Probability

Applications

Analysis of Algorithms
 Average Case Complexity

Monte Carlo Methods

Spam Filters

Basic Concepts

Probability Distribution

- $S=\left\{a_{1}, \ldots, a_{n}\right\}=$ finite set of outcomes = sample space
- $\quad p: S \rightarrow[0,1]$

$$
\begin{array}{ll}
-- & p\left(a_{k}\right) \geq 0 \\
\text {-- } & \sum_{k=1}^{n} p\left(a_{k}\right)=1
\end{array}
$$

Events

- An event E is a subset of the possible outcomes S
-- $\operatorname{Pr}(E)=\sum_{a_{i} \in E} p\left(a_{i}\right)$
- For equally likely outcomes
-- $\quad \operatorname{Pr}(E)=\frac{|E|}{|S|}$

Example -- Dice

Dice

- Ordered Pairs: 36 possible outcomes (m, n)
- Sums: 11 possible outcomes $\{2,3, \ldots, 12\}$
- Unordered Pairs: 21 possible outcomes, 6 doubles and 15 non-doubles
- Moral: Must describe both the experiment and the possible outcomes.
-- \quad Ordered Pairs: $\quad \operatorname{Pr}(m, n)=1 / 36$
-- Sums: $\quad \operatorname{Pr}(2)=1 / 36, \operatorname{Pr}(4)=3 / 36, \ldots, \operatorname{Pr}(7)=6 / 36$
-- Unordered Pairs: $\quad \operatorname{Pr}($ double $)=6 / 36, \operatorname{Pr}($ each nondouble $)=2 / 36$

Example -- Poker

Poker Hands

- \# poker hands $=C(52,5)$
- \# 3 of a kind $=C(13,1) \times C(4,3) \times 48 \times 44$

$$
\text { -- } \quad \operatorname{Pr}(3 \text { of a kind })=\frac{C(13,1) \times C(4,3) \times 48 \times 44}{C(52,5)} \approx .01
$$

- $\#$ flushes $=C(4,1) C(13,5)$

$$
-\quad \operatorname{Pr}(f l u s h)=\frac{C(4,1) C(13,5)}{C(52,5)} \approx .00396
$$

Example -- Bridge

Splits in Bridge

- \# opponent bridge hands $=C(26,13)$
- 4 Missing Trumps
-- $\quad 2-2$ split $=\frac{C(4,2) C(22,11)}{C(26,13)} \approx 40 \%$
-- $\quad 3-1$ split $=2 \frac{C(4,3) C(22,10)}{C(26,13)} \approx 50 \%$
-- $\quad 4-0$ split $=2 \frac{C(4,4) C(22,9)}{C(26,13)} \approx 10 \%$

More Examples

Choose Up Sides

- 10 kids, 5 per team
- \# possible teams with player $x=C(9,4)$
- \# possible teams with players x and $y=C(8,3)$
- $\quad \operatorname{Pr}($ two friends on same team $)=\frac{C(8,3)}{C(9,4)}=\frac{4}{9}<\frac{1}{2}$

Hatcheck Problem

- \# hat permutations: $P(n)=n$!
- \# hat derangements: $D(n)=n!\left(1-\frac{1}{1!}+\frac{1}{2!}-\cdots\right) \approx \frac{n!}{e}$
- $\operatorname{Pr}($ derangement $) \approx \frac{1}{e}=.3679 \quad(n>7)$

Complementary Events

Setup

- $\quad S=\left\{a_{1}, \ldots, a_{n}\right\}=$ finite set of outcomes
- $\quad S \supset E=$ set of possible outcomes
- $E^{c}=S-E=$ complementary set of outcomes

$$
\begin{array}{ll}
-- & P(E)=1-P\left(E^{c}\right) \\
-- & P(E)=\sum_{k} p\left(e_{k}\right)=1-\sum_{j} p\left(e_{j}^{c}\right)
\end{array}
$$

Examples

Coin Tosses

- $\quad E=$ at least one head in n tosses
- $\quad E^{c}=$ no heads in n tosses

$$
\begin{array}{ll}
\text {-- } & p\left(E^{c}\right)=1 / 2^{n} \\
\text {-- } & p(E)=1-p\left(E^{c}\right)=1-1 / 2^{n}=\frac{2^{n}-1}{2^{n}}
\end{array}
$$

Birthday Problem

- $\quad E=$ at least 2 out of n people having same birthday (day and month)
- $E^{c}=$ no 2 people have the same birthday

$$
\begin{array}{ll}
-- & p\left(E^{c}\right)=(364 / 365)(363 / 365) \cdots((365-n) / 365) \\
-- & p(E)=1-p\left(E^{c}\right) \Rightarrow p(E)>1 / 2 \quad \text { when } n>26
\end{array}
$$

Binomial Distribution

Bernoulli Trials

- $\quad t=$ probability of event (success)
- $\quad 1-t=$ probability of nonevent (failure)
- $\quad B_{k}^{n}(t)=$ probability of k events (successes) in n identical, independent trials

Formulas

- $\quad B_{k}^{n}(t)=\binom{n}{k} t^{k}(1-t)^{n-k}$
-- $\quad t^{k}=$ probability of k successes
-- $\quad(1-t)^{n-k}=$ probability of $n-k$ failures
-- $\quad\binom{n}{k}=$ number of ways exactly k successes can occur in n trials

Examples

Coin Tossing

- $t=$ probability of heads
- $\quad B_{k}^{n}(t)=\binom{n}{k} t^{k}(1-t)^{n-k}=$ probability of exactly k heads in n tosses

Urn Models -- Sampling with Replacement

- $\quad w$ white balls, b black balls
- $\quad t=w /(w+b)=$ probability of selecting a white ball
- $\quad B_{k}^{n}(t)=\binom{n}{k} t^{k}(1-t)^{n-k}=$ probability of selecting exactly k white balls in n trials

Random Walk in Pascal's Triangle

- $t=$ probability of turning right
- $\quad B_{k}^{n}(t)=\binom{n}{k} t^{k}(1-t)^{n-k}=$ probability of landing in $k t h$ bin at the bottom

Monte Carlo Methods

Computation of π

Simulation of Random Walks

Conditional Probability

Conditional Probability

Formula

- $\operatorname{Pr}(E \mid F)=\frac{\operatorname{Pr}(E \cap F)}{\operatorname{Pr}(F)} \quad$ provided that $\operatorname{Pr}(F)>0$

Proof (for equally likely event)

- $\operatorname{Pr}(E \mid F)=\frac{|E \cap F|}{|F|}=\frac{|E \cap F| /|S|}{|F| /|S|}=\frac{\operatorname{Pr}(E \cap F)}{\operatorname{Pr}(F)}$

Proof (for arbitrary probability distributions)

- $\quad F$ is the new Sample Space

Observation

- Conditional probability is often tricky -- see below.

Example -- Cards

Playing Cards

- Draw one card out of 52 -- 52 possible outcomes
- $\quad \operatorname{Pr}($ red $)=\frac{26}{52}=\frac{1}{2}$
- $\quad \operatorname{Pr}($ diamond $)=\frac{13}{52}=\frac{1}{4}$
-- $\quad \operatorname{Pr}($ diamond \mid red $)=\frac{1 / 4}{1 / 2}=\frac{1}{2}$
-- $\quad \operatorname{Pr}($ red \mid diamond $)=\frac{1 / 4}{1 / 4}=\frac{1}{1}$
-- $\quad \operatorname{Pr}($ diamond \mid ace $)=\frac{1 / 52}{4 / 52}=\frac{1}{4}$

Example -- Coins

Coins

- Flip two pennies (distinguished by dates) -- 4 possible outcomes
-- $\quad \operatorname{Pr}(2$ heads \mid first penny is a head $)=\frac{1 / 4}{1 / 2}=1 / 2$
-- $\quad \operatorname{Pr}(2$ heads 11 head $)=$?

Example -- Coins

Probabilities

- Flip two pennies (distinguished by dates) -- 4 possible outcomes
-- $\quad \operatorname{Pr}(2$ heads \mid first penny is a head $)=\frac{1 / 4}{1 / 2}=\frac{1}{2}$
-- $\quad \operatorname{Pr}(2$ heads 11 head $)=\frac{1 / 4}{3 / 4}=1 / 3 \quad$ (??? see below)

Possible Events

- \quad Possible Events $=\{H H, H T, T H, T T\}$
- \quad Possible Events with First Penny Head $=\{H H, H T\}$
- Possible Events with at Least One Head $=\{H H, H T, T H\}$

Example -- Children

Boy-Girl

- Boys and Girls are equally likely.
- You ask: Do you have any boys? Man responds: Yes.
- Man volunteers: I have two children; one is a boy.
- Man says: I have two children: the firstborn is a boy.

Question

- $\quad \operatorname{Pr}(2$ boys $\mid 1$ boy $)=?$

Example -- Children

Analysis

- You ask: Do you have any boys? Man responds: Yes.
-- $\quad \operatorname{Pr}(2$ boys $\mid 1$ boy $)=\frac{1}{3}$
-- Possible Events $=\{B B, B G, G B\}$
- Man volunteers: I have two children; one is a boy.
-- $\operatorname{Pr}(2$ boys $\mid 1$ boy $)=\frac{1 / 4}{2 / 4}=\frac{1}{2}$
-- Possible Events

$$
\begin{array}{ll}
-- & B B-(1 / 4) 1 \\
-- & B G-(1 / 4)(1 / 2) \\
-- & G B-(1 / 4)(1 / 2)
\end{array}
$$

Analysis (continued)

- Man says: I have two children: the firstborn is a boy.
-- $\quad \operatorname{Pr}(2$ boys $\mid 1$ boy $)=\frac{1}{2}$
-- Possible Events
-- $\quad B B$-- $1 / 2$
-- $\quad B G-1 / 2$

Moral

- Protocol Matters
- \quad See Teasers Paper -- Probability Depends on the Protocol

Example -- Children

Boy-Girl

- Boys and Girls are equally likely
- Woman says: I have a girl.
- Woman says: I have a girl named Alice.

Questions

- $\quad \operatorname{Pr}(2$ girls $\mid 1$ girl $)=?$
- $\quad \operatorname{Pr}(2$ girls $\mid 1$ girl named Alice $)=$?

Example -- Children

Analysis

- I have a girl.
-- $\operatorname{Pr}(2$ girls $\mid 1$ girl $)=\frac{1 / 4}{3 / 4}=\frac{1}{3}$
-- Possible Events $=\{G G, B G, G B\}$
- I have a girl named Alice.
-- $\quad \operatorname{Pr}(2$ girls $\mid 1$ girl named Alice $)=\frac{1}{2}$
-- Possible Events $=\{A B, B A, A G, G A\}$

Conclusion

- Protocol Matters

Information Leaks

Logical Puzzles

- Island of Perfect Logicians
- A Daughter named Alice

Cryptography

- Frequency of Letters in Alphabet
- Timing Channel
- Power Channel
- Subliminal Channels -- Message in the Noise

Example -- Cards

Colored Cards

- Given 2 Cards -- red/red and red/white
- Pick a card at random and select a side at random

Question

- \quad Probability of $(2$ red $\mid 1$ red $)=$?

Example -- Cards

Colored Cards

- Given 2 Cards -- red/red and red/white
- Pick a card at random and select a side at random
- \quad Probability of $(2$ red $\mid 1$ red $)=\frac{1 / 2}{3 / 4}=\frac{2}{3}$
-- $\quad R R-(1 / 2) 1=1 / 2$
-- $\quad R W$-- $(1 / 2)(1 / 2)=1 / 4$
- More likely to be red on back, since red/red has two chances to land on red.

Example -- Monte Hall Problem

Protocol

- Three Doors
- One Fabulous Prize
- You Pick a Door at Random

Host (Monte Hall)

- Opens a Different Door -- No Prize
- Offers to Trade Your Door for His Remaining Door

Question

- Should you Make the Deal?
- Does it Matter?

Example -- Monte Hall Problem

Analysis

- $\quad \operatorname{Pr}($ Prize Behind Your One Door $)=\frac{1}{3}$
- $\quad \operatorname{Pr}($ Prize Behind His Two Doors $)=\frac{2}{3}$
- $\quad \operatorname{Pr}($ Prize Behind Door He Opens $)=0$
- $\quad \operatorname{Pr}($ Prize Behind Door He Does Not Open $)=\frac{2}{3}$
- Solution: Make the Deal!

Monte Hall Problem -- Variations

Variation 1

- You choose your door AFTER Monte Hall opens his door.
- $\operatorname{Pr}($ Prize Behind Your One Door $)=\frac{1}{2}$.
- Switching Doors does NOT Change Your Odd of Winning.

Variation 2

- Monte Hall opens one of his doors at RANDOM.
-- If Monte finds the prize, you lose.
- -- If Monte does not find the prize,
$\operatorname{Pr}($ Prize Behind Your One Door $)=\frac{1 / 3}{2 / 3}=\frac{1}{2}$.
- Switching Doors does NOT Change Your Odd of Winning.

Example -- Prisoner Problem

Protocol

- Judge sentences Tom or Dick or Harry to hang
-- $\quad \operatorname{pr}($ Tom will hang $)=1 / 3$
- Tom asks jailer to tell him a name of one of the other two who will NOT be hanged.
- Jailer says: Dick will not be hanged.

Questions

- Have the Odds Changed for Tom?
- Does it matter to Tom that Dick will NOT be hanged?
- What is the probability that Tom will be hanged?

Example -- Prisoner Problem

Protocol

- Judge sentences Tom or Dick or Harry to hang
-- $\quad \operatorname{pr}($ Tom hanged $)=1 / 3$
- Tom asks jailer to tell him a name of one of the other two who will NOT be hanged.
- Jailer says: Dick will not be hanged.

Analysis

- $\operatorname{pr}($ Tom and \sim Dick $I \sim$ Dick $)=\frac{(1 / 3)(2 / 3)}{(2 / 3)}=1 / 3$
- $\operatorname{pr}($ Tom will hang $)=1 / 3 \neq 1 / 2$

Reason

- Tom hangs $\Rightarrow \operatorname{pr}($ Dick selected $)=1 / 2$
- \quad Tom does NOT hang $\Rightarrow \operatorname{pr}($ Dick selected $)=1$

Bayes' Theorem

Motivation

Problem

- Find $p(F)$ given that E has occurred.
- Find $p(F \mid E)$ if we know $p(E \mid F)$.

Basic Relations

Lemma 1: $\quad p(E \cap F)=p(E \mid F) p(F)$
Proof: $\quad p(E \mid F)=\frac{p(E \cap F)}{p(F)} \Rightarrow p(E \cap F)=p(E \mid F) p(F)$

Lemma 2: $\quad p(F \mid E) p(E)=P(E \mid F) p(F)$
Proof: - $\quad p(E \cap F)=p(E \mid F) p(F)$

- $\quad p(F \cap E)=p(F \mid E) p(E)$
$\therefore \quad p(F \mid E) p(E)=P(E \mid F) p(F)$

Bayes' Theorem

Bayes' Formula

- $p(F \mid E)=\frac{p(E \mid F) p(F)}{p(E \mid F) p(F)+p\left(E \mid F^{c}\right) p\left(F^{c}\right)}$

Proof: By Lemma 1

- $p(F \mid E)=\frac{P(E \cap F)}{p(E)}=\frac{p(E \mid F) p(F)}{p(E)}$

But $E=(E \cap F) \cup\left(E \cap F^{c}\right)$ is a disjoint union, so again by Lemma 1

- $p(E)=p(E \cap F)+p\left(E \cap F^{c}\right)=p(E \mid F) p(F)+p\left(E \mid F^{c}\right) p\left(F^{c}\right)$

Example: Tests for Rare Diseases

Notation

- $F=$ the event that a person is sick with a very rare disease
- $E=$ the event that a person tests positive for this rare disease

Protocol

- $\quad p(F)=1 / 100,000$
- $\quad p(E \mid F)=99 / 100$
- $p\left(E^{c} \mid F^{c}\right)=995 / 1000$
very rare disease
test correct 99% of the time for sick people
test correct 99.5% of time for healthy people

Problems

- $\quad p(F \mid E)=$ probability that a person that tests positive is actually ill $=$?
- $\quad p\left(F^{c} \mid E^{c}\right)=$ probability that a person that tests negative is actually healthy $=$?

Example: Tests for Rare Diseases (continued)

Probabilities

- $p(F)=1 / 100,000=.00001 \quad$ Probability of Illness
- $p\left(F^{c}\right)=1-1 / 100,000=.99999 \quad$ Probability of Health
- $p(E \mid F)=99 / 100=.99$

Probability Sick Person Tests Positive

- $p\left(E^{c} \mid F\right)=1-99 / 100=.01 \quad$ Probability Sick Person Tests Negative
- $p\left(E^{c} \mid F^{c}\right)=995 / 100=.995 \quad$ Probability Healthy Person Tests Negative
- $p\left(E \mid F^{c}\right)=1-995 / 100=.005 \quad$ Probability Healthy Person Tests Positive

$$
\begin{aligned}
& p(F \mid E)=\frac{p(E \mid F) p(F)}{p(E \mid F) p(F)+p\left(E \mid F^{c}\right) p\left(F^{c}\right)}=\frac{(.99)(.00001)}{(.99)(.00001)+(.005)(.99999)} \approx .002 \\
& p\left(F^{c} \mid E^{c}\right)=\frac{p\left(E^{c} \mid F^{c}\right) p\left(F^{c}\right)}{p\left(E^{c} \mid F^{c}\right) p\left(F^{c}\right)+p\left(E^{c} \mid F\right) p(F)}=\frac{(.995)(.99999)}{(.995)(.99999)+(.01)(.00001)} \approx .9999999
\end{aligned}
$$

Tests for Rare Diseases (continued)

Rare Diseases -- $p(F)=1 / 100,000$

- Test Positive -- Do Not Worry
$-\quad p(F \mid E) \approx .002$
- Test Negative \Rightarrow Healthy

$$
-\quad p\left(F^{c} \mid E^{c}\right) \approx .9999999
$$

Common Diseases -- $p(F)=1 / 10$

- Test Positive \Rightarrow Sick

$$
-\quad p(F \mid E)=\frac{p(E \mid F) p(F)}{p(E \mid F) p(F)+p\left(E \mid F^{c}\right) p\left(F^{c}\right)}=\frac{(.99)(.1)}{(.99)(.1)+(.005)(.9)} \approx .9565
$$

- Test Negative \Rightarrow Healthy

$$
-\quad p\left(F^{c} \mid E^{c}\right)=\frac{p\left(E^{c} \mid F^{c}\right) p\left(F^{c}\right)}{p\left(E^{c} \mid F^{c}\right) p\left(F^{c}\right)+p\left(E^{c} \mid F\right) p(F)}=\frac{(.995)(.9)}{(.995)(.9)+(.01)(.1)} \approx .99888
$$

Example: Spam Filters

Notation

- $\quad S=$ the event that the message is spam
- $E=$ the event that the message contains the word w

Protocol

- $p(S)=9 / 10$
- $p(E \mid S)=p(w)$
- $p\left(E \mid S^{c}\right)=q(w)$
most of my messages are spam
probability that w appears in spam
probability that w appears in a real message

Problems

- $\quad p(S \mid E)=$ probability that the message is spam if w appears $=$?
- $\quad p\left(S^{c} \mid E^{c}\right)=$ probability that the message is not spam if w does not appear $=$?

Example: Spam Filters (continued)

Probabilities

- $p(S)=9 / 10=.9$
- $p\left(S^{c}\right)=1-9 / 10=.1$
- $p(E \mid S)=p(w)$
- $p\left(E^{c} \mid S\right)=1-p(w)$
- $p\left(E \mid S^{c}\right)=q(w)$
- $p\left(E^{c} \mid S^{c}\right)=1-q(w)$

Probability of Spam
Probability of Real Message

Probability w appears in Spam
Probability w does NOT appears in Spam

Probability w appears in Message

Probability w does NOT appear in Message

- $p(S \mid E)=\frac{p(E \mid S) p(S)}{p(E \mid S) p(S)+p\left(E \mid S^{c}\right) p\left(S^{c}\right)}=\frac{9 p(w)}{9 p(w)+q(w)}$
- $p\left(S^{c} \mid E^{c}\right)=\frac{p\left(E^{c} \mid S^{c}\right) p\left(S^{c}\right)}{p\left(E^{c} \mid S^{c}\right) p\left(S^{c}\right)+p\left(E^{c} \mid S\right) p(S)}=\frac{1-q(w)}{(1-q(w))+9(1-p(w))}$

Monte Hall Problem

Notation

- $F=$ event that a person selects the door with the prize
- $E=$ event that the door opened by Monte Hall does not contain the prize

Protocol

- $p(F)=1 / 3$
- $\quad p(E \mid F)=1$
- $p\left(E \mid F^{c}\right)=1$

You have a $1 / 3$ chance of selecting the prize
Monte CANNOT have prize if you do
Monte NEVER opens the door with the prize

Problem

- $\quad p(F \mid E)=$ probability that your door has the prize if Monte Hall's does not $=$?

Monte Hall Problem (continued)

Probabilities

- $p(F)=1 / 3$

Probability your door has the prize

- $p\left(F^{c}\right)=2 / 3$

Probability your door does not have prize

- $\quad p(E \mid F)=1$

Monte CANNOT have prize if you do

- $p\left(E \mid F^{c}\right)=1$

Monte NEVER opens the door with the prize

Conditional Probability

- $p(F \mid E)=\frac{p(E \mid F) p(F)}{p(E \mid F) p(F)+p\left(E \mid F^{c}\right) p\left(F^{c}\right)}=\frac{(1)(1 / 3)}{(1)(1 / 3)+(1)(2 / 3)}=1 / 3$

Conclusion

- Switch doors with Monte Hall

Monte Hall Problem -- Variation

Probabilities

- $p(F)=1 / 3$

Probability your door has the prize

- $p\left(F^{c}\right)=2 / 3$

Probability your door does not have prize

- $\quad p(E \mid F)=1$
- $p\left(E \mid F^{c}\right)=1 / 2$

Monte CANNOT have prize if you do
Monte selects a door at random

Conditional Probability

- $p(F \mid E)=\frac{p(E \mid F) p(F)}{p(E \mid F) p(F)+p\left(E \mid F^{c}\right) p\left(F^{c}\right)}=\frac{(1)(1 / 3)}{(1)(1 / 3)+(1 / 2)(2 / 3)}=1 / 2$

Conclusion

- Switching does NOT change the odds.

Daughter Problem

Notation

- $F=$ event that a person with two children has two daughters
- $E=$ event that a person with two children has at least one daughter

Protocol

- $p(F)=1 / 4$
one of four possible case: BB, BG, GB. $\underline{\text { GG }}$
- $p\left(F^{c}\right)=3 / 4$
three of four possible case: $\underline{B B}, \underline{B G}, \underline{G B} . \operatorname{GG}$
- $\quad p(E \mid F)=1$
- $p\left(E \mid F^{c}\right)=2 / 3$
if you have two daughters, you have at least one
two out of three cases: BB, BG, GB

Problem

- $\quad p(F \mid E)=$ probability person has two daughters if they have one daughter $=$?

Daughter Problem (continued)

Probabilities

- $\quad p(F)=1 / 4$

Probability of two daughters

- $\quad p\left(F^{c}\right)=3 / 4$

Probability of at most one daughter

- $\quad p(E \mid F)=1$

If you have two daughter, you have at least one

- $p\left(E \mid F^{c}\right)=2 / 3$

Two out of three cases: BB, BG, GB

Conditional Probability

- $p(F \mid E)=\frac{p(E \mid F) p(F)}{p(E \mid F) p(F)+p\left(E \mid F^{c}\right) p\left(F^{c}\right)}=\frac{(1)(1 / 4)}{(1)(1 / 4)+(2 / 3)(3 / 4)}=1 / 3$

A Daughter Named Alice

Notation

- $F=$ event that a person with two children has two daughters
- $E=$ event that a person with two children has one daughter named Alice
- $\quad p=$ percentage of girls named Alice

Protocol

- $p(F)=1 / 4$
one of four possible case: BB, BG, GB. $\underline{\mathrm{GG}}$
- $p\left(F^{c}\right)=3 / 4$
three of four possible case: $\underline{B B}, \underline{B G}, \underline{G B} . \operatorname{GG}$
- $\quad p(E \mid F)=2 p \quad$ Alice is a girl's name and there are two girls
- $p\left(E \mid F^{c}\right)=(2 / 3) p \quad$ two of three possible cases: $\mathrm{BB}, \underline{\mathrm{GB}}, \underline{\mathrm{BG}}$

Problem

- $\quad p(F \mid E)=$ probability person has two daughters if they daughter named Alice $=$?

A Daughter Named Alice (continued)

Probabilities

- $\quad p(F)=1 / 4$

Probability of two daughters

- $\quad p\left(F^{c}\right)=3 / 4$

Probability of at most one daughter

- $\quad p(E \mid F)=2 p$
- $\quad p\left(E \mid F^{c}\right)=2 p / 3$

Alice is a girl's name and there are two girls
two of three possible cases: $\mathrm{BB}, \underline{\mathrm{GB}}, \underline{\mathrm{BG}}$

Conditional Probability

- $p(F \mid E)=\frac{p(E \mid F) p(F)}{p(E \mid F) p(F)+p\left(E \mid F^{c}\right) p\left(F^{c}\right)}=\frac{(2 p)(1 / 4)}{(2 p)(1 / 4)+(2 p / 3)(3 / 4)}=1 / 2$

Expectation and

Average Case Complexity

Random Variables

Definition

- A Random Variable X is a Function from the sample space S of an experiment to the real numbers.
- $\quad X: S \rightarrow R$

Examples

- Coin Tossing
-- $\quad S=\{H H, H T, T H, T T\}$
-- $\quad X=$ Number of heads
- Dice
-- $\quad S=\{(1,1),(1,2), \ldots,(6,6)\}$
-- $\quad X=$ Sum of Dots

Expectation

Setup

- $S=\left\{a_{1}, \ldots, a_{n}\right\}=$ sample space
- \quad pr $: S \rightarrow[0,1]=$ probability distribution
- $\quad X: S \rightarrow R=$ random variable

Expectation

- $E(X)=\sum_{i=1}^{n} \operatorname{Pr}\left(a_{i}\right) X\left(a_{i}\right)=\sum_{i=1}^{n} \operatorname{Pr}\left(X=r_{i}\right) r_{i}$
- Weighted Average

Additivity

- $E(X+Y)=E(X)+E(Y)$

Additivity

Formula

- $\quad E(X+Y)=E(X)+E(Y)$

Proof

- $E(X+Y)=\sum_{i=1}^{n} \operatorname{Pr}\left(a_{i}\right)\left(X\left(a_{i}\right)+Y\left(a_{i}\right)\right)$

$$
=\sum_{l=1}^{n} \operatorname{Pr}\left(a_{i}\right) X\left(a_{i}\right)+\sum_{i=1}^{n} \operatorname{Pr}\left(a_{i}\right) Y\left(a_{i}\right)=E(X)+E(Y)
$$

Advice

- Try to use Additivity, NOT the Definition of Expectation

Dice

Direct Method

- $S=\{(1,1),(1,2), \ldots,(6,6)\}$
- $X=$ Sum of Dots
- $E(X)=\sum_{k=0}^{n} \operatorname{Pr}\left(s_{i}\right) X\left(s_{i}\right)=\frac{12 \times 1+11 \times 2+10 \times 3+\cdots}{36}=\frac{252}{36}=7$

Summation Method

- $X_{1}=$ Number of Dots of First Die
- $X_{2}=$ Number of Dots of Second Die
- $X=X_{1}+X_{2}$
- $E\left(X_{k}\right)=\frac{1+2+3+4+5+6}{6}=\frac{21}{6}=3.5$
- $E(X)=E\left(X_{1}\right)+E\left(X_{2}\right)=3.5+3.5=7$

Bernoulli Trials

Binomial Distribution

- $\quad X($ Experiment $)=$ Number of Successes
- $E(X)=\sum_{k=0}^{n} k B_{k}^{n}(t)=n t$
- Direct Method -- By Brute Force Algebra (see next page)

Summation Method

- $\quad X_{k}=1$ for success on the $k t h$ trial
$=0$ for failure on the $k t h$ trial
- $X=\sum_{k=1}^{n} X_{k}$
- $E(X)=\sum_{k=1}^{n} E\left(X_{k}\right)=\sum_{k=1}^{n} t=n t$

Expectation: Binomial Distribution

Algebra

$$
\begin{aligned}
E(X) & =\sum_{k=0}^{n} k B_{k}^{n}(t) \\
& =\sum_{k=1}^{n} k\binom{n}{k} t^{k}(1-t)^{n-k} \\
& =\sum_{k=1}^{n} k \frac{n!}{k!(n-k)!} t^{k}(1-t)^{n-k} \\
& =n t \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!((n-1)-(k-1))!} t^{k-1}(1-t)^{(n-1)-(k-1)} \\
& =n t \sum_{k=1}^{n}\binom{n-1}{k-1} t^{k-1}(1-t)^{(n-1)-(k-1)} \\
& =n t \sum_{k=1}^{n} B_{k-1}^{n-1}(t) \\
& =n t
\end{aligned}
$$

Another Example

Birthday Problem

- Find number of people, n, in a room, so that expectation is at least one that two people have the same birthday.

Setup

- $\quad X(n)=$ \# people with the same birthday (day and month)
- $\quad X_{i j}\left(a_{i}, a_{j}\right)=1 \quad$ if a_{i} and a_{j} born on same day and month $=0$ otherwise
- $\quad X(n)=\sum_{i<j} X_{i j}\left(a_{i}, a_{j}\right)$

Solution

- $\quad X(n)=$ \# people with the same birthday
- $\quad X(n)=\sum_{i<j} X_{i j}\left(a_{i}, a_{j}\right)$

$$
\text { -- } \quad p\left(X_{i j}=1\right)=1 / 365
$$

-- $\quad E\left(X_{i j}\right)=1 / 365$
-- $\quad \# X_{i j}=C(n, 2)$
-- $\quad E(X)=(1 / 365) C(n, 2)$
-- $\quad n \geq 28 \Rightarrow C(n, 2) \geq 378 \Rightarrow X(n) \geq 1$

- NOT quite the same as the number needed to make the probability $1 / 2$.

Average Case Complexity

Setup

- $S=\left\{a_{1}, \ldots, a_{n}\right\}=$ possible inputs to an algorithm
- $X\left(a_{i}\right)=$ number of operations used by the algorithm for input a_{i}

Formula

- $E(X)=\sum_{i=1}^{n} \operatorname{Pr}\left(a_{i}\right) X\left(a_{i}\right)=$ Average Case Complexity

Example -- Linear Search

Assumptions

- n elements in UNORDERED list: a_{1}, \ldots, a_{n}
- $\operatorname{Pr}\left(x=a_{i}\right)=\frac{1}{n} \quad$ (equal likelihood)
- $\quad X\left(a_{i}\right)=$ number of comparisons used to locate a_{i} is i

Average Case Complexity

- $E(x)=\sum_{i=1}^{n} \frac{i}{n}=\frac{1}{n} \sum_{i=1}^{n} i=\frac{1}{n}\left(\frac{n(n+1)}{2}\right)=\frac{n+1}{2}$
-- Result makes good sense as an average -- half more, half less

Worst Case Complexity $=n$

Linear Search -- Revisited

Assumptions

- n elements in UNORDERED list: a_{1}, \ldots, a_{n}
- $\operatorname{Pr}\left(x=a_{i}\right)=\frac{1}{n} \quad$ (equal likelihood)
- $\operatorname{Pr}(x$ in list $)=p$
- $\quad X\left(a_{i}\right)=$ number of comparisons used to locate a_{i} is $2 i+1$
-- compare to current element
-- check for end of list -- inside and outside the loop
- $\quad X(a$ not in list $)=$ number of comparisons to determine a not in list is $2 n+2$
-- one additional comparison on $(n+1)^{s t}$ time through the loop

Linear Search -- Revisited (continued)

Average Case Complexity

- $E(x)=(2 n+2)(1-p)+\sum_{i=1}^{n} \frac{(2 i+1) p}{n}$

$$
=(2 n+2)(1-p)+\frac{p}{n} \sum_{i=1}^{n}(2 i+1)
$$

$$
=(2 n+2)(1-p)+\frac{\left((n+1)^{2}-1\right) p}{n}
$$

$$
=(2 n+2)(1-p)+(n+2) p
$$

$$
=(2 n+2)-n p
$$

Variance and

Standard Deviation

Variance and Standard Deviation

Setup

- $S=\left\{a_{1}, \ldots, a_{n}\right\}=$ sample space
- $p: S \rightarrow[0,1]=$ probability distribution
- $X=$ random variable

Variance

- $\quad V(X)=\sum_{i=1}^{n}\left(X\left(s_{i}\right)-E(X)\right)^{2} p\left(s_{i}\right)$

Standard Deviation

- $\sigma(X)=\sqrt{V(X)}=\sqrt{\sum_{i=1}^{n}\left(X\left(s_{i}\right)-E(X)\right)^{2} p\left(s_{i}\right)}$

Objective

- To measure deviation of a random variable X from its average value $E(X)$ (expectation)

Variance and Expectation

Theorem: $V(X)=E\left(X^{2}\right)-(E(X))^{2}$

Proof: $\quad V(X)=\sum_{i=1}^{n}\left(X\left(s_{i}\right)-E(X)\right)^{2} p\left(s_{i}\right)$

$$
\begin{aligned}
& =\sum_{i=1}^{n} X\left(s_{i}\right)^{2} p\left(s_{i}\right)-2 E(X) \sum_{i=1}^{n} X\left(s_{i}\right) p\left(s_{i}\right)+E(X)^{2} \sum_{i=1}^{n} p\left(s_{i}\right) \\
& =E\left(X^{2}\right)-2 E(X) E(X)+E(X)^{2} \\
& =E\left(X^{2}\right)-(E(X))^{2}
\end{aligned}
$$

Example

On Die

- $E(X)=\frac{1+2+3+4+5+6}{6}=\frac{21}{6}=\frac{7}{2}$
- $(E(X))^{2}=\left(\frac{1+2+3+4+5+6}{6}\right)^{2}=\left(\frac{7}{2}\right)^{2}=\frac{49}{4}$
- $E\left(X^{2}\right)=\frac{1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}}{6}=\frac{91}{6}$
- $V(X)=E\left(X^{2}\right)-(E(X))^{2}=\frac{91}{6}-\frac{49}{4}=\frac{35}{12} \approx 3$

Expectation and Independent Variables

Definition

- X, Y are called independent random variables if

$$
p(X=r \text { and } Y=s)=P(X=r) P(X=s) \text { for all } r, s
$$

Theorem: $\quad X, Y$ independent $\Rightarrow E(X Y)=E(X) E(Y)$
Proof: $\quad E(X Y)=\sum_{i=1}^{n} \operatorname{Pr}\left(a_{i}\right) X\left(a_{i}\right) Y\left(a_{i}\right)$

$$
\begin{aligned}
& =\sum_{r_{1}, r_{2}} r_{1} r_{2}\left(\operatorname{Pr}\left(X=r_{1}\right) \text { and } \operatorname{Pr}\left(Y=r_{2}\right)\right) \\
& =\left(\sum_{r_{1}} r_{1} \operatorname{Pr}\left(X=r_{1}\right)\right)\left(\sum_{r_{2}} r_{2} \operatorname{Pr}\left(Y=r_{2}\right)\right) \\
& =E(X) E(Y)
\end{aligned}
$$

Variance and Independent Variables

Theorem: $\quad X, Y$ independent $\Rightarrow V(X+Y)=V(X)+V(Y)$

Proof: $V(X+Y)=E\left((X+Y)^{2}\right)-(E(X+Y))^{2}$

$$
\begin{aligned}
& =E\left(X^{2}+2 X Y+Y^{2}\right)-(E(X))^{2}-2 E(X) E(Y)-(E(Y))^{2} \\
& =E\left(X^{2}\right)+2 E(X Y)+E\left(Y^{2}\right)-(E(X))^{2}-2 E(X) E(Y)-(E(Y))^{2}
\end{aligned}
$$

$$
=E\left(X^{2}\right)-(E(X))^{2}+E\left(Y^{2}\right)-(E(Y))^{2} \quad\{E(X Y)=E(X) E(Y)\}
$$

$$
=V(X)+V(Y)
$$

Two Dice

Notation

- $\quad X_{1}=$ number of dots on first die
- $X_{2}=$ number of dots on second die
- $X=X_{1}+X_{2}=$ sum of dots on both dice

Variance

- $V\left(X_{1}\right)=V\left(X_{2}\right)=\frac{35}{12}$
- $V(X)=V\left(X_{1}+X_{2}\right)=\frac{35}{12}+\frac{35}{12}=\frac{35}{6} \approx 6$

Bernoulli Trials

1 Bernoulli Trial

- $X(t)=1$ success
$=0$ failure
- $E(X)=t$
- $V(X)=E\left(X^{2}\right)-(E(X))^{2}=t-t^{2}=t(1-t)$
n Bernoulli Trials
- $V(X)=V\left(X_{1}+\cdots+X_{n}\right)=V\left(X_{1}\right)+\cdots+V\left(X_{n}\right)$
- $\quad V(X)=n t(1-t)$

