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Binary Relations

Ordered Pair -- (x,y)

• (x, y) = (x∗, y∗)   means that  x = x∗  and y = y∗

• (x, y) ≠ (y, x)   --  order matters

Cross Product

• A × B = (a,b) | (a ∈A)∧ (b ∈B){ }

Binary Relation

• Any subset R of A × B  is called a binary relation on A,B.

• (a, b)∈R ⇔ aRb



Examples

1. R = {(a,b) | a < b}

2. R = {(students,courses)}

3. R = {( f ,g) | f = O(g)}

4. R = {(A, B) | | A | = | B |}

5. Functions:  R = a, f (a)( ) | a ∈A, f (a)∈ f (A){ }
-- All Functions are Relations
-- NOT All Relations are Functions



Representations

1. Tables

2. Graphs

3. Matrices



Directed Graphs

Analogy

• Graphs ≈ Relations

• Directed graphs are pictures of relations

• uRv ⇔ there is an edge from u to v

Bipartite Graphs

• All edges go from set of vertices A to disjoint set of vertices B

• R ⊂ A × B  -- general edge relation

Edge Relations 

• Contain only topological -- yes/no -- information.

• No other data except connectivity.



Number of Relations

Finite Sets

| A | = m and  | B | = n

⇒  | A × B | = | A | | B | = mn

⇒  # relations on A × B   =  # subsets of A × B  = 2mn



N-Ary Relations

•  R ⊂ A1 × A2 ×× An

• Table = Relational Data Base

• Projections -- Delete some columns

• Joins -- Combine overlapping tables



Relational Data Base

Student Homework Midterm Final Grade

Lydia 90 85 95 A–

Joe 80 85 90 B

Ron 60 45 50 F

Dan 95 98 100 A+

Sally 70 65 75 C



Most Important Relations

1. Equivalence Relations  (on A × A)

2. Transitive Closure

3. Partial Order



Equivalence Relations

Properties

1. Reflexive -- a Ra

2. Symmetric -- a Rb ⇒ b Ra

3. Transitive -- a Rb  and  b Rc ⇒ a Rc



Examples of Equivalence Relations

1. Rice undergraduates in the same college.

2. People of same height.

3. Computers with same amount of memory.

4. Programs that compute the same function.

5. Horses of the same color

6. Sets of the same cardinality.

7. Propositions that are logically equivalent.

8. Functions in the same complexity class.



Examples of Relations that are NOT Equivalence Relations

1. a is the father of b -- not reflexive, not symmetric

2. a is the brother of b -- not symmetric  (sisters)

3. a has at least one parent in common with b -- not transitive

4. f = O(g) -- not symmetric



Reflexive and Symmetric Representations

1. Graphs

2. Matrices



Equivalence Classes for Equivalence Relations

Equivalence Classes

• [a] = {x  | aR x}

Properties

• [a] = [b] ⇔ a Rb

• [a]∩ [b] = φ otherwise



Partitions

Definition

1. A = ∪i∈I Ai

-- every element of A lies in some Ai

2. Ai ∩ Aj = φ i ≠ j

-- no element of A lies in more than one Ai



Equivalence Relations ⇔ Partitions

Theorem: Equivalence Relations ⇔ Partitions
Proof:
⇒: Let Aa = [a].  
Then by the properties of equivalence classes the sets Aa  
form a partition of A.

⇐: Let {Ai } be a partition of A, and define
a Rb ⇔ ∃i  a, b ∈Ai .

Then it is easy to check that R is reflexive, symmetric, and 
transitive, so R is an equivalence relation.

QED



Functions on Equivalence Classes

Subtlety

• Let  f [a]( ) = g(a)

• To show f is well-defined, must show that

a Rb ⇒ g(a) = g(b)

3. If a Rb ⇒ g(a) = g(b), then we say that 

g respects equivalence classes



Example

Rice Undergraduates

• a Rb ⇔ a and  b are in  the same college

Functions

• f [Mary]( ) = Mary 's Last  Name
-- f does not respect equivalence classes

• f [Mary]( ) = Mary 's College
-- f respects equivalence classes



Closures

Closure
• Smallest relation S ⊃ R with property P

Reflexive Closure
• S = R∪Δ ,   where  Δ = {(a,a)}

Symmetric Closure

• S = R∪ R−1,   where  (b,a)∈R−1 ⇔ (a,b)∈R

Transitive Closure

• S = R∗ ( see next lecture)



Transitive Closure



Composition

Functions

• If  f : A→ B  and   g : B→C ,  then  g  f : A→C

•  (g  f )(a) = g f (a)( )

Relations

• If  R ⊂ A × B  and  S ⊂ B ×C , then   S  R ⊂ A ×C

•  a(S  R)c ⇔ ∃b ∈B such that a Rb and bS c



Examples of Composition

Definitions

• a R b   means  b = parent of a

• bSc  means  b = sibling of c

Composition

•  a(S  R)c   means



Examples of Composition

Definitions

• a R b   means  b = parent of a

• bSc  means  b = sibling of c

Composition

•  a(S  R)c   means  c = aunt/uncle of a

•  a(R  R)c   means 



Examples of Composition

Definitions

• a R b   means  b = parent of a

• bSc  means  b = sibling of c

Composition

•  a(S  R)c   means  c = aunt/uncle of a

•  a(R  R)c   means  c = grandparent of a

•  a(R−1
S  R)c   means



Examples of Composition

Definitions

• a R b   means  b = parent of a

• bSc  means  b = sibling of c

Composition

•  a(S  R)c   means  c = aunt/uncle of a

•  a(R  R)c   means  c = grandparent of a

•  a(R−1
S  R)c   means  c = cousin of a



Composition and Matrix Multiplication

Notation

• M = Matrix for R

• N = Matrix for S

Composition

• M ∗N  = Matrix for  S  R

• ∗ = Boolean Matrix Multiplication
-- + = or
-- ×  = and



Powers and Closure

Powers of a Relation -- Recursive Definition

• R0 = I   (Identity)

• R1 = R

•  R2 = R R

•
 

Rn+1 = R Rn = R  R
n+1  factors
 

Explicit Definition

•  a Rn b ⇔ a = x0 R x1 R x2xn−1 R xn = b (by induction on n)

Transitive Closures

• R+ = ∪k≥1Rk

• R∗ = ∪k≥0 Rk



Closures

Transitive Closure

• R+  = transitive closure of R

•  a R+ b ⇔ a = x0 R x1 R x2xn−1 R xn = b n ≥ 1

Reflexive and Transitive Closure

• R∗  = transitive closure of R

•  a R∗ b ⇔ a = x0 R x1 R x2xn−1 Rxn = b n ≥ 0

• R∗  is often called just the transitive closure

Observations
• *  means 0 or more
• +  means 1 or more

• R∗  is reflexive

• R+  need not be reflexive



Examples

1. R = {(a,b) | a is a parent  of  b}

-- R+  = ?

-- R∗  = ?

2. R = {(a, b) | a shares a common border with b}

-- R+  = ?

-- R∗  = ?

3. R = {(a,b) | computer  a is  connected  to  computer b}

-- R+  = ?

-- R∗  = ?

4. R = {(a, b) | instruction a precedes instruction b}

-- R+  = ?

-- R∗  = ?



More Examples

Graphs
• → means edge

• →∗ means path

Trees
• →   means child

• →∗  means descendant

Computers
• ⇒   means can get from one configuration 

(instantaneous description, snapshot) to another 
in one move (1 machine cycle, 1 instruction)

• ⇒∗  means an entire computation



Closures

Matrix Definition

• M = Matrix for the relation R

• R+ = M k

k≥1
∑

• R∗ = M k

k≥0
∑

• Matrix multiply and add = boolean multiply and add

Graph Definition

• G = (V, E)
-- V = A (set on which R is defined)
-- E = {a→ b | a Rb}

•  a R+ b ⇔ a→ x1 →→ xn → b n ≥ 1

•  a R∗b ⇔ a → x1 →→ xn → b n ≥ 0



Simple Theorems on Transitivity

Theorem 1:  R is transitive if and only if R ⊃ Rn for all n ≥1.

Proof: ⇒:  By induction on n. 

⇐:  R ⊃ Rn  ⇒ R ⊃ R2  ⇒ R  transitive

Theorem 2: 1. R∗ is reflexive

2. R+ , R∗ are transitive

3. R+ , R∗ ⊃ R

Proof: Obvious from Definitions



Fundamental Theorem

Theorem 3: R∗  is the smallest reflexive and transitive relation that contains R.

In particular, R∗ = ∩Q , where the intersection is over all reflexive 
and transitive relations Q that contain R.

Proof: By Theorem 2, R∗  is clearly a reflexive and transitive relation that 
contains R.  Now suppose that Q is any reflexive and transitive 
relation that contains R.  Then

 

a R∗ b ⇒ a = x0 Rx1 R x2xn−1R xn = b

          ⇒ a = x0Q x1Qx2xn−1Q xn = b

          ⇒ aQb

because Q is reflexive and transitive.

Hence Q ⊃ R∗. QED



Relations on Finite Sets

Theorem 4: Let | A |= n, and let R be a relation on A.  

If there is a path in R from a to b, then there is a path 

in R from a to b of length at most n (n −1 if a ≠ b).

Proof: Remove cycles.  Pigeonhole principle.

Corollary:   | A |= n ⇒ R∗ = R∪ R2 ∪∪ Rn



Partial Order



Orders

Partial Order

• Reflexive -- a Ra

• Antisymmetric -- a Rb   and  b Ra   ⇒  a = b

• Transitive -- a Rb   and  b Rc   ⇒  a Rc

Note:  There may be elements that are NOT comparable

Total Order

• Partial order where every two elements are comparable

Well Order

• Total order where every nonempty subset has a smallest element

• Induction works only on well ordered sets

• Base case = smallest element



Examples

• {N, ≤}

• {Z, ≤}

• {P(S), ⊃}

• {Z+, |}

• Orders on N × N
-- Lexicographic -- (a,b) < (c,d ) ⇔ a < c  or  a = c  and   b < d  
-- Product -- (a,b) < (c,d ) ⇔ a < c and   b < d

• Order on Strings Σ∗

-- Lexicographic order = Dictionary order

• Graphs and Trees
-- Subgraphs and Subtrees



Hasse Diagrams

• Graphical representation of a poset

• Relation graph without reflexive and transitive edges

• See pictures



Hasse Diagrams

c1 c2

b2b1 b3

a1 a2 a3 a4

A

B C

D E

F G

H



Definitions

Maximal and Minimal Elements
• in the set
• not unique

Greatest (Maximum) and Least (Minimum) Elements 
• in the set
• unique

Upper and Lower Bounds
• not necessarily in the set
• not unique

Lub and Glb
• not necessarily in the set
• unique



Examples

Hasse Diagram
• Maximal and Minimal Elements
• Upper and Lower Bounds

{P(S),⊃}

• Greatest = S Least = φ

{Z, ≤}  
• no greatest or least element

{(0,1), ≤} 
• no greatest or least element



Lattices

Definition

• Poset where every pair has a lub and a glb

Examples

• Total Orders

• {Z+ , |}

-- glb(a,b) = gcd(a,b)
-- lub(a, b) = lcm(a, b)

• {P(S), ⊃}
-- glb(A, B) = A∩B
-- lub(A, B) = A∪B

• {(N × N, Product}

-- glb (a,c), b, d){ } = min(a, c), min(b, d )( )
-- lub (a, c), b,d ){ } = max(a, c), max(b, d)( )



Topological Sort

Purpose

• Convert a partial order into a total order

Applications

• Scheduling -- Engineering

• Hidden Surface Algorithms -- Computer Graphics



Topological Sort on Finite Sets

Lemma
• Every finite poset has a minimal element
• Proof by induction on |S|

Algorithm
• Choose a minimal element a of S
• Choose a minimal element b of S − {a}
• Continue until all elements of S are exhausted
• Rank elements in order chosen

Result of Topological Sort is NOT Unique!
• Examples -- Hasse diagrams
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