
Logic



Part I:

Propositional Calculus



Statements

Undefined Terms

• True, T, #t, 1

• False, F, #f, 0

• Statement, Proposition

Statement/Proposition -- Informal Definition
• Statement = anything that can meaningfully be assigned a value of True or False
• Propositional Calculus = Study of Statements / Propositions

Examples
• “1 + 1 = 2” (Yes)
• “2 + 2 = 3” (Yes)
• “To be or not to be” (No)
• “This sentence is false.” (No)
• “x > 5” (No)



Formulas

Formula

• A formula is a statement with free (unquantified) variables.

• A statement is a formula with no free (unquantified) variables.

Analogy to Scheme

• Statement ~ expression with type Boolean

• Formula ~ (Lambda ( )  Boolean expression)



Operators

Examples

• Andp^q (pq)

• Or p∨q (p+q)

• Not ~p (–p or pbar)

• Implies p → q (p ⇒ q)

• Iff p ↔ q (p ⇔ q)

Observations

• Propositional Calculus is the Calculus of Operators.

• Operators have the usual informal meanings.  

• Formal meanings are provided by Truth tables.



Truth Tables

Examples
p q p^q p∨q ~p p→  q p↔ q

T T T T F T   T

T F F T F F   F

F T F T T T   F

F F F F T T   T

Conventions
• Or is inclusive:  p or q or both
• XOR is exclusive: p or q, but not both -- p⊕q

• p→ q  is True whenever p is False

• p→ q  is False only when p is True and q is False

• EXAMPLES



More Operators

NAND, NOR, XOR

p q ~(p^q) ~(p∨q) p⊕q

T T F F F

T F T F T

F T T F T

F F T T F

Observations

• There are 16 possible boolean operators on two parameters.

• Every one can be written solely in terms of NAND or NOR.



Bit Operations

Idea

-- Replace T and F by 1 and 0

Examples

-- 11011011001

-- 10101100100

AND 10001000010

OR 11111111101

XOR 01110111101



Propositions

Proposition -- Recursive Definition

• Base Case: p, q, r,...

• p ^ q,  p∨ q, ~p,  p→ q,  p↔ q

Parsing

• The inductive definition defines a tree.

• Parsing provided by the tree

• Parentheses needed for linear -- infix notation

-- (p∨q)^r ≠ p∨(q^r)



Types of Propositions

Tautology 

• a proposition that is always True

• all rows in the Truth Table are true

• p∨~p

Contradiction  

• a proposition that is always False

• all rows in the Truth Table are false

• p^~p

Contingency 

• a proposition that is neither a tautology nor a contradiction

• some rows in the Truth Table are True and some are rows are False

• p∨q



Logical Equivalence

Definition
• p and q are logically equivalent if all rows in their Truth Table are the same.

Notation
• p ≡ q

Example
• (~p)∨q ≡ p→q (Check Truth Table)

Remark
• p ≡ q  iff  p↔q is a tautology

Applications

• Proofs

• Computer Hardware -- Circuit Design



Implications

Proposition Converse Inverse Contrapositive

   p → q    q → p ~p → ∼q      ~q → ~p

Observations

• A proposition is equivalent to its contrapositive.
-- p → q  ≡  ~q → ~p

• A proposition is NOT equivalent to its converse or inverse.

-- Examples

-- Truth Tables



Logical Equivalences  (Boolean Algebra)

1. Identity
p^T ≡  p

p∨F ≡  p

2. Domination
p∨T ≡ T

p^F ≡  F

3. Idempotence
p∨p ≡  p

p^p ≡  p 

4. Double Negation
~~ p ≡  p



More Logical Equivalences  (Boolean Algebra)

5. Commutative
p∨q ≡  q∨p

p^q ≡  q^p

6. Associative
p∨(q∨r) ≡ (p∨q)∨r

p^(q^r) ≡ (p^q)^r

7. Distributive
p∨(q^r) ≡ (p∨q)^(p∨r)

p^(q∨r) ≡ (p^q)∨(p^r)



De Morgan’s Laws

De Morgan Laws

~ (p∧ q) = (~ p)∨ (~ q)

~ (p∨ q) = (~ p)∧ (~ q)

Proofs by Truth Tables.

Generalizes to more operators by Induction.

 ~ (p1 ∧∧ pn ) = (~ p1)∨∨ (~ pn )

 ~ (p1 ∨∨ pn ) = (~ p1)∧∧ (~ pn )



Axiomatic Approach to Propositional Calculus

3 Axioms

1. P→ (Q → P)

2. P → (Q→ R)( )→ (P →Q)→ (P→ R)( )

3. ~ P →~ Q( ) → (~ P →Q)→ P( )

1 Rule of Inference

• Prove:  P and P→Q
• Conclude:   Q

2 Metatheorems

• Consistency: All the Theorems of Propositional Calculus are Tautologies.

• Completeness: All Tautologies are Theorems of the Propositional Calculus.



Axiomatic Approach to Arithmetic

Axioms of Natural Numbers

1. 1 is a Natural Number.

2. If n is a natural number, then n + 1 is a natural number.

3. Every natural number m except 1 is of the form m = n +1.

4. Every nonempty subset of the natural numbers has a smallest element.

5. Axioms for addition and multiplication.

1 Rule of Inference

• Prove:  P and P→Q
• Conclude:   Q

Godel’s Incompleteness Theorem

• All Axioms for the Natural Numbers are either Inconsistent or Incomplete.

• There are Formulas in Arithmetic that are True, but that cannot be Proved.



Disjunctive Normal Form

       Construction
• For each row in the truth table where  F( p, q, r,…)  has the value True

• For each column with a primitive proposition p
-- Write p if p has the value T
-- Write ~p if p has the value F

• Let  F
∗(p,q,r,…) = p∧ q∧ ~ r      {AND the columns}

-- Then  F
∗(p, q, r,…)  has the value T only along this row

• Let  F( p, q, r,…) = F1(p, q, r,…)∨ F2( p, q, r,…)∨∨Fn (p, q, r,…)

Remarks
• AND has only one row with T
• OR has value T whenever one of its parameters has value T

Examples 
• p⊕q ≡ (p^~q)∨(∼p^q)



Functionally Complete

Definition
A collection of operators are called functionally complete if every 
proposition is equivalent to a proposition involving only these operators.

Proposition 1: The operators ~, ^, ∨ are functionally complete.

Proof: Follows from Disjunctive Normal Form.

Proposition 2:  The operators ~, ^ are functionally complete.

Proof: Follows from Proposition 1 and De Morgan’s Laws.

Proposition 3:  The operators ~, ∨ are functionally complete.
Proof: Follows from Proposition 1 and De Morgan’s Laws.



Functionally Complete  (continued)

Proposition 4:  The operator NAND is functionally complete.

Proof: Homework

Proposition 5:  The operators NOR is functionally complete.

Proof Homework.

Remark

• Propositions 4 and 5 are important in the design of logical gates.



SAT

Definition

• A compound statement is said to be satisfiable if there is an assignment of

truth values to the variables in the statement that makes the statement True.

P  vs. NP

• Determining in general whether a compound statement is satisfiable 

is an NP problem.

• Can be verified in polynomial time, but no solution yet

in polynomial time.

• Only exponential time algorithms exist -- try all possibilities.



Part II:

Predicate Calculus



Predicates

Definition

• A Statement with Parameters,

• A Formula

Examples

• P(x), Q(x, y)

• x > 0 ,  x + y = z

Predicate Calculus 

• Study of Predicates and Quantifiers



Quantifiers

All
-- ∀xP(x)  means for all x, P(x)  is True

-- ∀xP(x)  is false when there is an x for which P(x)  is False
-- analogous to infinite AND

Exists
-- ∃xP(x) means there exists at least one x for which P(x) ) is True

-- ∃xP(x) is false when P(x)  is False for every x
-- analogous to infinite OR

Domain
-- Usually there is some universal set or domain implicitly understood.
-- To be more explicit, we can write ∀x ∈Q P(x) .



Syllogism

All men are mortal. ∀xP(x)→ M (x)

Socrates is a man.  P(s) {s=constant)

Therefore Socrates is mortal. M (s)



Dummy Variables

Definition

• x is a dummy variable means that x can be replaced by y.

Examples

• ∀xP(x)

• f (x)dx∫
• (lambda(x) (+x x))



Bound and Free

Examples

•  ∀x(…P(x)…)  -- x is bound to ∀x

• ∀x(x < y)  -- x is bound, y is free

• Free and bound apply only with respect to a specific scope

-- ∀x ∃xP(x)( )∨ ∀y(y > x)( ){ }

-- different x’s

-- different scopes



Scope

Rules

1. A name (variable) refers to the innermost definition for that name.

2. Misuse of scope = common pitfall

3. Variables with no quantifiers, depend on context!

a. sin2x + cos2x = 1  --  ∀x

b. x3 – 2x +1 = 0  -- ∃x

4. Official Rule 

a. free variables are implicitly quantified by ∀

5. Practical Rule

a. depends on context

b. get clarification



Substitution

Definition

• P(t |x)  means result of substituting t for x

-- t = term,  x = variable

Example

• P(x) = ∃y(y > x)

-- P(t|x) = ∃y(y > t)

-- P(3z2 + 2|x) = ∃y(y > 3z 2+ 2)

Capture

P(x) = ∃y(y > x)

P(y |x) = ∃y(y > y)   --  illegal, common pitfall



Rules for Manipulating Predicates

1. ∀x∀yP(x,y) = ∀y∀xP(x,y)

2. ∃x∃yP(x,y) = ∃y∃xP(x,y)

3. ∃x∀yP(x,y) → ∀y∃xP(x,y)

• ∃x∀yP(x,y) -- x cannot depend on y

• ∀y∃xP(x,y) -- x can depend on y  {x(y)}

4. ~∀xP(x) = ∃x∼P(x) De Morgan’s

5. ~∃xP(x) = ∀x∼P(x) Laws

6. ∀x{P(x)^Q(x)} = {∀xP(x)}^{∀xQ(x)} Associativity and

7. ∃x{P(x)∨Q(x)} = {∃xP(x)}∨{∃x Q(x)} Commutativity Laws



Rules for Manipulating Predicates  (continued)

8. ∀x{P(x)∨Q(x)} ← {∀xP(x)}∨{∀xQ(x)} And/Or

• {∀xP(x)}∨{∀xQ(x)} -- different x for P and Q

• ∀x{P(x)∨Q(x)} -- same x for P and Q

9. ∃x{P(x)^Q(x)} → {∃xP(x)}^{∃x Q(x)} Don’t Commute

• ∃x{P(x)^Q(x)} -- same x for P and Q

• {∃xP(x)}^{∃x Q(x)} -- different x for P and Q

10. If x is not free in P, then
• P = ∀xP(x)

• P = ∃xP(x)

11. ∀x{P(x)↔Q(x)} = ∀x{P(x)→Q(x)}^∀x{Q(x)→P(x)}



Analogies

1. ∀  ≅  AND

2. ∃  ≅   OR

Note these analogies are exact over finite domains.


