
Sets



BIG IDEAS

Themes

1. There exist functions that cannot be computed 

in Java or any other computer language.

2. There exist subsets of the Natural Numbers that 

cannot be described in English or any other language.



Questions

1. What is a Function?

2. What is a Set?

3. What is a Subset?



Sets and Elements

Terms

• Sets = basic building blocks for mathematics

• Elements = members of sets

-- virtually anything, even other sets

• Set = a collection of elements

-- x ∈A  means x is an element of the set A

-- x ∉A  means x is NOT an element of the set A



How to Build Sets

1. Enumerate all the elements
a. {red, blue, green}
b.  {1, 1, 2, 3, 5, 8, 13, …}

2. Specify a common property
a. {x | x is a  fibonacci number}
b. {x |  p(x) is true}
c. Observations

i. any predicate can be used to specify a set
ii. x is a dummy variable
iii. usually there is a universal set or domain from which x is chosen

d. Analogy -- sets ≈ predicates

3. Sets are completely determined by their elements
a. order does not matter
b. duplicates do not matter
c. no additional information matters



Notation

Equals
• A = B  means ∀x(x ∈A ⇔ x ∈B)

Subset
• B ⊃ A  means ∀x(x ∈A⇒ x ∈B)

Union
• A∪B = x |  (x ∈A)∨ (x ∈B){ }
Intersection
• A∩B = x |  (x ∈A)∧ (x ∈B){ }
Complement

• Ac = {x | ~ x ∈A} = {x | x ∉A}

Empty Set

• φ = {x | False}



Rules for Manipulating Sets Rules of Propositional Calculus

1. Commutativity
a. A∪B = B∪A p∨q = q∨p
b. A∩B = B∩A p^q = q^p

2. Associativity
a. (A∪B)∪C = A∪(B∪C) (p∨q)∨r = p∨(q∨r)
b. (A∩B)∩C = A∩(B∩C) (p^q)^r = p^(q^r)

3. Distributive Laws
a. A∪(B∩C) = (A∪B)∩(Α∪C) p∨(q^r) = (p∨q)^(p∨r)
b. A∩(B∪C) = (A∩B)∪(A∩C) p^(q∨r) = (p^q)∨(p^r)

4. De Morgan’s Laws (Generalize by Induction)
a. (A∪B)c = Ac∩Bc ~(p∨q) = (~p)^(~q)
b. (A∩B)c = Ac∪Bc ~(p^q) = (~p)∨(~q)

5. Complements
a. (Ac)c = A ~~p = p
b. A∪Ac = U p∨~p =T
c. A∩Ac = φ p^~p=F



Sets and Rules of the Propositional Calculus

Analogies

a. ∪  ≈  ∨ d. U ≈ T

b. ∩  ≈  ^ e. φ ≈ F

c. c  ≈  ~

Proofs

a. Membership Tables  ⇔  Truth Tables

b. Reduce to rules for or, and, not

BIG IDEA

a. Equivalences in Propositional Calculus ⇒ Identities in Set Theory

b. Mechanical:  Logical Operators ⇒ Boolean Operations



Set Membership Table

A B Ac Bc Ac ∩Bc A∪B (A∪B)c

1 1 0 0 0 1 0

1 0 0 1 0 1 0

0 1 1 0 0 1 0

0 0 1 1 1 0 1

(A∪B)c = Ac ∩Bc



Theorem: (A∪B)c = Ac ∩Bc

Pr oof :       x ∈(A∪ B)c ⇔ x ∉A∪ B

                                       ⇔ ~ (x ∈A)∨ (x ∈B)( )

                                       ⇔ ~ (x ∈A) ∧ ~ (x ∈B)                 De Morgan ' s Law

                   ⇔ (x ∉A)∧ (x ∉B)

                   ⇔ (x ∈Ac )∧ (x ∈Bc )

                    ⇔ x ∈Ac ∩ Bc



Definitions and Notation

1. Disjoint

a. A and B have no common element

b. A∩B = φ

2. Difference

a. A − B = x |  (x ∈A)∧ (x ∉B){ }

b. A − B = A∩ Bc

3. Cross Product

a. A × B = (a,b) | (a ∈A)∧ (b ∈B){ }



Definitions and Notation  (continued)

4. Cardinality

a. | A | = cardinality of A = the number of elements in the set A

b. | A∪B | = | A| + |B | − | A∩B|

c. | A × B | = | A| | B|

5. Power Set

a. P(A) = {B | A ⊃ B}  = set of all subsets of A

b. | P(A)| = 2|A |   -- proof by binomial enumeration or induction



Theorem:  A set with n elements has exactly 2n  subsets
including itself and the empty set.

Proof:
Base Cases: n = 0,1.   

• A Set with n = 0 elements has 20 = 1 subset:  the empty set.

• A Set with n = 1 elements has 21 = 2 subsets: the empty set 
and the Set itself.

Inductive Step:  
• Assume:   Every set with n elements has exactly 2n  subsets

including itself and the empty set.
• Must Show:  Every set with n + 1 elements has exactly 

2n+1 subsets including itself and the empty set.



Inductive Proof:  Let
• S = a set with n + 1 elements.
• T = the set S with one element x removed from S.

Now observe that:

i. Since T has n elements, it follows by the inductive 
hypothesis that T has 2n  subsets.

ii. Every subset of S either contains x or does not contain x.

iii. There are exactly as many subsets of S that contain S as do
 not contain x -- Tricky Step!

iv. The number of subsets of S that do not contain x is the same 
as the number of subsets of T, which is 2n .

v. Therefore the total number of subsets of S is 2(2n ) = 2n+1.



Example

• S = {1,2,3}

• T = {1,2}

Subsets of T = Subsets of S without 3 Subsets of S with 3

{ } {3}

{1} {1, 3}

{2} {2, 3}

{1, 2} {1, 2, 3}



Proof

• S = a  finite set

• x ∈S

• T = S − {x}

Subsets of T = Subsets of S without x Subsets of S with x

T1 {T1, x}

T2 {T2, x}

   

Td {Td , x}



Infinite Union and Intersection

1. I = infinite indexing set -- can be uncountable

2.
 

Si
i∈I
 = x  | ∃ i ∈ I, x ∈Si( )

3.
 

Si
i∈I
 = x  | ∀ i ∈ I, x ∈Si( )

4. No limits, no convergence, just sets.



Russell’s Paradox

1. Type 1 Sets = Sets that contain themselves as Elements

• Example:  Set consisting of all sets with 3 or more Elements

2. Type 2 Sets = Sets that do not contain themselves as Elements

• N, Z, ...

3. Let S = All Sets of Type 2 = Set of all sets not containing themselves as Elements

• S ∈S   →  S is Type 1  →  S ∉S     CONTRADICTION

• S ∉S   →  S is Type 2  →  S ∈S     CONTRADICTION

But every element must either be in S or not in S!

4. Naive Set Theory breaks down.

• Axiomatic Set Theory introduced to control these paradoxes.



Functions



Relations

Ordered Pair -- (x,y)

• (x, y) = (x∗, y∗)   means that  x = x∗  and y = y∗

• (x, y) ≠ (y, x)   --  order matters

Cross Product

• A × B = (a,b) | (a ∈A)∧ (b ∈B){ }

• | A × B | = | A| | B|

Binary Relation

• Any subset R of A × B  is called a binary relation on A,B.

• (a, b)∈R ⇔ aRb



Functions

Definition

1. A function is any binary relation R where (a, b), (a, c)∈R ⇒ b = c

2. A function is a rule that assigns to each a ∈A  a unique b ∈B

-- b = f (a)⇔  (a, b)∈R

Applications

1. To measure relative size of Sets (finite and infinite) 
-- 1-1 Correspondence

2. To measure the relative speed of Algorithms 
-- O(h)  Notation

3. To store Subsets efficiently
-- Bitstrings



Notation

Functions

• BA = { f | f :A→ B}

Example

• 2 = {0,1}

• 2A = f | f :A→ {0,1}{ }



Functions, Bitstrings, and Subsets

Main Observations

• Functions, Bitstrings, and Subsets are the same things

Functions, Bitstrings, and Subsets

• 2A = f | f :A→ {0,1}{ } = {S | S  ⊆ A}  -- Functions and Bitstrings   

-- f ↔ S{ } ⇔  a∈S ⇔ f (a) = 1{ }    -- Subsets

-- 2A = 2|A|

Efficient Bitstring Representation of Subsets

• Fast Union (OR), Intersection (AND) and Complement



Bitstring Representation of Subsets

Example

•  A = {a1,…,a10}

• S = {a2,a4,a5, a9}

• bS = 0101100010



Bitwise Boolean Operations

Union  (OR)

• 1100010 ∨1010100 = 1110110

Intersection  (AND)

• 1100010 ∧1010100 = 1000000

Complement  (Negation)

• ~ 1100010 = 0011101



Definitions

1. Domain

2. Range

3. Injective

4. Surjective

5. Bijective

6. Composite



Inverses

f : A→ B

• f −1 = (b,a) |  f (a) = b{ } is a relation

-- NOT necessarily a function

• f −1 is a function if and only if f is bijective.

• If f is injective, then f −1 is a function whose Domain is the 
Range of f.



Induced Functions

f : A→ B

• f : P(A)→ P(B) where f (S) = f (a) | a ∈S{ }

• f −1 : P(B)→ P(A)  where f −1(S) = a  |  f (a)∈S{ }

• f −1 is a relation

-- B × A ⊂ f −1

--  f −1 is NOT a function on B



Functions and Set Operations

1. f (Sc ) ≠ f (S)c

2. f −1(T c ) = f −1(T )( )c

3. Union and Intersection -- Exercises

4. f (x + y) = f (x) + f (y) ?



Theorem: f −1(T c ) = f −1(T )( )c

Proof :  x ∈ f −1(T c )⇔ f (x)∈T c

 
                                  ⇔ f (x)∉T

                                  ⇔ x ∉ f −1(T )

⇔ x ∈ f −1(T )( )c



Composite Functions

If  f : A→ B   and   g : B→C ,  then  g° f : A→ C

1. f, g  1-1  ⇒  g° f  1-1

2. f, g  onto  ⇒  g° f  onto

3. f, g  bijective  ⇒  g° f  bijective



Countable and Uncountable Sets



BIG  IDEAS

There exist non-computatble functions.

There exist subsets of the Natural Numbers 

that we cannot describe.



Countable

Examples

1. Finite 
-- Comes to an End

2. 1-1 correspondence with N
-- Does not Come to an End
-- No Last Number
-- Infinite List

3. f :N→ S   onto

4. f :A→ S   onto, A countable



Infinity

Infinity (∞) is NOT a natural number

-- ∞ + 1 = ∞

-- ∞ + ∞ = ∞

-- ∞ × ∞ = ∞

-- ∞n = ∞

Size is measured by bijection NOT by subset!



Cardinality

Size

• There are many different notions of relative size:

-- Subset

-- Length

-- 1-1 Correspondence

• These notions are NOT the same.

• Cardinality deals with 1-1 correspondence. 



Countable Sets

1. N

2. N∪{–1}

3. Even numbers, Odd numbers

4. Z

5. NxN

6. Q

7. A × B  -- if A,B are both countable

8.  A1 ×× An  -- if  A1,…, An  are all countable

9. B ⊃ A,  and B countable ⇒ A countable



Tricks for Proving Countability

1. Shifts

• –1, 0, 1, 2, ...

• Even numbers

2. Interleave -- Z

3. Doubly Infinite Patterns -- N × N

4. Bijection from N or A × B , where A, B are countable

5. Subset of a countable set

6. Intuition:  Countable means there is a pattern



Theorem 0:  N × N  is countable.

Proof:  List all the pairs in infinite horizontal rows:

 

      (0,0)     (0,1)     (0, 2) …


      (1,0)      (1,1)     (1, 2) …


      (2,1)      (2, 2)     (2, 2) …


                       

List along the diagonals.  
Every pair will eventually appear in the list.



Rational Numbers

Theorem 0:  N × N  is countable.

Corollary 0:  The rational numbers Q are countable.

Proof:  Every rational number can be represented

by a pair of natural numbers.



Theorem 1:  If Σ is a finite alphabet, then Σ∗ is countable.

Proof #1:  Order the elements of Σ by length of the string.

 Σ
∗ = {ε, a,…, z,aa,…,zz,…}

Clearly we list every element in Σ∗ in a finite number of steps.

Proof #2:  For the binary alphabet Σ = {0,1}, use the 
correspondence N → Σ∗ given by 1x→ x .

Examples

-- Set of All English sentences

-- Set of All Scheme programs

-- All the sets of interest in Computer Science are countable.



Theorem 2: P(N) is uncountable.

Proof: Diagonalization argument.

Theorems 3: R is uncountable.

Proof: Diagonalization argument on [0,1].

Diagonalization argument based on power set representation.

Remark:  Notice that R ≠ Σ∗ where  Σ = {0,1,…,9} .

Corollary:  There exist irrational numbers.



Theorem 2: P(N) is uncountable.

Proof: By Contradiction.  Suppose that P(N) is countable.

Let  S1,S2,… be a list of ALL the subsets of N.

Define:  S = {n∈N  | n ∉Sn}

If S = Sn , then 

• n ∉Sn ⇒ n ∉S (since S = Sn)

• n ∉Sn ⇒ n ∈S (by definition of S)

Impossible.

Therefore S ⊆ N  is not in the list, so there is no list

containing all the subsets of N.



Theorems 3:  R is uncountable.

Proof 1:  By Contradiction.  Suppose that [0,1]⊂ R  is countable.

 1↔ .d11d12

 2 ↔ .d21d22

 

 n ↔ .dn1dn2dnn

 

Define:    b = .b1b2bn,  where  bn ≠ dnn  for ALL n.

Then b is not in the list!  

Hence there is no list containing all the numbers in R.



Theorems 3:  R is uncountable.

Proof 2:  By Construction:  [0,1] = 2N = P(N ), since every

real number in [0,1] has a representation in binary.

 b = .b1b2bn↔ subset  of  N

But P(N ) is uncountable, so R is uncountable.

Corollary:  R = 2N = P(N )

 



Uncountable Sets

Examples

• R

• P(N)

• B ⊃ A  and  A uncountable ⇒  B countable

Tricks for Proving Uncountability

• Diagonalize

• Superset of an uncountable set

• Bijection from an uncountable set

Intuition
• Uncountable means there is no pattern



Non-Computable Functions

Theorem 4: The functions f :N → {0,1}  are uncountable.

Proof: 2N = P(N ).

Corollary 1:  There exist non-computable functions.

Corollary 2:  There exist subsets of the Natural Numbers that 
cannot be described.



Non-Computable Functions -- Revisited

Theorem 4: The functions f :N → {0,1}  are uncountable.

Theorem 4a:  The subsets S ⊆ N are uncountable.

Corollary 1*:  Almost all functions on N are non-computable.

Corollary 2*:  Almost all subsets of the Natural Numbers 
cannot be described.



Theorem 5:  The countable union of countable sets is countable.

Proof: Consider the union of  A1, A2,…, Ak ,….  

Since each set is countable, we can list their elements.  

•
 
Ak = ak,1,ak,2 ,… 

Now proceed as in the proof that N × N  is countable 

by listing aij  before amn  if either

• i + j < m + n

• i + j = m + n   and  i < m .

Eventually every element in the union appears in the list.

Equivalently map f : N × N →  Union by setting f (i, j) = ai j .



Consequences

Observation

• The countable product of countable sets is NOT countable 

because R is not countable.

Corollaries

• The set of algebraic numbers -- solutions of polynomial 

equations -- is countable

• There exist transcendental numbers -- numbers that are not 

the solutions of polynomial equations.



Another Paradox

Theorem 5

• No set is 1-1 with its power set.

Paradox

• S = Set of all sets

• P(S) is larger than S

• But S is everything!



Continuum Hypothesis

Observations
N = ℵ0

R = 2ℵ0 

Continuum Hypothesis

2ℵ0 = ℵ1


