<u>Graphs</u>

Part I: Introduction

Motivation for Graph Theory

Many, Many Applications

Fundamental Data Structures

Neat Algorithms

Engaging Theory

Novel Mathematics

Types of Graphs

- Simple Graph
- Multigraph
- Directed Graph
- Weighted Graph
- Connected
- Planar
- Bipartite
- Complete

Examples and Animations

http://oneweb.utc.edu/~Christopher-Mawata/petersen/

Representations and Special Graphs

Representations

- Diagrams
- Matrices

http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson7.htm

Special Graphs

- $C_n = \text{Cycle}$
- $W_n =$ Wheel
- K_n = Complete Graph

http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson11.htm http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson4.htm

Examples

- Web Graph
- Acquaintance Graph
- Telephone Graph
- Road Graph -- Robotics
- Concurrency Graph -- Programming
- Tournament Graph

Applications

- Path Planning (Robotics)
- Shortest Path
 - -- Traveling Salesman Problem
 - -- Cost Minimizing Problems
 - -- Time Minimizing Problems
- Scheduling (Graph Coloring)
- DNA Sequencing

Handshaking Theorem -- Connected Graphs

Theorem:
$$2e = \sum_{v \in V} \deg(v)$$

-- $e = \# \text{ edges}$
-- $\deg(v) = \# \text{ edges incident on the vertex } v$

Proof: Each edges is counted twice on the RHS, since each edge joins two vertices.

Web Page http://oneweb.utc.edu/~ChristopherMawata/petersen/lesson2.htm

Consequences

1. It is impossible to connect 15 computers so that each computer is connected to exactly 7 other computers.

 A country with exactly 3 roads out of every city cannot have 1000 roads.

<u>Graph Isomorphisms and Graph Invariants</u>

Problem

- When are two graphs *G*, *H* the same?
- Hard to tell from diagrams.

Graph Isomorphisms

- G and H are said to be <u>isomorphic</u> if we can deform G into H.
- G and H are said to be <u>isomorphic</u> if there is function $f: G \to H$ such that:
 - -- f maps vertices to vertices
 - -- f maps edges to edges
 - -- each vertex of H corresponds to a unique vertex of G
 - -- each edge of H corresponds to a unique edge of G
 - -- if e connects u and v, then f(e) connects f(u) and f(v)

Examples and Animations

Graph Isomorphisms

http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson3.htm

<u>Graph Invariants</u>

Definition

• A <u>graph invariant</u> is a number or property that is the same for all isomorphic graphs.

Examples

- Number of Vertices and Edges
- Number of Paths between Vertices
- Vertex Degrees
- Circuit Length
- Connectedness
- Chromatic Number

Applications

• Determining that two graphs are not isomorphic

Examples and Animations

Graph Coloring

http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson8.htm

Part II: Navigation

Paths

- Simple -- Contains Each Edge at Most Once
- Circuit -- Starts and Ends at Same Vertex
- <u>E</u>uler Path/Circuit -- Simple Path Contains Every Edge (<u>E</u>dges, <u>E</u>asy)
- <u>Hamiltonian Path/Circuit -- Simple Path Contains Every</u> Vertex (Vertices, <u>H</u>ard)

Euler Paths

Applications

- Layout of Circuits
- DNA Sequencing

Theorems

- Euler Circuit Theorem: Every vertex has even degree.
- Euler Path Theorem: Exactly two vertices of odd degree.

Euler Paths

Google Streetview

• Eulerian path to drive for taking pictures

Routing

• Snow plow routes

DNA Sequencing

• Shortest sequence of nucleotides representing a gene.

DNA Sequencing

Biochemistry (A, G, C, T)

• Find all nucleotides of a fixed small length *N* in a gene.

Graph Theory (Reassemble the entire gene)

- Vertices = Strands of DNA of Fixed Length N-1
- Edges = Connect two vertices *u*,*v* if there is a Strand of DNA of Length *N* whose first *N* – 1 nucleotides correspond to *u* and the last nucleotides correspond to *v*
- Construct an Euler Path to reassemble the gene

DNA Sequencing

Example

- Sequence of Nucleotides -- *AGT*, *TAG*, *GTA*
- Vertices -- AG, GT, TA
- Edges -- AGT, GTA, TAG
- Reconstructed Gene
 - -- Juxtaposition = *AGTTAGGTA* or *AGTAGTA*
 - -- Euler Path = *AGTAG*

Euler Animations

http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson12.htm

http://www.cut-the-knot.org/Curriculum/Combinatorics/GraphPractice.shtml http://www.cut-the-knot.org/Curriculum/Combinatorics/FleuryAlgorithm.shtml http://cauchy.math.okstate.edu/~wrightd/1493/euler/index.html h t t p : / / w w w . c u t - t h e -

knot.org/Curriculum/Combinatorics/GraphPractice.shtml

Euler Circuit Theorem

Theorem

Euler Circuit Exists \Leftrightarrow Every Vertex has Even Degree.

Proof

 \Rightarrow : Assume Euler Circuit Exists.

- Let *v* be any vertex.
- For every entry, there must be an exit, so *v* has even degree.
- (Note the first vertex is special, but the statement is still true.)
- ⇐: Assume Every Vertex is Even.
 - Start anywhere and Go as far as you can.
 - You must return to start vertex, since every vertex is even.
 - If all edges traversed, then done.
 - Otherwise, remove traversed edges, and pick an unused edge connected to a vertex in the first path.
 - Again go as far as you can and form another circuit.
 - Splice circuits together.
 - Continue until all edges are traversed.

Euler Path Theorem

Theorem

Euler Path Exists ⇔ Exactly Two Vertices have Odd Degree.

Proof

- \Rightarrow : Assume Euler Path Exists.
 - Let *v* be any vertex, except first and last.
 - For every entry, there must be an exit, so *v* has even degree.
 - The first vertex has an exit with no entry.
 - The last vertex has an entry with no exit,
 - Hence there are exactly two vertices with odd degree.
- ⇐: Assume Exactly Two Vertices have Odd Degree.
 - Add an edge between the two odd vertices *a*,*b*.
 - Now every vertex has even degree.
 - Therefore an Euler circuit exists, starting with the new edge exiting *a*.
 - Therefore an Euler path exists starting from *b* and ending at *a*.

Hamilton Circuits

Examples

- The complete graph K_n has many Hamilton circuits.
- The more edges in the graph, the more likely the graph has a Hamilton circuit.

Applications

- Traveling Salesman Problem
 - -- Shortest Hamilton Circuit in K_n
 - -- FED EX, Garbage Collection

Hamilton Circuits

Graph

- Each House is a Vertex
- Each Road Segment is an Edge

Hamiltonian Paths

- Mail Routes
- Garbage Pickup

Hamilton Animations

http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson12b.htm

Hamilton Circuits -- Theorems

Ore's Theorem (Necessary Conditions)

• $\deg(u) + \deg(v) \ge \#G = n$ for all nonadjacent $u, v \Rightarrow$ Hamilton Circuit Exists

Proof: Homework

NP-Completeness Theorem

- Determining if a graph has a Hamilton Circuit is an NP-Complete problem.
 - -- The existence of a Hamilton Circuit can be verified in Polynomial Time.
 - -- If a polynomial time algorithm exists that can determine for every graph whether or not there exists a Hamilton Circuit, then every problem that can be verified in polynomial time can be solved in polynomial time!

Proof: Comp 482

Comparisons

Euler Circuits

- Easy
- Linear Time Algorithm -- O(n)

Hamilton Circuits

- Hard
- NP-Complete problem $O(2^n)$

Shortest Paths

Problem

- Find the Shortest Path between two arbitrary Vertices in a Weighted Graph.
- Typically all Weights are assumed to be Positive.

Applications

- Minimizing *Cost*, *Time*, *Distance* for Travel between Cities.
- Minimizing *Cost* or *Response Time* in a Computer Network.

Dijkstra's Shortest Path Algorithm

Problem

Find the Shortest Path in a Weighted Graph G from Vertex a to Vertex z, where all the Weights are assumed to be Positive.

Dijkstra's Algorithm

Base Case: $S_1 = \{a\}$

Recursion: $S_{k+1} = S_k \cup \{v\}$, where v is the vertex closest to S_k .

Terminate when $z \in S_k$

Proof

By Induction on k: S_k contains the shortest path from a to vertices in S_k .

Dijkstra Animations

http://www.dgp.toronto.edu/people/JamesStewart/270/9798s/Laffra /DijkstraApplet.html

http://www.cs.auckland.ac.nz/software/AlgAnim/dijkstra.html

http://www.unf.edu/~wkloster/foundations/foundationsLinks.html

<u>Trees</u>

Tree

• A simple graph with no circuits.

Spanning Tree

• A tree containing every vertex of a simple graph *G*, that is also a subgraph of *G*.

Minimal Spanning Tree

• A spanning tree on a weighted graph with the smallest sum of weights.

Minimal Spanning Trees

Applications

• Minimizing Network Cost

Algorithms

- Prim's Algorithm
- Kruskal's Algorithm

Prim's Algorithm

Problem

Given a Weighted Graph G, find a Minimal Spanning Tree.

Prim's Algorithm (Greedy Algorithm)

Base Case:

• $T_1 = \{edge with smallest weight\}$

Recursion:

- $T_{k+1} = T_k \cup \{e\}$
- e = edge with smallest weight connected to T_k not forming a circuit Termination Condition
- k = n 1

Proof

By Contradiction: T_k is a subtree of the minimal spanning tree.

Complexity $O(e \log(v))$

Kruskal's Algorithm

Problem

Given a Weighted Graph G, find a Minimal Spanning Tree.

Kruskal's Algorithm (Greedy Algorithm)

Base Case:

• $T_1 = \{edge with smallest weight\}$

Recursion:

• $T_{k+1} = T_k \cup \{edge \text{ with smallest weight not forming a circuit}\}$ Termination Condition

•
$$k=n-1$$
.

Complexity

• $O(e \log(e))$

Animations

Prim's Algorithm

http://www.unf.edu/~wkloster/foundations/foundationsLinks.html

Kruskal's Algorithm

http://www.unf.edu/~wkloster/foundations/foundationsLinks.html

Planar Graphs

Definition

• A graph G is called *planar* if G can be drawn on the plane with no crossing edges.

Examples

- K_4 is planar
- K_5 and $K_{3,3}$ are not planar

Application

• Printed Circuits

Examples

http://www.personal.kent.edu/~rmuhamma/GraphTheory/MyGraphTheory/planarity.htm

Euler's Formula

Planar Graphs

- v e + r = 2
 - -- v = # vertices,
 - -- e = # edges
 - -- r = # regions

Proof

By induction on the number of edges.

Base Case:

• One edge: $v = 2, e = 1, r = 1 \Rightarrow v - e + r = 2$

Inductive Hypothesis:

- Euler's formula is valid for planar graphs with *n* edges.
- Must show that Euler's formula is valid for planar graphs with n+1 edges.
- Consider two cases:
 - i. Connect an edge to one vertex: $v \rightarrow v+1$, $e \rightarrow e+1$
 - ii. Connect an edge to two vertices: $e \rightarrow e+1$, $r \rightarrow r+1$
- In both cases v e + r does not change.

Euler's Formulas

Planar Graphs

- v e + r = 2
 - -- v = # vertices,
 - -- e = # edges
 - -- r = # regions

Polyhedra

- V E + F H = 2(C G)
 - -- V = # vertices,
 - -- E = # edges
 - -- F = # faces
 - -- H = # holes in faces
 - -- C = # connected components
 - -- G = # holes in the solid (genus).

Kuratowski's Theorem

Theorem

Every Non-Planar Graph contains either $K_{3,3}$ or K_5 .

Proof Hard

Graph Coloring

Graph Coloring

• An assignment of colors to the vertices of a graph so that no two adjacent vertices have the same color.

Chromatic Number

• The smallest number of colors needed to color a graph.

Examples

- K_n requires n colors
- $K_{m,n}$ requires 2 colors
- C_n requires 2 colors if n is even and 3 colors if n is odd
- W_n requires 3 colors if n is even and 4 colors if n is odd

Applications

• Avoiding Scheduling Conflicts

Graph Coloring Animations

http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson8.htm

Four Color Theorem

Four Color Theorem Four colors suffice to color any planar graph.

Proof of Four Color Theorem Difficult. By Computer!

Graph Coloring Problem

Problem

• Find the chromatic number of an arbitrary graph.

Solution

• Backtracking (Later -- See Trees)

Complexity

• Best known algorithms take exponential time in the number of vertices of the graph.

Graph Coloring Animations

http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson8.htm