Relations

Binary Relations

Ordered Pair -- (x,y)

- $(x, y) = (x^*, y^*)$ means that $x = x^*$ and $y = y^*$
- $(x,y) \neq (y,x)$ -- order matters

Cross Product

•
$$A \times B = \{(a,b) \mid (a \in A) \land (b \in B)\}$$

Binary Relation

- Any subset R of $A \times B$ is called a *binary relation* on A,B.
- $(a,b) \in R \Leftrightarrow aRb$

Examples

- 1. $R = \{(a,b) | a < b\}$
- 2. $R = \{(students, courses)\}$

3.
$$R = \{(f,g) | f = O(g)\}$$

4.
$$R = \{(A,B) \mid |A| = |B|\}$$

- 5. Functions: $R = \{(a, f(a)) | a \in A, f(a) \in f(A)\}$
 - -- All Functions are Relations
 - -- NOT All Relations are Functions

Representations

- 1. Tables
- 2. Graphs
- 3. Matrices

Directed Graphs

Analogy

- Graphs \approx Relations
- Directed graphs are pictures of relations
- $uRv \Leftrightarrow$ there is an edge from u to v

Bipartite Graphs

- All edges go from set of vertices A to disjoint set of vertices B
- $R \subset A \times B$ -- general edge relation

Edge Relations

- Contain only topological -- yes/no -- information.
- No other data except connectivity.

Number of Relations

Finite Sets

|A| = m and |B| = n

 $\Rightarrow |A \times B| = |A| |B| = mn$

 \Rightarrow # relations on $A \times B =$ # subsets of $A \times B = 2^{mn}$

N-Ary Relations

- $R \subset A_1 \times A_2 \times \cdots \times A_n$
- Table = Relational Data Base
- Projections -- Delete some columns
- Joins -- Combine overlapping tables

Relational Data Base

<u>Student</u>	<u>Homework</u>	<u>Midterm</u>	<u>Final</u>	<u>Grade</u>
Lydia	90	85	95	A–
Joe	80	85	90	В
Ron	60	45	50	F
Dan	95	98	100	A+
Sally	70	65	75	С

Most Important Relations

- 1. Equivalence Relations (on $A \times A$)
- 2. Transitive Closure
- 3. Partial Order

Equivalence Relations

Properties

- 1. Reflexive -- *aRa*
- 2. Symmetric -- $aRb \Rightarrow bRa$
- 3. Transitive -- aRb and $bRc \Rightarrow aRc$

Examples of Equivalence Relations

- 1. Rice undergraduates in the same college.
- 2. People of same height.
- 3. Computers with same amount of memory.
- 4. Programs that compute the same function.
- 5. Horses of the same color
- 6. Sets of the same cardinality.
- 7. Propositions that are logically equivalent.
- 8. Functions in the same complexity class.

Examples of Relations that are NOT Equivalence Relations

- 1. a is the father of b -- not reflexive, not symmetric
- 2. *a* is the brother of b -- not symmetric (sisters)
- 3. *a* has at least one parent in common with b -- not transitive
- 4. f = O(g) -- not symmetric

Reflexive and Symmetric Representations

- 1. Graphs
- 2. Matrices

Equivalence Classes for Equivalence Relations

Equivalence Classes

• $[a] = \{x \mid aRx\}$

Properties

- $[a] = [b] \Leftrightarrow aRb$
- $[a] \cap [b] = \phi$ otherwise

Partitions

Definition

1. $A = \bigcup_{i \in I} A_i$

-- every element of A lies in some A_i

2.
$$A_i \cap A_j = \phi$$
 $i \neq j$

-- no element of A lies in more than one A_i

Equivalence Relations \Leftrightarrow **Partitions**

Theorem: Equivalence Relations ⇔ *Partitions* Proof:

 \Rightarrow : Let $A_a = [a]$.

Then by the properties of equivalence classes the sets A_a form a partition of A.

 \Leftarrow : Let $\{A_i\}$ be a partition of A, and define

 $aRb \Leftrightarrow \exists i \ a, b \in A_i$.

Then it is easy to check that R is reflexive, symmetric, and transitive, so R is an equivalence relation.

QED

Functions on Equivalence Classes

Subtlety

- Let f([a]) = g(a)
- To show *f* is well-defined, must show that $aRb \Rightarrow g(a) = g(b)$
- 3. If $aRb \Rightarrow g(a) = g(b)$, then we say that g respects equivalence classes

Example

Rice Undergraduates

• $aRb \Leftrightarrow a$ and b are in the same college

Functions

- f([Mary]) = Mary's Last Name
 f does not respect equivalence classes
- f([Mary]) = Mary's College
 f respects equivalence classes

<u>Closures</u>

Closure

• Smallest relation $S \supset R$ with property *P*

Reflexive Closure

• $S = R \cup \Delta$, where $\Delta = \{(a,a)\}$

Symmetric Closure

• $S = R \cup R^{-1}$, where $(b,a) \in R^{-1} \Leftrightarrow (a,b) \in R$

Transitive Closure

• $S = R^*$ (see next lecture)

Transitive Closure

Composition

Functions

- If $f: A \to B$ and $g: B \to C$, then $g \circ f: A \to C$
- $(g \circ f)(a) = g(f(a))$

Relations

- If $R \subset A \times B$ and $S \subset B \times C$, then $S \circ R \subset A \times C$
- $a(S \circ R)c \Leftrightarrow \exists b \in B \text{ such that } aRb \text{ and } bSc$

Definitions

- aRb means b = parent of a
- bSc means b = sibling of c

Composition

• $a(S \circ R)c$ means

Definitions

- aRb means b = parent of a
- bSc means b = sibling of c

Composition

- $a(S \circ R)c$ means c = aunt/uncle of a
- $a(R \circ R)c$ means

Definitions

- aRb means b = parent of a
- bSc means b = sibling of c

Composition

- $a(S \circ R)c$ means c = aunt/uncle of a
- $a(R \circ R)c$ means c = grandparent of a
- $a(R^{-1} \circ S \circ R)c$ means

Definitions

- aRb means b = parent of a
- bSc means b = sibling of c

Composition

- $a(S \circ R)c$ means c = aunt/uncle of a
- $a(R \circ R)c$ means c = grandparent of a
- $a(R^{-1} \circ S \circ R)c$ means c = cousin of a

Composition and Matrix Multiplication

Notation

- M = Matrix for R
- N =Matrix for S

Composition

- M * N =Matrix for $S \circ R$
- * = Boolean Matrix Multiplication

$$-- + = or$$

 $-- \times = and$

Powers and Closure

Powers of a Relation -- Recursive Definition

- $R^0 = I$ (Identity)
- $R^1 = R$
- $R^2 = R \circ R$
- $R^{n+1} = R \circ R^n = \underbrace{R \circ \cdots \circ R}_{n+1 \ factors}$

Explicit Definition

• $a R^n b \Leftrightarrow a = x_0 R x_1 R x_2 \cdots x_{n-1} R x_n = b$ (by induction on *n*)

Transitive Closures

- $R^+ = \bigcup_{k \ge 1} R^k$
- $R^* = \bigcup_{k \ge 0} R^k$

<u>Closures</u>

Transitive Closure

- R^+ = transitive closure of R
- $a R^+ b \Leftrightarrow a = x_0 R x_1 R x_2 \cdots x_{n-1} R x_n = b$ $n \ge 1$

Reflexive and Transitive Closure

- R^* = transitive closure of R
- $a R^* b \Leftrightarrow a = x_0 R x_1 R x_2 \cdots x_{n-1} R x_n = b$ $n \ge 0$
- R^* is often called just the *transitive closure*

Observations

- * means 0 or more
- + means 1 or more
- R^* is reflexive
- R^+ need not be reflexive

Examples

1.
$$R = \{(a,b) \mid a \text{ is a parent of } b\}$$

-- $R^+ = ?$
-- $R^* = ?$

More Examples

Graphs

- \rightarrow means edge
- \rightarrow * means path

Trees

- \rightarrow means child
- \rightarrow * means descendant

Computers

- → means can get from one configuration

 (instantaneous description, snapshot) to another
 in one move (1 machine cycle, 1 instruction)
- \Rightarrow * means an entire computation

Closures

Matrix Definition

• M = Matrix for the relation R

•
$$R^+ = \sum_{k \ge 1} M^k$$

•
$$R^* = \sum_{k \ge 0} M^k$$

• Matrix multiply and add = boolean multiply and add

Graph Definition

•
$$G = (V, E)$$

-- $V = A$ (set on which *R* is defined)
-- $E = \{a \rightarrow b \mid aRb\}$

•
$$aR^+b \Leftrightarrow a \to x_1 \to \dots \to x_n \to b$$
 $n \ge 1$

•
$$a R^* b \Leftrightarrow a \to x_1 \to \dots \to x_n \to b$$
 $n \ge 0$

Simple Theorems on Transitivity

Theorem 1: *R* is transitive if and only if $R \supset R^n$ for all $n \ge 1$. Proof: \Rightarrow : By induction on *n*.

$$\Leftarrow: R \supset R^n \Rightarrow R \supset R^2 \Rightarrow R \ transitive$$

- **Theorem 2:** 1. R^* is reflexive 2. R^+, R^* are transitive 3. $R^+, R^* \supset R$
- Proof: Obvious from Definitions

Fundamental Theorem

- Theorem 3: R^* is the smallest reflexive and transitive relation that contains *R*. In particular, $R^* = \bigcap Q$, where the intersection is over all reflexive and transitive relations *Q* that contain *R*.
- Proof: By Theorem 2, R^* is clearly a reflexive and transitive relation that contains R. Now suppose that Q is any reflexive and transitive relation that contains R. Then

$$aR^*b \Rightarrow a = x_0Rx_1Rx_2\cdots x_{n-1}Rx_n = b$$

$$\Rightarrow a = x_0 Q x_1 Q x_2 \cdots x_{n-1} Q x_n = b$$

$$\Rightarrow aQb$$

because Q is reflexive and transitive. Hence $Q \supset R^*$. QED

Relations on Finite Sets

Theorem 4: Let |A| = n, and let R be a relation on A. If there is a path in R from a to b, then there is a path in R from a to b of length at most n(n-1) if $a \neq b$.

Proof: Remove cycles. Pigeonhole principle.

Corollary: $|A| = n \Rightarrow R^* = R \cup R^2 \cup \cdots \cup R^n$

Partial Order

<u>Orders</u>

Partial Order

- Reflexive -- *a R a*
- Antisymmetric -- aRb and $bRa \Rightarrow a=b$
- Transitive -- aRb and $bRc \Rightarrow aRc$

Note: There may be elements that are NOT comparable

Total Order

• Partial order where every two elements are comparable

Well Order

- Total order where every nonempty subset has a smallest element
- Induction works only on well ordered sets
- Base case = smallest element

Examples

- $\{\mathbf{N},\leq\}$
- $\{\mathbf{Z},\leq\}$
- $\{P(S), \supset\}$
- $\{\mathbf{Z^+}, \mathsf{I}\}$
- Orders on $N \times N$
 - -- Lexicographic -- $(a,b) < (c,d) \Leftrightarrow a < c \text{ or } a = c \text{ and } b < d$
 - -- Product -- $(a,b) < (c,d) \Leftrightarrow a < c \text{ and } b < d$
- Order on Strings Σ^*
 - -- Lexicographic order = Dictionary order
- Graphs and Trees
 - -- Subgraphs and Subtrees

Hasse Diagrams

• Graphical representation of a poset

• Relation graph without reflexive and transitive edges

• See pictures

Hasse Diagrams

Definitions

Maximal and Minimal Elements

- in the set
- not unique

Greatest (Maximum) and Least (Minimum) Elements

- in the set
- unique

Upper and Lower Bounds

- not necessarily in the set
- not unique

Lub and Glb

- not necessarily in the set
- unique

Examples

Hasse Diagram

- Maximal and Minimal Elements
- Upper and Lower Bounds

 $\{P(S),\supset\}$

• Greatest = S Least = ϕ

$\{Z,\leq\}$

• no greatest or least element

 $\{(0,1),\leq\}$

• no greatest or least element

Lattices

Definition

• Poset where every pair has a lub and a glb

Examples

- Total Orders
- $\{\mathbf{Z}^+, \mathsf{I}\}$
 - -- glb(a,b) = gcd(a,b)
 - -- lub(a,b) = lcm(a,b)
- $\{P(S), \supset\}$
 - -- $glb(A,B) = A \cap B$
 - $-- \quad \operatorname{lub}(A,B) = A \cup B$
- $\{(N \times N, Product)\}$
 - -- $\operatorname{glb}\left\{(a,c),b,d\right\} = \left(\min(a,c),\min(b,d)\right)$
 - -- $\operatorname{lub}\left\{(a,c),b,d\right\} = \left(\max(a,c),\max(b,d)\right)$

Topological Sort

Purpose

• Convert a partial order into a total order

Applications

- Scheduling -- Engineering
- Hidden Surface Algorithms -- Computer Graphics

Topological Sort on Finite Sets

Lemma

- Every finite poset has a minimal element
- Proof by induction on *|S|*

Algorithm

- Choose a minimal element *a* of *S*
- Choose a minimal element *b* of $S \{a\}$
- Continue until all elements of *S* are exhausted
- Rank elements in order chosen

Result of Topological Sort is NOT Unique!

• Examples -- Hasse diagrams

Scheduling Comp 280 for Spring 2011

