Sets

BIG IDEAS

Themes

- There exist functions that cannot be computed in Java or any other computer language.
- There exist subsets of the Natural Numbers that cannot be described in English or any other language.

Questions

- 1. What is a Function?
- 2. What is a Set?
- 3. What is a Subset?

Sets and Elements

Terms

- Sets = basic building blocks for mathematics
- Elements = members of sets
 - -- virtually anything, even other sets
- Set = a collection of elements
 - -- $x \in A$ means x is an element of the set A
 - -- $x \notin A$ means x is NOT an element of the set A

How to Build Sets

- 1. Enumerate all the elements
 - a. {*red*, *blue*, *green*}
 - b. {1, 1, 2, 3, 5, 8, 13, ...}
- 2. Specify a common property
 - a. $\{x \mid x \text{ is a fibonacci number}\}$
 - b. $\{x \mid p(x) \text{ is true}\}$
 - c. Observations
 - i. any predicate can be used to specify a set
 - ii. *x* is a dummy variable
 - iii. usually there is a <u>universal set</u> or <u>domain</u> from which x is chosen
 - d. Analogy -- sets \approx predicates
- 3. Sets are completely determined by their elements
 - a. order does not matter
 - b. duplicates do not matter
 - c. no additional information matters

Notation

Equals

• A = B means $\forall x (x \in A \Leftrightarrow x \in B)$

Subset

• $B \supset A$ means $\forall x (x \in A \Rightarrow x \in B)$

Union

• $A \cup B = \left\{ x \mid (x \in A) \lor (x \in B) \right\}$

Intersection

• $A \cap B = \left\{ x \mid (x \in A) \land (x \in B) \right\}$

Complement

• $A^{C} = \{x \mid x \in A\} = \{x \mid x \notin A\}$

Empty Set

• $\phi = \{x | False\}$

Rules for Manipulating Sets

- 1. Commutativity a. $A \cup B = B \cup A$ b. $A \cap B = B \cap A$ 2. Associativity
 - a. $(A \cup B) \cup C = A \cup (B \cup C)$ b. $(A \cap B) \cap C = A \cap (B \cap C)$
- 3. Distributive Lawsa. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $p \lor (q \land r) = (p \lor q) \land (p \lor r)$ b. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $p \land (q \lor r) = (p \land q) \lor (p \land r)$
- 4. De Morgan's Laws (Generalize by Induction) a. $(A \cup B)^c = A^c \cap B^c$ b. $(A \cap B)^c = A^c \cup B^c$ $\sim (p \lor q) = (\sim p) \lor (\sim q)$
- 5. Complements
 - a. $(A^c)^c = A$ $\sim p = p$ b. $A \cup A^c = U$ $p \lor \sim p = T$
 - c. $A \cap A^c = \phi$ $p \sim p = F$

Rules of Propositional Calculus

 $(p \lor q) \lor r = p \lor (q \lor r)$

 $(p\land q)\land r = p\land (q\land r)$

 $p \lor q = q \lor p$

 $p \wedge q = q \wedge p$

Sets and Rules of the Propositional Calculus

Analogies

- a. $\cup \approx \lor$ d. $U \approx T$
- b. $\cap \approx \land$ e. $\phi \approx F$
- c. $c \approx \sim$

Proofs

- a. Membership Tables \Leftrightarrow Truth Tables
- b. Reduce to rules for or, and, not

BIG IDEA

- a. Equivalences in Propositional Calculus \Rightarrow Identities in Set Theory
- b. Mechanical: Logical Operators \Rightarrow Boolean Operations

Set Membership Table

A	В	A^{c}	B^{c}	$A^{c} \cap B^{c}$	$A \cup B$	$(A \cup B)^c$
1	1	0	0	0	1	0
1	0	0	1	0	1	0
0	1	1	0	0	1	0
0	0	1	1	1	0	1

 $(A \cup B)^c = A^c \cap B^c$

Theorem:
$$(A \cup B)^c = A^c \cap B^c$$

$$\Pr{oof}: \qquad x \in (A \cup B)^c \Leftrightarrow x \notin A \cup B$$

$$\Leftrightarrow \sim \left((x \in A) \lor (x \in B) \right)$$

 $\Leftrightarrow \sim (x \in A) \land \sim (x \in B) \qquad De$

De Morgan's Law

 $\Leftrightarrow (x \not\in A) \land (x \not\in B)$

 $\Leftrightarrow (x \in A^c) \land (x \in B^c)$

 $\Leftrightarrow x \in A^c \cap B^c$

Definitions and Notation

- 1. Disjoint
 - a. *A* and *B* have no common element
 - b. $A \cap B = \phi$
- 2. Difference
 - a. $A-B = \{x \mid (x \in A) \land (x \notin B)\}$
 - b. $A-B=A \cap B^C$
- 3. Cross Product
 - a. $A \times B = \{(a,b) \mid (a \in A) \land (b \in B)\}$

Definitions and Notation (continued)

- 4. *Cardinality*
 - a. |A| = cardinality of A = the number of elements in the set A
 - b. $|A \cup B| = |A| + |B| |A \cap B|$
 - c. $|A \times B| = |A| |B|$
- 5. *Power Set*
 - a. $P(A) = \{B \mid A \supset B\}$ = set of all subsets of A
 - b. $|P(A)| = 2^{|A|}$ -- proof by binomial enumeration or induction

Theorem: A set with n elements has exactly 2^n subsets including itself and the empty set.

Proof:

Base Cases: n = 0, 1.

- A Set with n = 0 elements has $2^0 = 1$ subset: the empty set.
- A Set with n = 1 elements has $2^1 = 2$ subsets: the empty set and the Set itself.

Inductive Step:

- Assume: Every set with n elements has exactly 2^n subsets including itself and the empty set.
- Must Show: Every set with n + 1 elements has exactly 2^{n+1} subsets including itself and the empty set.

Inductive Proof: Let

- S = a set with n + 1 elements.
- T = the set S with one element x removed from S.

Now observe that:

- i. Since *T* has *n* elements, it follows by the inductive hypothesis that *T* has 2^n subsets.
- ii. Every subset of *S* either contains *x* or does not contain *x*.
- iii. There are exactly as many subsets of S that contain S as do not contain x -- Tricky Step!
- iv. The number of subsets of *S* that do not contain *x* is the same as the number of subsets of *T*, which is 2^n .
- v. Therefore the total number of subsets of *S* is $2(2^n) = 2^{n+1}$.

Example

- $S = \{1, 2, 3\}$
- $T = \{1, 2\}$

Proof

- S = a finite set
- $x \in S$
- $T = S \{x\}$

Infinite Union and Intersection

1. I = infinite indexing set -- can be uncountable

2.
$$\bigcup_{i \in I} S_i = (x \mid \exists i \in I, x \in S_i)$$

3.
$$\bigcap_{i \in I} S_i = (x \mid \forall i \in I, x \in S_i)$$

4. No limits, no convergence, just sets.

Russell's Paradox

- 1. Type 1 Sets = Sets that contain themselves as Elements
 - Example: Set consisting of all sets with 3 or more Elements
- 2. Type 2 Sets = Sets that do not contain themselves as Elements
 - N, Z, ...
- 3. Let S = All Sets of Type 2 = Set of all sets not containing themselves as Elements
 - $S \in S \rightarrow S$ is Type $1 \rightarrow S \notin S$ CONTRADICTION
 - $S \notin S \rightarrow S$ is Type 2 $\rightarrow S \in S$ CONTRADICTION

But every element must either be in *S* or not in *S*!

- 4. Naive Set Theory breaks down.
 - Axiomatic Set Theory introduced to control these paradoxes.

Functions

Relations

Ordered Pair -- (x,y)

- $(x, y) = (x^*, y^*)$ means that $x = x^*$ and $y = y^*$
- $(x,y) \neq (y,x)$ -- order matters

Cross Product

- $A \times B = \{(a,b) \mid (a \in A) \land (b \in B)\}$
- $|A \times B| = |A| |B|$

Binary Relation

- Any subset R of $A \times B$ is called a <u>binary relation</u> on A,B.
- $(a,b) \in R \Leftrightarrow aRb$

Functions

Definition

- 1. A *function* is any binary relation *R* where $(a, b), (a, c) \in R \Rightarrow b = c$
- 2. A *function* is a <u>rule</u> that assigns to each $a \in A$ a *unique* $b \in B$

$$- b = f(a) \Leftrightarrow (a, b) \in \mathbb{R}$$

Applications

- 1. To measure relative size of Sets (finite and infinite)
 - -- 1-1 Correspondence
- 2. To measure the relative speed of Algorithms
 - -- O(h) Notation
- 3. To store Subsets efficiently
 - -- Bitstrings

Notation

Functions

• $B^A = \{f \mid f : A \to B\}$

Example

• $2 = \{0, 1\}$

•
$$2^A = \left\{ f \mid f : A \rightarrow \{0,1\} \right\}$$

Functions, Bitstrings, and Subsets

Main Observations

• Functions, Bitstrings, and Subsets are the same things

Functions, Bitstrings, and Subsets

•
$$2^{A} = \{f \mid f : A \to \{0,1\}\} = \{S \mid S \subseteq A\}$$
 -- Functions and Bitstrings
-- $\{f \leftrightarrow S\} \Leftrightarrow \{a \in S \Leftrightarrow f(a) = 1\}$ -- Subsets
-- $|2^{A}| = 2^{|A|}$

Efficient Bitstring Representation of Subsets

• Fast Union (OR), Intersection (AND) and Complement

Bitstring Representation of Subsets

Example

- $A = \{a_1, \dots, a_{10}\}$
- $S = \{a_2, a_4, a_5, a_9\}$
- $b_S = 0101100010$

Bitwise Boolean Operations

Union (OR)

• $1100010 \lor 1010100 = 1110110$

Intersection (AND)

• $1100010 \land 1010100 = 1000000$

Complement (Negation)

• $\sim 1100010 = 0011101$

Definitions

- 1. Domain
- 2. Range
- 3. Injective
- 4. Surjective
- 5. Bijective
- 6. Composite

Inverses

$$f: A \to B$$

•
$$f^{-1} = \{(b,a) \mid f(a) = b\}$$
 is a relation

- f^{-1} is a function if and only if f is bijective.
- If f is injective, then f^{-1} is a function whose Domain is the Range of f.

Induced Functions

 $f: A \to B$

• $f: P(A) \to P(B)$ where $f(S) = \{f(a) \mid a \in S\}$

•
$$f^{-1}: P(B) \to P(A)$$
 where $f^{-1}(S) = \{a \mid f(a) \in S\}$

• f^{-1} is a relation

$$- B \times A \subset f^{-1}$$

-- f^{-1} is NOT a function on *B*

Functions and Set Operations

1.
$$f(S^{\mathcal{C}}) \neq f(S)^{\mathcal{C}}$$

2.
$$f^{-1}(T^{c}) = \left(f^{-1}(T)\right)^{c}$$

3. Union and Intersection -- Exercises

4.
$$f(x+y) = f(x) + f(y)$$
?

Theorem:
$$f^{-1}(T^{c}) = (f^{-1}(T))^{c}$$

Proof:
$$x \in f^{-1}(T^c) \Leftrightarrow f(x) \in T^c$$

 $\Leftrightarrow f(x) \not\in T$

$$\Leftrightarrow x \notin f^{-1}(T)$$

$$\Leftrightarrow x \in \left(f^{-1}(T)\right)^{\mathcal{C}}$$

Composite Functions

If $f: A \to B$ and $g: B \to C$, then $g \circ f: A \to C$

1. f, g 1-1 \Rightarrow $g \circ f$ 1-1

2.
$$f, g$$
 onto $\Rightarrow g \circ f$ onto

3. f, g bijective $\Rightarrow g \circ f$ bijective

Countable and Uncountable Sets

BIG IDEAS

There exist non-computatble functions.

There exist subsets of the Natural Numbers that we cannot describe.

Countable

Examples

- 1. Finite
 - -- Comes to an End
- 2. 1-1 correspondence with N
 - -- Does not Come to an End
 - -- No Last Number
 - -- Infinite List
- 3. $f: N \to S$ onto

4. $f: A \rightarrow S$ onto, A countable

Infinity

Infinity (∞) is NOT a natural number

- $--\infty+1=\infty$
- $-- \infty + \infty = \infty$
- $-- \infty \times \infty \equiv \infty$
- $-- \infty^n = \infty$

Size is measured by bijection NOT by subset!

Cardinality

Size

- There are many different notions of <u>relative size</u>:
 - -- Subset
 - -- Length
 - -- 1-1 Correspondence
- These notions are NOT the same.
- Cardinality deals with 1-1 correspondence.

Countable Sets

- 1. **N**
- 2. $N \cup \{-1\}$
- 3. Even numbers, Odd numbers
- 4. Z
- 5. NxN
- 6. **Q**
- 7. $A \times B$ -- if A, B are both countable
- 8. $A_1 \times \cdots \times A_n$ -- if A_1, \dots, A_n are all countable
- 9. $B \supset A$, and *B* countable \Rightarrow *A* countable

Tricks for Proving Countability

- 1. Shifts
 - -1, 0, 1, 2, ...
 - Even numbers
- 2. Interleave -- Z
- 3. Doubly Infinite Patterns -- $N \times N$
- 4. Bijection from N or $A \times B$, where A, B are countable
- 5. Subset of a countable set
- 6. Intuition: Countable means there is a pattern

Theorem 0: $N \times N$ is countable.

Proof: List all the pairs in infinite horizontal rows:

```
(0,0) (0,1) (0,2)...

(1,0) (1,1) (1,2)...

(2,1) (2,2) (2,2)...

\vdots
```

List along the diagonals.

Every pair will eventually appear in the list.

Rational Numbers

Theorem 0: $N \times N$ is countable.

Corollary 0: The rational numbers Q are countable.

Proof: Every rational number can be representedby a pair of natural numbers.

Theorem 1: If Σ is a finite alphabet, then Σ^* is countable.

Proof #1: Order the elements of Σ by length of the string.

$$\Sigma^* = \{\varepsilon, a, \dots, z, aa, \dots, zz, \dots\}$$

Clearly we list every element in Σ^* in a finite number of steps.

Proof #2: For the binary alphabet $\Sigma = \{0,1\}$, use the correspondence $\mathbf{N} \rightarrow \Sigma^*$ given by $1x \rightarrow x$.

Examples

- -- Set of All English sentences
- -- Set of All Scheme programs
- -- All the sets of interest in Computer Science are countable.

Theorem 2: P(N) is uncountable.

Proof: Diagonalization argument.

Theorems 3: R is uncountable.Proof: Diagonalization argument on [0,1].Diagonalization argument based on power set representation.

Remark: Notice that $\mathbf{R} \neq \Sigma^*$ where $\Sigma = \{0, 1, \dots, 9\}$.

Corollary: There exist irrational numbers.

- Theorem 2: P(N) is uncountable.
- Proof: By Contradiction. Suppose that P(N) is countable. Let $S_1, S_2, ...$ be a list of ALL the subsets of N. Define: $S = \{n \in N \mid n \notin S_n\}$ If $S = S_n$, then • $n \notin S_n \Rightarrow n \notin S$ (since $S = S_n$)
 - $n \notin S_n \Rightarrow n \in S$ (by definition of *S*)

Impossible.

Therefore $S \subseteq N$ is not in the list, so there is no list containing all the subsets of *N*.

Theorems 3: **R** is uncountable.

Proof 1: By Contradiction. Suppose that $[0,1] \subset \mathbf{R}$ is countable.

$$1 \leftrightarrow .d_{11}d_{12} \cdots$$
$$2 \leftrightarrow .d_{21}d_{22} \cdots$$
$$\vdots$$
$$n \leftrightarrow .d_{n1}d_{n2} \cdots d_{nn} \cdots$$
$$\vdots$$

Define: $b = b_1 b_2 \cdots b_n \cdots$, where $b_n \neq d_{nn}$ for ALL *n*. Then *b* is not in the list!

Hence there is no list containing all the numbers in R.

Theorems 3: **R** is uncountable.

Proof 2: By Construction: $[0,1] = 2^N = P(N)$, since every

real number in [0,1] has a representation in binary.

$$b = .b_1b_2 \cdots b_n \cdots \leftrightarrow subset of N$$

But P(N) is uncountable, so **R** is uncountable.

Corollary: $R = 2^N = P(N)$

Uncountable Sets

Examples

- **R**
- $P(\mathbf{N})$
- $B \supset A$ and A uncountable \Rightarrow B countable

Tricks for Proving Uncountability

- Diagonalize
- Superset of an uncountable set
- Bijection from an uncountable set

Intuition

• Uncountable means there is no pattern

Non-Computable Functions

Theorem 4: The functions $f : \mathbb{N} \to \{0,1\}$ are uncountable. Proof: $2^N = P(N)$.

Corollary 1: There exist non-computable functions.

Corollary 2: There exist subsets of the Natural Numbers that cannot be described.

Non-Computable Functions -- Revisited

Theorem 4: The functions $f : \mathbb{N} \to \{0,1\}$ are uncountable.

Theorem 4a: The subsets $S \subseteq \mathbb{N}$ are uncountable.

Corollary 1*: Almost all functions on N are non-computable.

Corollary 2*: Almost all subsets of the Natural Numbers cannot be described.

Theorem 5: The countable union of countable sets is countable. Proof: Consider the union of $A_1, A_2, ..., A_k, ...$ Since each set is countable, we can list their elements.

•
$$A_k = a_{k,1}, a_{k,2}, \dots$$

Now proceed as in the proof that $N \times N$ is countable by listing a_{ij} before a_{mn} if either

- i+j < m+n
- i+j=m+n and i < m.

Eventually every element in the union appears in the list.

Equivalently map $f: \mathbb{N} \times \mathbb{N} \to$ Union by setting $f(i, j) = a_{ij}$.

Consequences

Observation

• The countable product of countable sets is NOT countable because *R* is not countable.

Corollaries

- The set of algebraic numbers -- solutions of polynomial equations -- is countable
- There exist transcendental numbers -- numbers that are not the solutions of polynomial equations.

Another Paradox

Theorem 5

• No set is 1-1 with its power set.

Paradox

- S = Set of all sets
- P(S) is larger than S
- But *S* is everything!

Continuum Hypothesis

Observations $N = \aleph_0$

 $\boldsymbol{R} = 2^{\boldsymbol{\aleph}} \boldsymbol{0}$

Continuum Hypothesis $2^{\aleph}0 = \aleph_1$