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Basic Concepts

Probability Distribution

•  S = {a1,…, an}  = finite set of outcomes = sample space

• p :S → [0,1]

-- p(ak ) ≥ 0

-- p(ak ) = 1
k=1

n

∑

Events

• An event E is a subset of the possible outcomes S

-- Pr(E ) = p(ai )
ai ∈E
∑

• For equally likely outcomes

-- Pr(E ) = |E |
|S |



Example -- Dice

Dice

• Ordered Pairs: 36 possible outcomes (m, n)

• Sums: 11 possible outcomes  {2, 3,…, 12}

• Unordered Pairs: 21 possible outcomes, 6 doubles and 15 non-doubles

• Moral:  Must describe both the experiment and the possible outcomes.

-- Ordered Pairs: Pr(m, n) = 1/ 36

-- Sums:  Pr(2) = 1/ 36,  Pr(4) = 3 / 36, …, Pr(7) = 6 / 36

-- Unordered Pairs: Pr(double) = 6 / 36,  Pr(each nondouble) = 2 / 36



Example -- Poker

Poker Hands

• # poker hands = C(52, 5)

• # 3 of a kind = C(13, 1)×C(4, 3)× 48 × 44

-- Pr(3 of  a kind) = C(13, 1) ×C(4, 3) × 48 × 44
C(52, 5)

≈ .01

• # flushes = C(4, 1)C(13, 5)

-- Pr( flush) = C(4, 1) C(13, 5)
C(52, 5)

≈ .00396



Example -- Bridge

Splits in Bridge 

• # opponent bridge hands = C(26, 13)

• 4 Missing Trumps

-- 2-2 split = C(4, 2) C (22, 11)
C(26, 13)

≈ 40%

-- 3-1 split = 2 C (4, 3) C(22, 10)
C(26, 13)

≈ 50%

-- 4-0 split = 2 C (4, 4) C (22, 9)
C(26,13)

≈10%



More Examples

Choose Up Sides

• 10 kids, 5 per team

• # possible teams with player x = C(9, 4)

• # possible teams with players x and y = C(8, 3)

• Pr(two friends on same team) = C(8, 3)
C(9,4)

=
4
9
<

1
2

Hatcheck Problem

• # hat permutations:  P(n) = n!

• # hat derangements:  
 

D(n) = n! 1− 1
1!
+

1
2!

−⎛
⎝⎜

⎞
⎠⎟ ≈

n!
e

• Pr(derangement ) ≈ 1
e
= .3679 (n > 7)



Complementary Events

Setup

•  S = {a1,…, an}  = finite set of outcomes

• S ⊃ E  = set of possible outcomes

• Ec = S − E  = complementary set of outcomes

-- P(E) =1− P(Ec )

-- P(E) = p(ek )k∑ =1− p(e j
c )j∑



Examples

Coin Tosses

• E = at least one head in n tosses

• Ec  = no heads in n tosses

-- p(Ec ) = 1/ 2n

-- p(E) = 1− p(Ec ) = 1−1/ 2n =
2n −1

2n

Birthday Problem

• E = at least 2 out of n people having same birthday  (day and month)

• Ec  = no 2 people have the same birthday

--
 
p(Ec ) = (364 / 365) (363 / 365) (365 − n) / 365( )

-- p(E) = 1− p(Ec ) ⇒ p(E) >1 / 2    when n > 26



Binomial Distribution

Bernoulli Trials

• t = probability of event (success)

• 1− t  = probability of nonevent (failure)

• Bk
n(t ) = probability of k events (successes) in n identical, independent trials

Formulas

• Bk
n(t ) = k

n( )t k (1− t )n−k

-- t k  = probability of k successes

-- (1− t )n−k  = probability of n − k  failures

-- k
n( )  = number of ways exactly k successes can occur in n trials



Examples

Coin Tossing

• t = probability of heads

• Bk
n(t ) = k

n( )t k (1− t )n−k  = probability of exactly k heads in n tosses

Urn Models -- Sampling with Replacement

• w white balls,  b black balls

• t = w / (w + b)  = probability of selecting a white ball

• Bk
n(t ) = k

n( )t k (1− t )n−k = probability of selecting exactly k white balls in n trials

Random Walk in Pascal’s Triangle

• t = probability of turning right

• Bk
n(t ) = k

n( )t k (1− t )n−k  = probability of landing in kth bin at the bottom



Monte Carlo Methods

Computation of π

Simulation of Random Walks



Conditional Probability



Conditional Probability

Formula

• Pr(E | F) = Pr(E ∩F)
Pr(F)

provided that  Pr(F ) > 0

Proof  (for equally likely event)

• Pr(E | F) = | E∩F |
| F |

=
| E ∩F | / | S |

| F | / | S |
=

Pr(E ∩F)
Pr(F )

Proof  (for arbitrary probability distributions)

• F is the new Sample Space

Observation

• Conditional probability is often tricky -- see below.



Example -- Cards

Playing Cards

• Draw one card out of 52 -- 52 possible outcomes

• Pr(red ) = 26
52

=
1
2

• Pr(diamond ) = 13
52

=
1
4

-- Pr(diamond | red ) = 1 / 4
1/ 2

=
1
2

-- Pr(red | diamond ) = 1 / 4
1 / 4

=
1
1

-- Pr(diamond | ace) = 1/ 52
4 / 52

=
1
4



Example -- Coins

Coins

• Flip two pennies (distinguished by dates) -- 4 possible outcomes

-- Pr(2 heads | first   penny  is  a head) = 1/ 4
1/ 2

= 1/ 2

-- Pr(2 heads | 1 head ) = ?



Example -- Coins

Probabilities

• Flip two pennies (distinguished by dates) -- 4 possible outcomes

-- Pr(2 heads | first   penny  is  a head) = 1/ 4
1/ 2

=
1
2

-- Pr(2 heads | 1 head ) = 1/ 4
3 / 4

=1 / 3 (??? see below)

Possible Events

• Possible Events = {HH , HT , TH , TT}

• Possible Events with First Penny Head = {HH , HT}

• Possible Events with at Least One Head = {HH , HT , TH}



Example -- Children

Boy-Girl

• Boys and Girls are equally likely.

• You ask:  Do you have any boys?     Man responds:  Yes.

• Man volunteers:   I have two children;  one is a boy.

• Man says:   I have two children:  the firstborn is a boy.

Question

• Pr(2 boys | 1 boy) = ?



Example -- Children

Analysis

• You ask:  Do you have any boys?     Man responds:  Yes.

-- Pr(2 boys | 1 boy) = 1
3

-- Possible Events = {BB, BG, GB}

• Man volunteers:  I have two children;  one is a boy.

-- Pr(2 boys | 1 boy) = 1/ 4
2 / 4

=
1
2

-- Possible Events

-- BB  -- (1 / 4)1

-- BG  -- (1 / 4) (1 / 2)

-- GB  -- (1 / 4) (1 / 2)



Analysis  (continued)

• Man says:  I have two children:  the firstborn is a boy.

-- Pr(2 boys | 1 boy) = 1
2

-- Possible Events

-- BB  -- 1 / 2
-- BG  -- 1 / 2

Moral

• Protocol Matters

• See Teasers Paper -- Probability Depends on the Protocol



Example -- Children

Boy-Girl

• Boys and Girls are equally likely

• Woman says:  I have a girl.

• Woman says:  I have a girl named Alice.

Questions

• Pr(2 girls  | 1 girl) = ?

• Pr(2 girls  | 1 girl named  Alice) = ?



Example -- Children

Analysis

• I have a girl.

-- Pr(2 girls  | 1 girl) = 1/ 4
3/ 4

=
1
3

-- Possible Events = {GG, BG, GB}

• I have a girl named Alice.

-- Pr(2 girls  | 1 girl named  Alice) = 1
2

-- Possible Events = {AB, BA, AG, GA}

Conclusion

• Protocol Matters



Information Leaks

Logical Puzzles

• Island of Perfect Logicians

• A Daughter named Alice

Cryptography

• Frequency of Letters in Alphabet

• Timing Channel

• Power Channel

• Subliminal Channels -- Message in the Noise



Example -- Cards

Colored Cards

• Given 2 Cards -- red/red  and  red/white

• Pick a card at random and select a side at random

Question

• Probability of (2 red | 1 red) = ?



Example -- Cards

Colored Cards

• Given 2 Cards -- red/red  and  red/white

• Pick a card at random and select a side at random

• Probability of (2 red | 1 red) = 1 / 2
3 / 4

=
2
3

-- RR  -- (1 / 2)1= 1/ 2

-- RW  -- (1 / 2)(1 / 2) = 1/ 4

• More likely to be red on back, since red/red has two chances to land on red.



Example -- Monte Hall Problem

Protocol

• Three Doors

• One Fabulous Prize

• You Pick a Door at Random

Host (Monte Hall)

• Opens a Different Door -- No Prize

• Offers to Trade Your Door for His Remaining Door

Question

• Should you Make the Deal?

• Does it Matter?



Example -- Monte Hall Problem

Analysis

• Pr(Prize Behind Your One Door) = 1
3

• Pr(Prize Behind His Two Doors) = 2
3

• Pr(Prize Behind Door He Opens) = 0

• Pr(Prize Behind Door He Does Not Open) = 2
3

• Solution:  Make the Deal!



Monte Hall Problem -- Variations

Variation 1

• You choose your door AFTER Monte Hall opens his door.

• Pr(Prize Behind Your One Door) = 1
2

.

• Switching Doors does NOT Change Your Odd of Winning.

Variation 2

• Monte Hall opens one of his doors at RANDOM.

-- If Monte finds the prize, you lose.

• -- If Monte does not find the prize,

Pr(Prize Behind Your One Door) = 1 / 3
2 / 3

=
1
2

.

• Switching Doors does NOT Change Your Odd of Winning.



Example -- Prisoner Problem

Protocol

• Judge sentences Tom or Dick or Harry to hang

-- pr(Tom will hang) = 1 / 3

• Tom asks jailer to tell him a name of one of the other two 

who will NOT be hanged.

• Jailer says:  Dick will not be hanged.

Questions

• Have the Odds Changed for Tom?

• Does it matter to Tom that Dick will NOT be hanged?

• What is the probability that Tom will be hanged?



Example -- Prisoner Problem

Protocol

• Judge sentences Tom or Dick or Harry to hang

-- pr(Tom hanged) = 1 / 3

• Tom asks jailer to tell him a name of one of the other two who 

will NOT be hanged.

• Jailer says:  Dick will not be hanged.

Analysis

• pr(Tom and ~Dick | ~Dick) = (1 / 3) (2 / 3)
(2 / 3)

= 1/ 3

• pr(Tom will hang) = 1/3 ≠ 1/2

Reason
• Tom hangs ⇒ pr(Dick selected) = 1 / 2

• Tom does NOT hang ⇒ pr(Dick selected) = 1



Bayes’ Theorem



Motivation

Problem

• Find p(F)  given that E has occurred.

• Find p(F  | E)  if we know p(E  | F) .



Basic Relations

Lemma 1: p(E ∩F) = p(E | F ) p(F)

Proof: p(E  | F) = p(E ∩F)
p(F )

  ⇒   p(E∩F ) = p(E  | F) p(F)

Lemma 2: p(F  | E) p(E ) = P(E  | F)p(F )

Proof: • p(E ∩F) = p(E | F ) p(F)

• p(F ∩E) = p(F | E ) p(E)

∴   p(F  | E) p(E) = P(E  | F) p(F)



Bayes' Theorem

Bayes' Formula

• p(F  | E) = p(E  | F) p(F )
p(E | F )p(F) + p(E  | Fc )p(Fc )

Proof:  By Lemma 1

• p(F  | E) = P(E∩F )
p(E )

=
p(E  | F) p(F)

p(E )

But  E = (E ∩F)∪ (E ∩Fc )  is a disjoint union, so again by Lemma 1

• p(E) = p(E ∩F) + p(E∩Fc ) = p(E  | F) p(F)+ p(E | Fc) p(Fc )



Example:  Tests for Rare Diseases

Notation

• F = the event that a person is sick with a very rare disease 

• E = the event that a person tests positive for this rare disease

Protocol

• p(F) = 1/100, 000 very rare disease

• p(E  | F) = 99 /100 test correct 99% of the time for sick people

• p(Ec  | Fc ) = 995 /1000   test correct 99.5% of time for healthy people

Problems

• p(F  | E)  = probability that a person that tests positive is actually ill = ?

• p(Fc  | Ec )  = probability that a person that tests negative is actually healthy = ?



Example:  Tests for Rare Diseases  (continued)

Probabilities

• p(F) = 1/100, 000 = .00001 Probability of Illness

• p(Fc ) = 1−1/100,000 = .99999 Probability of Health

• p(E  | F) = 99 /100 = .99 Probability Sick Person Tests Positive

• p(Ec  | F ) = 1− 99 /100 = .01 Probability Sick Person Tests Negative

• p(Ec  | Fc ) = 995 /100 = .995 Probability Healthy Person Tests Negative

• p(E  | Fc ) = 1− 995 /100 = .005 Probability Healthy Person Tests Positive

p(F  | E) = p(E  | F) p(F )
p(E | F )p(F) + p(E  | Fc )p(Fc )

=
(.99)(.00001)

(.99)(.00001)+ (.005)(.99999)
≈ .002

p(Fc | Ec ) = p(Ec | Fc ) p(Fc )
p(Ec | Fc) p(Fc ) + p(Ec | F )p(F)

=
(.995)(.99999)

(.995)(.99999)+ (.01)(.00001)
≈ .9999999



Tests for Rare Diseases  (continued)

Rare Diseases -- p(F) = 1/100, 000

• Test Positive -- Do Not Worry

-- p(F  | E) ≈ .002

• Test Negative ⇒  Healthy

-- p(Fc | Ec ) ≈ .9999999

Common Diseases -- p(F) = 1/10

• Test Positive ⇒  Sick

-- p(F  | E) = p(E  | F) p(F )
p(E | F )p(F) + p(E  | Fc )p(Fc )

=
(.99)(.1)

(.99)(.1)+ (.005)(.9)
≈ .9565

• Test Negative ⇒  Healthy

-- p(Fc | Ec ) = p(Ec | Fc ) p(Fc )
p(Ec | Fc) p(Fc ) + p(Ec | F )p(F)

=
(.995)(.9)

(.995)(.9)+ (.01)(.1)
≈ .99888



Example:  Spam Filters

Notation

• S = the event that the message is spam 

• E = the event that the message contains the word w

Protocol

• p(S) = 9 /10 most of my messages are spam

• p(E  | S) = p(w) probability that w appears in spam

• p(E  | Sc ) = q(w)   probability that w appears in a real message

Problems

• p(S | E)  = probability that the message is spam if w appears = ?

• p(Sc  | Ec )  = probability that the message is not spam if w does not appear = ?



Example:  Spam Filters  (continued)

Probabilities

• p(S) = 9 /10 = .9 Probability of Spam

• p(Sc ) = 1− 9 /10 = .1 Probability of Real Message

• p(E  | S) = p(w) Probability w appears in Spam

• p(Ec  | S) = 1− p(w) Probability w does NOT appears in Spam

• p(E  | Sc ) = q(w) Probability w appears in Message

• p(Ec  | Sc ) = 1− q(w) Probability w does NOT appear in Message

• p(S | E) = p(E  | S) p(S)
p(E | S )p(S)+ p(E  | Sc) p(Sc )

=
9 p(w)

9 p(w) + q(w)

• p(Sc | Ec ) = p(Ec | Sc ) p(Sc )
p(Ec | Sc ) p(Sc ) + p(Ec | S)p(S)

=
1− q(w)

1− q(w)( ) + 9 1− p(w)( )



Monte Hall Problem

Notation

• F = event that a person selects the door with the prize 

• E = event that the door opened by Monte Hall does not contain the prize

Protocol

• p(F) = 1/ 3 You have a 1/3 chance of selecting the prize

• p(E  | F) = 1 Monte CANNOT have prize if you do

• p(E  | Fc ) = 1 Monte NEVER opens the door with the prize

Problem

• p(F  | E)  = probability that your door has the prize if Monte Hall’s does not = ?



Monte Hall Problem  (continued)

Probabilities

• p(F) = 1/ 3 Probability your door has the prize

• p(Fc ) = 2 / 3 Probability your door does not have prize

• p(E  | F) = 1 Monte CANNOT have prize if you do

• p(E  | Fc ) = 1 Monte NEVER opens the door with the prize

Conditional Probability

• p(F  | E) = p(E  | F) p(F )
p(E | F )p(F) + p(E  | Fc )p(Fc )

=
(1)(1 / 3)

(1)(1 / 3)+ (1)(2 / 3)
= 1/ 3

Conclusion

• Switch doors with Monte Hall



Monte Hall Problem -- Variation

Probabilities

• p(F) = 1/ 3 Probability your door has the prize

• p(Fc ) = 2 / 3 Probability your door does not have prize

• p(E  | F) = 1 Monte CANNOT have prize if you do

• p(E  | Fc ) = 1/ 2 Monte selects a door at random

Conditional Probability

• p(F  | E) = p(E  | F) p(F )
p(E | F )p(F) + p(E  | Fc )p(Fc )

=
(1)(1 / 3)

(1)(1 / 3)+ (1 / 2)(2 / 3)
= 1/ 2

Conclusion

• Switching does NOT change the odds. 



Daughter Problem

Notation

• F = event that a person with two children has two daughters 

• E = event that a person with two children has at least one daughter

Protocol

• p(F) = 1/ 4 one of four possible case:  BB, BG, GB. GG

• p(Fc ) = 3/ 4 three of four possible case:  BB, BG, GB. GG

• p(E  | F) = 1 if you have two daughters, you have at least one

• p(E  | Fc ) = 2 / 3 two out of three cases:  BB, BG, GB

Problem

• p(F  | E)  = probability person has two daughters if they have one daughter = ?



Daughter Problem  (continued)

Probabilities

• p(F) = 1/ 4 Probability of two daughters

• p(Fc ) = 3/ 4 Probability of at most one daughter

• p(E  | F) = 1 If you have two daughter, you have at least one

• p(E  | Fc ) = 2 / 3 Two out of three cases:  BB, BG, GB

Conditional Probability

• p(F  | E) = p(E  | F) p(F )
p(E | F )p(F) + p(E  | Fc )p(Fc )

=
(1)(1 / 4)

(1)(1 / 4) + (2 / 3)(3 / 4)
= 1/ 3



A Daughter Named Alice

Notation

   • F = event that a person with two children has two daughters 

• E = event that a person with two children has one daughter named Alice

• p = percentage of girls named Alice

Protocol

• p(F) = 1/ 4 one of four possible case:  BB, BG, GB. GG

• p(Fc ) = 3/ 4 three of four possible case:  BB, BG, GB. GG

• p(E  | F) = 2 p Alice is a girl’s name and there are two girls

• p(E  | Fc ) = (2 / 3) p   two of three possible cases:  BB, GB, BG 

Problem

• p(F  | E)  = probability person has two daughters if they daughter named Alice = ?



A Daughter Named Alice  (continued)

Probabilities

• p(F) = 1/ 4 Probability of two daughters

• p(Fc ) = 3/ 4 Probability of at most one daughter

• p(E  | F) = 2p Alice is a girl’s name and there are two girls

• p(E  | Fc ) = 2p / 3 two of three possible cases:  BB, GB, BG 

Conditional Probability

• p(F  | E) = p(E  | F) p(F )
p(E | F )p(F) + p(E  | Fc )p(Fc )

=
(2 p)(1 / 4)

(2 p)(1 / 4)+ (2p / 3)(3 / 4)
= 1/ 2



Expectation and

Average Case Complexity



Random Variables

Definition

• A Random Variable X is a Function from the sample space S
of an experiment to the real numbers.

• X :S → R

Examples

• Coin Tossing

-- S = {HH , HT , TH , TT}

-- X = Number of heads

• Dice

--
 
S = (1,1), (1, 2),…, (6, 6){ }

-- X = Sum of Dots



Expectation

Setup

•  S = {a1,…, an}  = sample space

• pr :S → [0,1] = probability distribution

• X :S → R  = random variable

Expectation

• E(X ) = Pr(ai) X(ai ) = Pr(X = ri ) ri
i=1

n
∑

i=1

n
∑

• Weighted Average

Additivity

• E(X +Y ) = E(X )+ E(Y )



Additivity

Formula

• E(X +Y ) = E(X )+ E(Y )

Proof

•     E(X +Y ) = Pr(ai ) X(ai )+Y (ai )( )
i=1

n
∑

                      =   Pr(ai )X(ai )
l=1

n
∑ + Pr(ai )Y (ai)

i=1

n
∑ = E(X )+ E(Y )

Advice

• Try to use Additivity, NOT the Definition of Expectation



Dice

Direct Method

•
 
S = (1,1), (1, 2),…, (6, 6){ }

• X = Sum of Dots

•
 

E(X ) = Pr(si )X(si)
k=0

n
∑ =

12 ×1+11× 2 +10 × 3+
36

=
252
36

= 7

Summation Method

• X1 = Number of Dots of First Die

• X2  = Number of Dots of Second Die

• X = X1 + X2

• E(Xk ) = 1+ 2 + 3+ 4 + 5 + 6
6

=
21
6

= 3.5

• E(X ) = E(X1)+ E(X2 ) = 3.5 + 3.5 = 7



Bernoulli Trials

Binomial Distribution

• X (Experiment ) = Number  of  Successes

• E(X ) = kBk
n (t )

k=0

n
∑ = nt

• Direct Method -- By Brute Force Algebra  (see next page)

Summation Method

• Xk  = 1  for success on the kth trial
= 0  for failure on the kth trial

• X = Xk
k=1

n
∑

• E(X ) = E(Xk )
k=1

n
∑ = t

k=1

n
∑ = nt



Expectation:  Binomial Distribution

Algebra

  

E(X ) = kBk
n (t )

k=0

n
∑

        = k (k
n) t k (1− t )n−k

k=1

n
∑

        = k n!
k!(n − k )!

t k (1− t)n−k

k=1

n
∑

       = nt
(n −1)!

(k −1)! (n −1)− (k −1)( )!t k−1(1− t )(n−1)− (k−1)

k=1

n
∑

       = nt (k−1
n−1)t k−1(1− t )(n−1)−( k−1)

k=1

n
∑

      = nt Bk−1
n−1(t )

k=1

n
∑

      = nt



Another Example

Birthday Problem

• Find number of people, n, in a room, so that expectation  

is at least one that two people have the same birthday.

Setup

• X (n) = # people with the same birthday  (day and month)

•       Xij (ai , a j ) = 1      if  ai  and  a j  born  on same day and  month

                          = 0     otherwise

• X (n) = Xij (ai , a j )
i< j
∑



Solution

• X (n) = # people with the same birthday

• X (n) = Xij (ai , a j )
i< j
∑

-- p(Xij =1) = 1/ 365

-- E(Xij ) = 1/ 365

-- # Xij = C(n, 2)

-- E(X ) = (1 / 365) C(n,2)

-- n ≥ 28 ⇒ C(n, 2) ≥ 378 ⇒ X(n) ≥ 1

• NOT quite the same as the number needed to make the probability 1/2.



Average Case Complexity

Setup

•  S = {a1,…, an}  = possible inputs to an algorithm

• X (ai )  = number of operations used by the algorithm for input ai

Formula

• E(X ) = Pr(ai) X(ai )
i=1

n
∑  = Average Case Complexity



Example -- Linear Search

Assumptions

• n elements in UNORDERED list:   a1,…, an

• Pr(x = ai ) = 1
n

(equal likelihood)

• X (ai )  = number of comparisons used to locate ai  is i

Average Case Complexity

• E(x) = i
ni=1

n
∑ =

1
n

i
i=1

n
∑ =

1
n

n(n +1)
2

⎛
⎝⎜

⎞
⎠⎟ =

n +1
2

-- Result makes good sense as an average -- half more, half less

Worst Case Complexity = n



Linear Search -- Revisited

Assumptions

• n elements in UNORDERED list:   a1,…, an

• Pr(x = ai ) = 1
n

(equal likelihood)

• Pr(x in list) = p

• X (ai )  = number of comparisons used to locate ai  is 2 i +1
-- compare to current element

-- check for end of list -- inside and outside the loop

• X (a not  in list )  = number of comparisons to determine a not in list is 2n + 2

-- one additional comparison on (n +1)st  time through the loop



Linear Search -- Revisited  (continued)

Average Case Complexity

•     E(x) = (2n + 2)(1− p)+ (2i +1)p
ni=1

n
∑

               = (2n + 2)(1− p)+ p
n

(2i +1)
i=1

n
∑

               = (2n + 2)(1− p)+
(n +1)2 −1( ) p

n

               = (2n + 2)(1− p)+ (n + 2)p

               = (2n + 2) − np



Variance and

Standard Deviation



Variance and Standard Deviation

Setup

•  S = {a1,…, an}  = sample space

• p :S → [0, 1]  = probability distribution

• X = random variable

Variance

• V (X) = X (si )− E(X )( )2
i=1

n
∑ p(si )

Standard Deviation

• σ (X ) = V (X ) = X(si )− E(X)( )2
i=1

n
∑ p(si)

Objective
• To measure deviation of a random variable X from its average value E(X ) 

(expectation)



Variance and Expectation

Theorem: V (X) = E(X2) − E(X )( )2

Proof: V (X) = X (si )− E(X )( )2
i=1

n
∑ p(si )

= X(si )2

i=1

n
∑ p(si )− 2E(X ) X(si )

i=1

n
∑ p(si )+ E(X )2 p(si )

i=1

n
∑

= E(X2 )− 2E(X)E(X) + E(X )2

= E(X2 )− E(X)( )2



Example

On Die

• E(X ) = 1+ 2 + 3+ 4 + 5 + 6
6

=
21
6

=
7
2

• E(X )( )2 =
1+ 2 + 3+ 4 + 5 + 6

6
⎛
⎝⎜

⎞
⎠⎟

2
=

7
2

⎛
⎝⎜

⎞
⎠⎟

2
=

49
4

• E(X2 ) = 12 + 22 + 32 + 42 + 52 + 62

6
=

91
6

• V (X) = E(X2) − E(X )( )2 =
91
6

−
49
4

=
35
12

≈ 3



Expectation and Independent Variables

Definition

• X,Y are called independent random variables if

p(X = r  and Y = s) = P(X = r)P(X = s)   for all r,s

Theorem: X,Y independent  ⇒   E(XY ) = E(X) E(Y )

Proof: E(XY ) = Pr(ai )X(ai )Y (ai )
i=1

n
∑

= r1r2 Pr(X = r1) and  Pr(Y = r2 )( )
r1 , r2

∑

= r1
r1

∑ Pr(X = r1)
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
  r2 Pr(Y = r2 )

r2

∑
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= E(X )E(Y )



Variance and Independent Variables

Theorem: X,Y independent  ⇒   V (X +Y ) =V (X ) +V (Y )

Proof: V (X +Y ) = E (X +Y )2( ) − E(X + Y )( )2

= E(X2 + 2XY +Y 2 ) − E(X )( )2 − 2E(X )E(Y ) − E(Y )( )2

= E(X2 )+ 2E(XY )+ E(Y 2 ) − E(X )( )2 − 2E(X )E(Y ) − E(Y )( )2

= E(X2 )− E(X)( )2 + E(Y 2 ) − E(Y )( )2 {E(XY ) = E(X)E(Y )}

=V (X )+V (Y )



Two Dice

Notation

• X1 = number of dots on first die

• X2  = number of dots on second die

• X = X1 + X2 = sum of dots on both dice

Variance

• V (X1) =V(X2) = 35
12

• V (X) =V (X1 + X2 ) = 35
12

+
35
12

=
35
6

≈ 6



Bernoulli Trials

1 Bernoulli Trial

•     X(t ) = 1      success
              = 0      failure

• E(X ) = t

• V (X) = E(X2) − E(X )( )2 = t − t2 = t (1− t )

n Bernoulli Trials

•  V (X) =V (X1 ++ Xn ) = V (X1)++V (Xn )

• V (X) = nt(1− t )


