Logic

Part I:
 Propositional Calculus

Statements

Undefined Terms

- True, T, \#t, 1
- False, F, \#f, 0
- Statement, Proposition

Statement/Proposition -- Informal Definition

- Statement $=$ anything that can meaningfully be assigned a value of True or False
- Propositional Calculus = Study of Statements / Propositions

Examples

- "1 + $1=2$ " (Yes)
- "2 $2+2=3 "$ (Yes)
- "To be or not to be"
- "This sentence is false."
- "x > 5" (No)

Formulas

Formula

- A formula is a statement with free (unquantified) variables.
- A statement is a formula with no free (unquantified) variables.

Analogy to Scheme

- Statement \sim expression with type Boolean
- Formula $\sim($ Lambda () Boolean expression)

Operators

Examples

- Andp^q (pq)
- Or
$\mathrm{p} \vee \mathrm{q}$
(p+q)
- Not
- Implies

$$
\mathrm{p} \rightarrow \mathrm{q} \quad(\mathrm{p} \Rightarrow \mathrm{q})
$$

- Iff

$$
\mathrm{p} \leftrightarrow \mathrm{q} \quad(\mathrm{p} \Leftrightarrow \mathrm{q})
$$

Observations

- Propositional Calculus is the Calculus of Operators.
- Operators have the usual informal meanings.
- Formal meanings are provided by Truth tables.

Truth Tables

Examples

p	q	$p^{\wedge} q$	$p \vee q$	$\sim p$	$p \rightarrow q$	$p \leftrightarrow q$
T	T	T	T	F	T	T
T	F	F	T	F	F	F
F	T	F	T	T	T	F
F	F	F	F	T	T	T

Conventions

- Or is inclusive: p or q or both
- XOR is exclusive: $\quad p$ or q, but not both -- $p \oplus q$
- $\mathrm{p} \rightarrow \mathrm{q}$ is True whenever p is False
- $\quad \mathrm{p} \rightarrow \mathrm{q}$ is False only when p is True and q is False
- EXAMPLES

More Operators

NAND, NOR, XOR

p	q	$\sim(\mathrm{p} \wedge q)$	$\sim(\mathrm{p} \vee \mathrm{q})$	$\mathrm{p} \oplus \mathrm{q}$
T	T	F	F	F
T	F	T	F	T
F	T	T	F	T
F	F	T	T	F

Observations

- There are 16 possible boolean operators on two parameters.
- Every one can be written solely in terms of NAND or NOR.

Bit Operations

```
Idea
-- Replace T and F by 1 and 0
Examples
-- 11011011001
-- 10101100100
AND 10001000010
OR 11111111101
XOR 01110111101
```


Propositions

Proposition -- Recursive Definition

- Base Case: p, q, r,...
- $\quad p \wedge q, p \vee q, \sim p, p \rightarrow q, p \leftrightarrow q$

Parsing

- The inductive definition defines a tree.
- Parsing provided by the tree
- Parentheses needed for linear -- infix notation
-- $\quad(p \vee q) \wedge r \neq p \vee(q \wedge r)$

Types of Propositions

Tautology

- a proposition that is always True
- all rows in the Truth Table are true
- $\mathrm{p} \vee \sim \mathrm{p}$

Contradiction

- a proposition that is always False
- all rows in the Truth Table are false
- $\mathrm{p} \wedge \sim p$

Contingency

- a proposition that is neither a tautology nor a contradiction
- some rows in the Truth Table are True and some are rows are False
- pマq

Logical Equivalence

Definition

- $\quad p$ and q are logically equivalent if all rows in their Truth Table are the same.

Notation

- $\quad \mathrm{p} \equiv \mathrm{q}$

Example

- $\quad(\sim \mathrm{p}) \vee \mathrm{q} \equiv \mathrm{p} \rightarrow \mathrm{q} \quad$ (Check Truth Table)

Remark

- $\quad \mathrm{p} \equiv \mathrm{q}$ iff $\mathrm{p} \leftrightarrow \mathrm{q}$ is a tautology

Applications

- Proofs
- Computer Hardware -- Circuit Design

Implications

Proposition	Converse	Inverse	Contrapositive
$\mathrm{p} \rightarrow \mathrm{q}$	$\mathrm{q} \rightarrow \mathrm{p}$	$\sim \mathrm{p} \rightarrow \sim \mathrm{q}$	$\sim \mathrm{q} \rightarrow \sim \mathrm{p}$

Observations

- A proposition is equivalent to its contrapositive.
-- $\quad \mathrm{p} \rightarrow \mathrm{q} \equiv \sim \mathrm{q} \rightarrow \sim \mathrm{p}$
- A proposition is NOT equivalent to its converse or inverse.
-- Examples
-- Truth Tables

Logical Equivalences (Boolean Algebra)

1. Identity
$\mathrm{p} \wedge \mathrm{T} \equiv \mathrm{p}$
$\mathrm{p} \vee \mathrm{F} \equiv \mathrm{p}$
2. Domination
$\mathrm{p} \vee \mathrm{T} \equiv \mathrm{T}$
$\mathrm{p} \wedge \mathrm{F} \equiv \mathrm{F}$
3. Idempotence
$p \vee p \equiv p$
$\mathrm{p} \wedge \mathrm{p} \equiv \mathrm{p}$
4. Double Negation

$$
\sim \sim \mathrm{p} \equiv \mathrm{p}
$$

More Logical Equivalences (Boolean Algebra)

5. Commutative
$\mathrm{p} \vee \mathrm{q} \equiv \mathrm{q} \vee \mathrm{p}$
$\mathrm{p} \wedge \mathrm{q} \equiv \mathrm{q} \wedge \mathrm{p}$
6. Associative

$$
\begin{aligned}
& \mathrm{p} \vee(\mathrm{q} \vee \mathrm{r}) \equiv(\mathrm{p} \vee \mathrm{q}) \vee \mathrm{r} \\
& \mathrm{p} \wedge(\mathrm{q} \wedge \mathrm{r}) \equiv(\mathrm{p} \wedge \mathrm{q}) \wedge \mathrm{r}
\end{aligned}
$$

7. Distributive
$\mathrm{p} \vee(\mathrm{q} \wedge \mathrm{r}) \equiv(\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{p} \vee \mathrm{r})$
$\mathrm{p} \wedge(\mathrm{q} \vee \mathrm{r}) \equiv(\mathrm{p} \wedge \mathrm{q}) \vee(\mathrm{p} \wedge \mathrm{r})$

De Morgan's Laws

De Morgan Laws

$$
\begin{aligned}
& \sim(p \wedge q)=(\sim p) \vee(\sim q) \\
& \sim(p \vee q)=(\sim p) \wedge(\sim q)
\end{aligned}
$$

Proofs by Truth Tables.
Generalizes to more operators by Induction.

$$
\begin{aligned}
& \sim\left(p_{1} \wedge \cdots \wedge p_{n}\right)=\left(\sim p_{1}\right) \vee \cdots \vee\left(\sim p_{n}\right) \\
& \sim\left(p_{1} \vee \cdots \vee p_{n}\right)=\left(\sim p_{1}\right) \wedge \cdots \wedge\left(\sim p_{n}\right)
\end{aligned}
$$

Axiomatic Approach to Propositional Calculus

3 Axioms

1. $P \rightarrow(Q \rightarrow P)$
2. $(P \rightarrow(Q \rightarrow R)) \rightarrow((P \rightarrow Q) \rightarrow(P \rightarrow R))$
3. $(\sim P \rightarrow \sim Q) \rightarrow((\sim P \rightarrow Q) \rightarrow P)$

1 Rule of Inference

- Prove: P and $P \rightarrow Q$
- Conclude: Q

2 Metatheorems

- Consistency: All the Theorems of Propositional Calculus are Tautologies.
- Completeness: All Tautologies are Theorems of the Propositional Calculus.

Axiomatic Approach to Arithmetic

Axioms of Natural Numbers

1. 1 is a Natural Number.
2. If n is a natural number, then $n+1$ is a natural number.
3. Every natural number m except 1 is of the form $m=n+1$.
4. Every nonempty subset of the natural numbers has a smallest element.
5. Axioms for addition and multiplication.

1 Rule of Inference

- Prove: P and $P \rightarrow Q$
- Conclude: Q

Godel's Incompleteness Theorem

- All Axioms for the Natural Numbers are either Inconsistent or Incomplete.
- There are Formulas in Arithmetic that are True, but that cannot be Proved.

Disjunctive Normal Form

Construction

- For each row in the truth table where $F(p, q, r, \ldots)$ has the value True
- For each column with a primitive proposition p
-- \quad Write p if p has the value T
-- \quad Write $\sim p$ if p has the value F
- Let $F^{*}(p, q, r, \ldots)=p \wedge q \wedge \sim r \cdots \quad\{$ AND the columns \}
-- Then $F^{*}(p, q, r, \ldots)$ has the value T only along this row
- Let $F(p, q, r, \ldots)=F_{1}(p, q, r, \ldots) \vee F_{2}(p, q, r, \ldots) \vee \cdots \vee F_{n}(p, q, r, \ldots)$

Remarks

- AND has only one row with T
- \quad OR has value T whenever one of its parameters has value T

Examples

- $\quad \mathrm{p} \oplus \mathrm{q} \equiv(\mathrm{p} \wedge \sim \mathrm{q}) \vee(\sim \mathrm{p} \wedge \mathrm{q})$

Functionally Complete

Definition
A collection of operators are called functionally complete if every proposition is equivalent to a proposition involving only these operators.

Proposition 1: The operators \sim, \wedge, \vee are functionally complete.
Proof: Follows from Disjunctive Normal Form.

Proposition 2: The operators \sim, \wedge are functionally complete.
Proof: Follows from Proposition 1 and De Morgan's Laws.

Proposition 3: The operators \sim, \vee are functionally complete.
Proof: Follows from Proposition 1 and De Morgan's Laws.

Functionally Complete (continued)

Proposition 4: The operator NAND is functionally complete.
Proof: Homework

Proposition 5: The operators NOR is functionally complete.
Proof Homework.

Remark

- Propositions 4 and 5 are important in the design of logical gates.

SAT

Definition

- A compound statement is said to be satisfiable if there is an assignment of truth values to the variables in the statement that makes the statement True.

P vs.NP

- Determining in general whether a compound statement is satisfiable is an NP problem.
- Can be verified in polynomial time, but no solution yet in polynomial time.
- Only exponential time algorithms exist -- try all possibilities.

Part II:

Predicate Calculus

Predicates

Definition

- A Statement with Parameters,
- A Formula

Examples

- $\quad P(x), Q(x, y)$
- $x>0, x+y=z$

Predicate Calculus

- Study of Predicates and Quantifiers

Quantifiers

All
-- $\quad \forall x P(x)$ means for all $x, P(x)$ is True
-- $\quad \forall x P(x)$ is false when there is an x for which $P(x)$ is False
-- analogous to infinite AND

Exists

-- $\quad \exists x P(x)$ means there exists at least one x for which $P(x))$ is True
-- $\quad \exists x P(x)$ is false when $P(x)$ is False for every x
-- analogous to infinite OR

Domain

-- Usually there is some universal set or domain implicitly understood.
-- To be more explicit, we can write $\forall x \in Q \quad P(x)$.

Syllogism

All men are mortal.
Socrates is a man.
Therefore Socrates is mortal.

$$
\forall x P(x) \rightarrow M(x)
$$

$$
P(s)
$$

$$
\{s=\text { constant })
$$

$$
M(s)
$$

Dummy Variables

Definition

- $\quad x$ is a dummy variable means that x can be replaced by y.

Examples

- $\quad \forall x P(x)$
- $\int f(x) d x$
- $\quad(\operatorname{lambda}(x)(+x x))$

Bound and Free

Examples

- $\forall x(\ldots P(x) \ldots)$-- x is bound to $\forall x$
- $\forall x(x<y)--x$ is bound, y is free
- Free and bound apply only with respect to a specific scope
-- $\forall x\{(\exists x P(x)) \vee(\forall y(y>x))\}$
-- different x 's
-- different scopes

Scope

Rules

1. A name (variable) refers to the innermost definition for that name.
2. Misuse of scope $=$ common pitfall
3. Variables with no quantifiers, depend on context!
a. $\quad \sin ^{2} \mathrm{x}+\cos ^{2} \mathrm{x}=1 \quad--\quad \forall \mathrm{x}$
b. $x^{3}-2 x+1=0 \quad--\exists x$
4. Official Rule
a. free variables are implicitly quantified by \forall
5. Practical Rule
a. depends on context
b. get clarification

Substitution

Definition

- $\quad P(t \mid x)$ means result of substituting t for x
-- $\quad t=$ term,$x=$ variable

Example

- $\quad P(x)=\exists y(y>x)$

$$
\begin{array}{ll}
- & P(t \mid x)=\exists y(y>t) \\
- & P\left(3 z^{2}+2 \mid x\right)=\exists y\left(y>3 z^{2}+2\right)
\end{array}
$$

Capture

$$
\begin{aligned}
& P(x)=\exists y(y>x) \\
& P(y \mid x)=\exists y(y>y) \quad-- \text { illegal, common pitfall }
\end{aligned}
$$

Rules for Manipulating Predicates

1. $\forall \mathrm{x} \forall \mathrm{yP}(\mathrm{x}, \mathrm{y})=\forall \mathrm{y} \forall \mathrm{xP}(\mathrm{x}, \mathrm{y})$
2. $\exists \mathrm{x} \exists \mathrm{yP}(\mathrm{x}, \mathrm{y})=\exists \mathrm{y} \exists \mathrm{xP}(\mathrm{x}, \mathrm{y})$
3. $\exists \mathrm{x} \forall \mathrm{yP}(\mathrm{x}, \mathrm{y}) \rightarrow \forall \mathrm{y} \exists \mathrm{xP}(\mathrm{x}, \mathrm{y})$

- $\exists \mathrm{x} \forall \mathrm{yP}(\mathrm{x}, \mathrm{y})--x$ cannot depend on y
- $\forall \mathrm{y} \exists \mathrm{xP}(\mathrm{x}, \mathrm{y})--x$ can depend on $y\{x(y)\}$

4. $\sim \forall \mathrm{xP}(\mathrm{x})=\exists \mathrm{x} \sim \mathrm{P}(\mathrm{x}) \quad$ De Morgan's
5. $\sim \exists \mathrm{xP}(\mathrm{x})=\forall \mathrm{x} \sim \mathrm{P}(\mathrm{x}) \quad$ Laws
6. $\forall \mathrm{x}\{\mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x})\}=\{\forall \mathrm{xP}(\mathrm{x})\} \wedge\{\forall \mathrm{xQ}(\mathrm{x})\}$

Associativity and
7. $\exists \mathrm{x}\{\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})\}=\{\exists \mathrm{xP}(\mathrm{x})\} \vee\{\exists \mathrm{x} \mathrm{Q}(\mathrm{x})\}$

Commutativity Laws

Rules for Manipulating Predicates (continued)

8. $\forall \mathrm{x}\{\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})\} \leftarrow\{\forall \mathrm{xP}(\mathrm{x})\} \vee\{\forall \mathrm{xQ}(\mathrm{x})\} \quad$ And/Or

- $\quad\{\forall \mathrm{xP}(\mathrm{x})\} \vee\{\forall \mathrm{xQ}(\mathrm{x})\}$-- different x for P and Q
- $\quad \forall \mathrm{x}\{\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})\}$-- same x for P and Q

9. $\exists \mathrm{x}\{\mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x})\} \rightarrow\{\exists \mathrm{xP}(\mathrm{x})\} \wedge\{\exists \mathrm{x} \mathrm{Q}(\mathrm{x})\} \quad$ Don't Commute

- $\quad \exists \mathrm{x}\{\mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x})\}-$ same x for P and Q
- $\quad\{\exists \mathrm{xP}(\mathrm{x})\} \wedge\{\exists \mathrm{x} \mathrm{Q}(\mathrm{x})\}-$ different x for P and Q

10. If x is not free in P, then

- $\quad P=\forall x P(x)$
- $\quad P=\exists x P(x)$

11. $\forall \mathrm{x}\{\mathrm{P}(\mathrm{x}) \leftrightarrow \mathrm{Q}(\mathrm{x})\}=\forall \mathrm{x}\{\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{x})\} \wedge \forall \mathrm{x}\{\mathrm{Q}(\mathrm{x}) \rightarrow \mathrm{P}(\mathrm{x})\}$

Analogies

1. $\forall \cong \mathrm{AND}$
2. $\exists \cong \mathrm{OR}$

Note these analogies are exact over finite domains.

