about control flow and data
flow into the variable names in the program

* Phi-Nodes indicate join points in the CFG

* Variable names show where a particular
definition is used




Why Use SSA?

* Simplifies compiler optimizations by
providing strong links between
definitions and vses

* Single transformation can be used for
analysis in many data flow problems

* Makes detecting certain errors trivial
(e.qg. variable used before it is initialized)




Compiler Optimization

* Optimization is a misused word, we are

really talking about transformations of
the IR

* Scope
* Local - within a sinale basic block
* Superlocal - within an extended block
* @lobal - within an entire procedure
* lnterprocedural - between procedures




Example Optimization:
Value Numbering

* This optimization finds and eliminates
redundant computations (common
subexpression elimination)

* |nstead of recomputing an answer we
save the value and reuse it in a later
computation

* This is a standard optimization
performed by many compilers




Local Value Numbering

Original Code Value Numbered
a:=b"‘c a?::b] -I-cz
b:=a-d # b5:=a3_d4‘

d A d Value Number d5 = az ] d4
Transformed Code /z gaLki

a=h +e¢

b:=a-d

d:=h




Value Numbering

* Technique originally designed for linear
IRs, graphical IRs would use a DAG for
this optimization instead

* Each expression is assigned a value
number

* Value number is computed as a hash of
value numbers in the expression and the
operands

* Hashtable maps expressions to value




Value Numbering
Algorithm

for each instruction
(assume instruction is of the form x :=y op z)
look up the value numbers of y and z
build the hash key “Yvn op Zvn
lookup key in the hash
if key in hash
replace the instruction with a copy operation
record value number for x
else
add key to hash with a new value number




Local Value Numbering

(a problem)

Original Code Value Numbered
a:"b"‘c a3:=b1 -l-cz
b:i=a-d > b := 2% - 44
b = d ra Valve Number b6 e ag i d4
di=a-d d? := a3 - 44

/&ewri’re
Transforwed Code
a:==h +e¢
b:=a-d
b:=a+d

d:= 777




Local Value Numbering
With SSA

Original Code Value Numbered
gl i'j :0 ; do ' b15 = a03 L do4
F T 410 Value Number b2% := a0 * do*
d1 := a0 - do d17 := a0? - do*
Xewrife
Transformed Code

ao :=ho *co

b1 := a0 - do

bz :=do *+ a0

di := by




Superlocal Value
Numbering

* (Operates over extended basic blocks
(EBBs)

* Allows us to capture more redundant
computations

* Treat individual paths through an EBB as
if it were a single basic block




Treat each path through
the EBP as a basic block

(L

e,




Treat each path through
the EBB as a basic block

ﬂ\ﬁ\ iy

\ <

o o

:




Value Numbering Over
EBBs

* Treat each path through the EBP as a
single basic block

* |nitialize the hash table from the
previous basic block in the path

* Remove the entries from hash table for
the é)asic block when recursing up the
pat




Value Numbering Example

rz2= olro, )
Yo = ao * bo
Zo = 6o * do

ez2= oleo, e1)
uz = Pluo, u1)
Vo =ao * bo
Wo = ¢o *+ do
X0 = 2 * fo

24



Value Numbering Example

WMo =ao * ho

ez2= oleo, e1)
uz = Pluo, u1)
Vo =ao * bo
Wo = €0 * do
Xo = ez *+ fo

Local

24



Value Numbering Example

Wo = a0 + bo

e2= oleo, e1)
uz = dluo, u1)
Vo=ao *bo
Wo = ¢o + do
Xo=ez2* fo

rz2= olro, )
Yo =ao * bo
Zo = o *+do

Local
Superlocal

24



Roowm for improvwment

* Still miss some opportunities because we
must discard the value table each time
we reach a node with multiple
predecessors

* Would like to keep some information
about values we have already seen

* There is another ftechnique we can use fo
find more opportunities for optimization




Pominators
Control flow Graph Powminator Tree

M
A

* A node m dominates a node n if
every path from the start node to
n goes through wm.

* By definition a node dominates
itself




Dowminator Based Value
Numbering

* Preorder traversal of the dominator
free

* Initialize the value table with the blocks
immediate dominator in the tree

* Remove the entries from the table
when returning from the block




e2= odleo, e1)
vz = olug, u1)

Xo = ez *+ fo

Local
Superlocal
Dominator

28



Can we do better?

* Yes, using global value numbering.

* Technique uses data flow analysis to
compute which expressions are available
at any point in the program

* Take comp 912 for all the data flow
analysis you could ever want




Resources

* Engineering a Compiler
* Gooper and Torczon
* The Pragon Book
* Aho, Sethi and Ullman
* GComp 412




