Logic

Part I:

Propositional Calculus

Statements

Undefined Terms

- True, T, #t, 1
- False, F, #f, 0
- Statement, Proposition

Statement/Proposition -- Informal Definition

- S<u>tatement</u> = anything that can <u>meaningfully</u> be assigned a value of True or False
- Propositional Calculus = Study of Statements / Propositions

Examples

- "1 + 1 = 2" (Yes)
- "2 + 2 = 3" (Yes)
- "To be or not to be" (No)
- "This sentence is false." (No)
- "x > 5" (No)

<u>Formulas</u>

Formula

- A formula is a statement with free (unquantified) variables.
- A statement is a formula with no free (unquantified) variables.

Analogy to Scheme

- Statement ~ expression with type Boolean
- Formula ~ (Lambda () Boolean expression)

Operators

Examples

- And p^q (pq)
- Or $p \lor q$ (p+q)
- Not $\sim p$ (-p or pbar)
- Implies $p \rightarrow q$ $(p \Rightarrow q)$
- Iff $p \leftrightarrow q$ $(p \Leftrightarrow q)$

Observations

- Propositional Calculus is the Calculus of Operators.
- Operators have the usual informal meanings.
- Formal meanings are provided by Truth tables.

Truth Tables

Examples

р	q	$p^{\wedge}q$	p∨q	~p	$p \rightarrow q$	$p \leftrightarrow q$
Т	Т	Т	Т	F	Т	Т
Т	F	F	Т	F	F	F
F	Т	F	Т	Т	Т	F
F	F	F	F	Т	Т	Т

Conventions

- Or is inclusive: *p* or *q* or both
- XOR is exclusive: p or q, but not both $-p \oplus q$
- $p \rightarrow q$ is True whenever p is False
- $p \rightarrow q$ is False only when p is True and q is False
- EXAMPLES

More Operators

NAND, NOR, XOR

р	q	~(p^q)	~(p∨q)	p⊕q
Т	Т	F	F	F
Т	F	Т	F	Т
F	Т	Т	F	Т
F	F	Т	Т	F

Observations

- There are 16 possible boolean operators on two parameters.
- Every one can be written solely in terms of NAND or NOR.

Bit Operations

Idea

-- Replace T and F by 1 and 0

Examples

- -- 11011011001
 -- 10101100100
 AND 10001000010
 OR 1111111101
- XOR 01110111101

Propositions

Proposition -- Recursive Definition

- Base Case: p, q, r, \dots
- $p \land q, p \lor q, \sim p, p \to q, p \leftrightarrow q$

Parsing

- The inductive definition defines a tree.
- Parsing provided by the tree
- Parentheses needed for linear -- infix notation

 $-- (p \lor q) \land r \neq p \lor (q \land r)$

Types of Propositions

Tautology

- a proposition that is always True
- all rows in the Truth Table are true
- pv~p

Contradiction

- a proposition that is always False
- all rows in the Truth Table are false
- p^~p

Contingency

- a proposition that is neither a tautology nor a contradiction
- some rows in the Truth Table are True and some are rows are False
- pvq

Logical Equivalence

Definition

• *p* and *q* are logically equivalent if all rows in their Truth Table are the same.

Notation

• p≡q

Example

• $(\sim p) \lor q \equiv p \rightarrow q$ (Check Truth Table)

Remark

• $p \equiv q$ iff $p \leftrightarrow q$ is a tautology

Applications

- Proofs
- Computer Hardware -- Circuit Design

Implications

Observations

• A proposition is equivalent to its contrapositive.

 $-- p \rightarrow q \equiv \sim q \rightarrow \sim p$

- A proposition is NOT equivalent to its converse or inverse.
 - -- Examples
 - -- Truth Tables

Logical Equivalences (Boolean Algebra)

- 1. Identity $p \wedge T \equiv p$ $p \vee F \equiv p$
- 2. Domination $p \lor T \equiv T$ $p \land F \equiv F$
- 3. Idempotence $p \lor p \equiv p$
 - $p \land p \equiv p$
- 4. Double Negation $\sim p \equiv p$

More Logical Equivalences (Boolean Algebra)

5. *Commutative*

 $p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$

- 6. Associative $p \lor (q \lor r) \equiv (p \lor q) \lor r$ $p \land (q \land r) \equiv (p \land q) \land r$
- 7. Distributive $p\lor(q\land r) \equiv (p\lor q)\land(p\lor r)$ $p\land(q\lor r) \equiv (p\land q)\lor(p\land r)$

De Morgan's Laws

De Morgan Laws

$$\sim (p \land q) = (\sim p) \lor (\sim q)$$
$$\sim (p \lor q) = (\sim p) \land (\sim q)$$

Proofs by Truth Tables.

Generalizes to more operators by Induction.

$$\sim (p_1 \wedge \dots \wedge p_n) = (\sim p_1) \vee \dots \vee (\sim p_n)$$

$$\sim (p_1 \lor \cdots \lor p_n) = (\sim p_1) \land \cdots \land (\sim p_n)$$

Axiomatic Approach to Propositional Calculus

3 Axioms

- 1. $P \rightarrow (Q \rightarrow P)$
- 2. $(P \rightarrow (Q \rightarrow R)) \rightarrow ((P \rightarrow Q) \rightarrow (P \rightarrow R))$

3.
$$(\sim P \rightarrow \sim Q) \rightarrow ((\sim P \rightarrow Q) \rightarrow P)$$

1 Rule of Inference

- Prove: P and $P \rightarrow Q$
- Conclude: Q

2 Metatheorems

- Consistency: All the Theorems of Propositional Calculus are Tautologies.
- *Completeness:* All Tautologies are Theorems of the Propositional Calculus.

Axiomatic Approach to Arithmetic

Axioms of Natural Numbers

- 1. 1 is a Natural Number.
- 2. If *n* is a natural number, then n+1 is a natural number.
- 3. Every natural number *m* except 1 is of the form m = n + 1.
- 4. Every nonempty subset of the natural numbers has a smallest element.
- 5. Axioms for addition and multiplication.

1 Rule of Inference

- Prove: P and $P \rightarrow Q$
- Conclude: Q

Godel's Incompleteness Theorem

- All Axioms for the Natural Numbers are either Inconsistent or Incomplete.
- There are Formulas in Arithmetic that are True, but that cannot be Proved.

Disjunctive Normal Form

Construction

- For each row in the truth table where F(p,q,r,...) has the value True
 - For each column with a primitive proposition p
 - -- Write p if p has the value T
 - -- Write $\sim p$ if p has the value F
- Let $F^*(p,q,r,...) = p \land q \land \sim r \cdots$ {AND the columns}
 - -- Then $F^*(p,q,r,...)$ has the value T only along this row
- Let $F(p,q,r,...) = F_1(p,q,r,...) \lor F_2(p,q,r,...) \lor \cdots \lor F_n(p,q,r,...)$

Remarks

- <u>AND</u> has only one row with T
- <u>OR</u> has value T whenever one of its parameters has value T

Examples

• $p \oplus q \equiv (p \land \neg q) \lor (\neg p \land q)$

Functionally Complete

Definition

A collection of operators are called *functionally complete* if every proposition is equivalent to a proposition involving only these operators.

Proposition 1:	The operators \sim , \wedge ,	\lor are functionally complete.

Proof: Follows from Disjunctive Normal Form.

Proposition 2: *The operators* ~, ^ *are functionally complete*.

Proof: Follows from Proposition 1 and De Morgan's Laws.

*Proposition 3: The operators ~, ∨ are functionally complete.*Proof: Follows from Proposition 1 and De Morgan's Laws.

Functionally Complete (continued)

*Proposition 4: The operator NAND is functionally complete.*Proof: Homework

Proposition 5: The operators NOR is functionally complete.

Proof Homework.

Remark

• Propositions 4 and 5 are important in the design of logical gates.

<u>SAT</u>

Definition

• A compound statement is said to be *satisfiable* if there is an assignment of truth values to the variables in the statement that makes the statement True.

P vs. NP

- Determining in general whether a compound statement is satisfiable is an NP problem.
- Can be verified in polynomial time, but no solution yet in polynomial time.
- Only exponential time algorithms exist -- try all possibilities.

Part II:

Predicate Calculus

Predicates

Definition

- A Statement with Parameters,
- A Formula

Examples

- P(x), Q(x,y)
- x > 0, x + y = z

Predicate Calculus

• Study of Predicates and Quantifiers

Quantifiers

All

- -- $\forall x P(x) \text{ means}$ for all x, P(x) is True
- -- $\forall x P(x)$ is false when there is an x for which P(x) is False
- -- analogous to infinite AND

Exists

- -- $\exists x P(x) \text{ means}$ there exists at least one x for which P(x) is True
- -- $\exists x P(x)$ is false when P(x) is False for every x
- -- analogous to infinite OR

Domain

- -- Usually there is some <u>universal set</u> or <u>domain</u> implicitly understood.
- -- To be more explicit, we can write $\forall x \in Q \ P(x)$.

<u>Syllogism</u>

All men are mortal.	$\forall x P(x) \rightarrow$	$\forall x P(x) \to M(x)$		
Socrates is a man.	P(s)	{ <i>s</i> =constant)		
Therefore Socrates is mortal.	M(s)			

Dummy Variables

Definition

x is a dummy variable means that x can be replaced by y. •

Examples

- $\forall x P(x)$ $\int f(x) dx$
- (lambda(x) (+x x))

Bound and Free

Examples

- $\forall x(\dots P(x)\dots) x \text{ is bound to } \forall x$
- $\forall x(x < y) x \text{ is bound, } y \text{ is free}$
- Free and bound apply only with respect to a specific <u>scope</u>

$$-- \forall x \{ (\exists x P(x)) \lor (\forall y(y > x)) \}$$

- -- different *x*'s
- -- different scopes

Scope

Rules

- 1. A name (variable) refers to the innermost definition for that name.
- 2. Misuse of scope = common pitfall
- 3. Variables with no quantifiers, depend on context!
 - a. $\sin^2 x + \cos^2 x = 1 \forall x$
 - b. $x^3 2x + 1 = 0 \exists x$
- 4. Official Rule
 - a. free variables are implicitly quantified by \forall
- 5. Practical Rule
 - a. depends on context
 - b. get clarification

Substitution

Definition

- P(t|x) means result of substituting t for x
 - -- t = term, x = variable

Example

•
$$P(x) = \exists y(y > x)$$

$$-- P(t|x) = \exists y(y > t)$$

--
$$P(3z^2 + 2|x) = \exists y(y > 3z^2 + 2)$$

Capture

$$P(x) = \exists y(y > x)$$

 $P(y|x) = \exists y(y > y)$ -- illegal, common pitfall

<u>Rules for Manipulating Predicates</u>

- 1. $\forall x \forall y P(x,y) = \forall y \forall x P(x,y)$
- 2. $\exists x \exists y P(x,y) = \exists y \exists x P(x,y)$
- 3. $\exists x \forall y P(x,y) \rightarrow \forall y \exists x P(x,y)$
 - $\exists x \forall y P(x,y) x$ cannot depend on y
 - $\forall y \exists x P(x,y) x \text{ can depend on } y \{x(y)\}$
- 4. $\neg \forall x P(x) = \exists x \neg P(x)$ De Morgan's
- 5. $\neg \exists x P(x) = \forall x \neg P(x)$ Laws
- 6. $\forall x \{ P(x) \land Q(x) \} = \{ \forall x P(x) \} \land \{ \forall x Q(x) \}$

Associativity and

7. $\exists x \{ P(x) \lor Q(x) \} = \{ \exists x P(x) \} \lor \{ \exists x Q(x) \}$

Commutativity Laws

Rules for Manipulating Predicates (continued)

- 8. $\forall x \{P(x) \lor Q(x)\} \leftarrow \{\forall x P(x)\} \lor \{\forall x Q(x)\}$ And/Or
 - $\{\forall x P(x)\} \lor \{\forall x Q(x)\}$ -- different *x* for *P* and *Q*
 - $\forall x \{ P(x) \lor Q(x) \}$ -- same *x* for *P* and *Q*
- 9. $\exists x \{P(x) \land Q(x)\} \rightarrow \{\exists x P(x)\} \land \{\exists x Q(x)\}$ Don't Commute
 - $\exists x \{ P(x) \land Q(x) \}$ -- same *x* for *P* and *Q*
 - $\{\exists x P(x)\} \land \{\exists x Q(x)\} \rightarrow \{\exists x Q(x)\} \}$
- 10. If x is not free in P, then
 - $P = \forall x P(x)$
 - $P = \exists x P(x)$

11. $\forall x \{ P(x) \leftrightarrow Q(x) \} = \forall x \{ P(x) \rightarrow Q(x) \} \land \forall x \{ Q(x) \rightarrow P(x) \}$

<u>Analogies</u>

- 1. $\forall \cong$ AND
- 2. $\exists \cong OR$

Note these analogies are exact over finite domains.