
Graphs



Part I:
Introduction



Motivation for Graph Theory

Many, Many Applications

Fundamental Data Structures

Neat Algorithms

Engaging Theory

Novel Mathematics



Types of Graphs

• Simple Graph 

• Multigraph

• Directed Graph

• Weighted Graph

• Connected 

• Planar

• Bipartite

• Complete



Examples and Animations

http://oneweb.utc.edu/~Christopher-Mawata/petersen/



Representations and Special Graphs

Representations

• Diagrams

• Matrices 

http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson7.htm

Special Graphs

• Cn =  Cycle

• Wn =  Wheel

• Kn =  Complete Graph
http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson11.htm

http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson4.htm



Examples

• Web Graph

• Acquaintance Graph

• Telephone Graph

• Road Graph  -- Robotics

• Concurrency Graph -- Programming

• Tournament Graph



Applications

• Path Planning  (Robotics)

• Shortest Path

-- Traveling Salesman Problem

-- Cost Minimizing Problems

-- Time Minimizing Problems

• Scheduling (Graph Coloring)

• DNA Sequencing



Handshaking Theorem -- Connected Graphs

Theorem: 2e = deg(v)
v∈V
∑

-- e = # edges

-- deg(v) = # edges incident on the vertex v

Proof:  Each edges is counted twice on the RHS, 
since each edge joins two vertices.

Web Page
http://oneweb.utc.edu/~ChristopherMawata/petersen/lesson2.htm



Consequences

1. It is impossible to connect 15 computers so that each 

computer is connected to exactly 7 other computers.  

2. A country with exactly 3 roads out of every city 

cannot have 1000 roads.



Graph Isomorphisms and Graph Invariants

Problem

• When are two graphs G, H the same?

• Hard to tell from diagrams.

Graph Isomorphisms

• G and H are said to be isomorphic if we can deform G into H.

• G and H are said to be isomorphic if there is function f :G → H  such that:

-- f maps vertices to vertices

-- f maps edges to edges

-- each vertex of H corresponds to a unique vertex of G

-- each edge of H corresponds to a unique edge of G

-- if e connects u and v, then f (e)  connects f (u)  and f (v)



Examples and Animations

Graph Isomorphisms

http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson3.htm



Graph Invariants

Definition
• A graph invariant is a number or property that is the same

for all isomorphic graphs.

Examples

• Number of Vertices and Edges

• Number of Paths between Vertices

• Vertex Degrees

• Circuit Length

• Connectedness

• Chromatic Number

Applications
• Determining that two graphs are not isomorphic 



Examples and Animations

Graph Coloring

http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson8.htm



Part II:

Navigation



Paths

• Simple -- Contains Each Edge at Most Once

• Circuit -- Starts and Ends at Same Vertex

• Euler Path/Circuit -- Simple Path Contains Every Edge 
(Edges, Easy)

• Hamiltonian Path/Circuit -- Simple Path Contains Every 
Vertex (Vertices, Hard)



Euler Paths

Applications

• Layout of Circuits

• DNA Sequencing

Theorems

• Euler Circuit Theorem: Every vertex has even degree.

• Euler Path Theorem:   Exactly two vertices of odd degree.



Euler Paths

Google Streetview 

• Eulerian path to drive for taking pictures

Routing

• Snow plow routes

DNA Sequencing

• Shortest sequence of nucleotides representing a gene.



DNA Sequencing

Biochemistry  (A, G, C, T)

• Find all nucleotides of a fixed small length N in a gene.

Graph Theory  (Reassemble the entire gene)

• Vertices = Strands of DNA of Fixed Length N −1

• Edges = Connect two vertices u,v if there is a Strand 
of DNA of Length N whose first N −1 
nucleotides correspond to u and the last 
nucleotides correspond to v

• Construct an Euler Path to reassemble the gene



DNA Sequencing

Example

• Sequence of Nucleotides -- AGT, TAG, GTA

• Vertices  -- AG, GT, TA

• Edges  --  AGT, GTA, TAG

• Reconstructed Gene

--  Juxtaposition = AGTTAGGTA or AGTAGTA

-- Euler Path = AGTAG



Euler Animations

http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson12.htm

http://www.cut-the-knot.org/Curriculum/Combinatorics/GraphPractice.shtml

http://www.cut-the-knot.org/Curriculum/Combinatorics/FleuryAlgorithm.shtml

http://cauchy.math.okstate.edu/~wrightd/1493/euler/index.html

h t t p : / / w w w . c u t - t h e -
knot.org/Curriculum/Combinatorics/GraphPractice.shtml



Euler Circuit Theorem

Theorem
Euler Circuit Exists ⇔  Every Vertex has Even Degree.

Proof
⇒ :  Assume Euler Circuit Exists.

• Let v be any vertex.
• For every entry, there must be an exit, so v has even degree.
• (Note the first vertex is special, but the statement is still true.)

⇐ :  Assume Every Vertex is Even.
• Start anywhere and Go as far as you can.   
• You must return to start vertex, since every vertex is even.
• If all edges traversed, then done.
• Otherwise, remove traversed edges, and pick an unused edge 

connected to a vertex in the first path.
• Again go as far as you can and form another circuit.  
• Splice circuits together.
• Continue until all edges are traversed.



 

Euler Path Theorem

Theorem
Euler Path Exists ⇔  Exactly Two Vertices have Odd Degree.

Proof
⇒ :  Assume Euler Path Exists.

• Let v be any vertex, except first and last.
• For every entry, there must be an exit, so v has even degree.
• The first vertex has an exit with no entry.
• The last vertex has an entry with no exit,
• Hence there are exactly two vertices with odd degree.

⇐ :  Assume Exactly Two Vertices have Odd Degree.
• Add an edge between the two odd vertices a,b.
• Now every vertex has even degree.
• Therefore an Euler circuit exists, starting with the new edge exiting a.
• Therefore an Euler path exists starting from b and ending at a.



Hamilton Circuits

Examples

• The complete graph Kn  has many Hamilton circuits.

• The more edges in the graph, the more likely the graph has  
a Hamilton circuit.

Applications

• Traveling Salesman Problem 

-- Shortest Hamilton Circuit in Kn

-- FED EX,  Garbage Collection



Hamilton Circuits

Graph

• Each House is a Vertex

• Each Road Segment is an Edge

Hamiltonian Paths

• Mail Routes 

• Garbage Pickup 



Hamilton Animations

h t t p : / / o n e w e b . u t c . e d u / ~ C h r i s t o p h e r -
Mawata/petersen/lesson12b.htm



Hamilton Circuits -- Theorems

Ore’s Theorem  (Necessary Conditions)

• deg(u) + deg(v) ≥ #G = n  for all nonadjacent u, v  ⇒  Hamilton Circuit Exists

Proof:  Homework

NP-Completeness Theorem

• Determining if a graph has a Hamilton Circuit is an NP-Complete problem.

-- The existence of a Hamilton Circuit can be verified in Polynomial Time.

-- If a polynomial time algorithm exists that can determine for every graph

whether or not there exists a Hamilton Circuit, then every problem that 

can be verified in polynomial time can be solved in polynomial time!

Proof:  Comp 482



Comparisons

Euler Circuits

• Easy

• Linear Time Algorithm -- O(n)

Hamilton Circuits

• Hard

• NP-Complete problem  -- O(2n )



Shortest Paths

Problem
• Find the Shortest Path between two arbitrary Vertices  

in a Weighted Graph.  

• Typically all Weights are assumed to be Positive.

Applications

• Minimizing Cost, Time, Distance for Travel between Cities.

• Minimizing Cost or Response Time in a Computer Network.



Dijkstra’s Shortest Path Algorithm

Problem
Find the Shortest Path in a Weighted Graph G from Vertex a to Vertex z,
where all the Weights are assumed to be Positive.

Dijkstra’s Algorithm
Base Case: S1 = {a}

Recursion: Sk +1 = Sk ∪{v} , where v is the vertex closest to Sk .

Terminate when z ∈Sk

Proof
By Induction on k:  Sk  contains the shortest path from a to vertices in Sk .



Dijkstra Animations

http://www.dgp.toronto.edu/people/JamesStewart/270/9798s/Laffra
/DijkstraApplet.html

http://www.cs.auckland.ac.nz/software/AlgAnim/dijkstra.html

http://www.unf.edu/~wkloster/foundations/foundationsLinks.html



Trees

Tree
• A simple graph with no circuits.

Spanning Tree
• A tree containing every vertex of a simple graph G, 

that is also a subgraph of G.

Minimal Spanning Tree
• A spanning tree on a weighted graph with the smallest 

sum of weights.



Minimal Spanning Trees

Applications

• Minimizing Network Cost

Algorithms

• Prim’s Algorithm

• Kruskal’s Algorithm



Prim’s Algorithm

Problem
Given a Weighted Graph G, find a Minimal Spanning Tree.

Prim’s Algorithm  (Greedy Algorithm)
Base Case:
• T1 = {edge with  smallest  weight}
Recursion: 
• Tk +1 = Tk ∪{e}

• e = edge with smallest  weight  connected  to  Tk  not   forming a circuit
Termination Condition
• k = n −1

Proof
By Contradiction:  Tk  is a subtree of the minimal spanning tree.

Complexity
O elog(v)( )



Kruskal’s Algorithm

Problem
Given a Weighted Graph G, find a Minimal Spanning Tree.

Kruskal’s Algorithm  (Greedy Algorithm)
Base Case:
• T1 = {edge with  smallest  weight}
Recursion: 
• Tk +1 = Tk ∪{edge with smallest  weight  not   forming a circuit}
Termination Condition
• k = n −1. 

Complexity
• O elog(e)( )



Animations

Prim’s Algorithm

http://www.unf.edu/~wkloster/foundations/foundationsLinks.html

Kruskal’s Algorithm

http://www.unf.edu/~wkloster/foundations/foundationsLinks.html



Planar Graphs

Definition
• A graph G is called planar if G can be drawn on the plane with no crossing edges.

Examples
• K4  is planar

• K5  and K3,3 are not planar

Application
• Printed Circuits

Examples

http://www.personal.kent.edu/~rmuhamma/GraphTheory/MyGraphTheory/planarity.htm



Euler’s Formula

Planar Graphs
• v − e + r = 2

-- v = # vertices, 
-- e = # edges
-- r = # regions

Proof
By induction on the number of edges.
Base Case:  
• One edge:  v = 2, e = 1, r = 1 ⇒ v − e + r = 2
Inductive Hypothesis:    
• Euler’s formula is valid for planar graphs with n edges.
• Must show that Euler’s formula is valid for planar graphs with n + 1 edges.
• Consider two cases:

i. Connect an edge to one vertex:  v → v +1,   e→ e +1
ii. Connect an edge to two vertices: e→ e + 1,   r → r + 1

• In both cases v − e + r  does not change.  



Euler’s Formulas

Planar Graphs
• v − e + r = 2

-- v = # vertices, 
-- e = # edges
-- r = # regions

Polyhedra
•

� 

V −E + F − H = 2(C −G)
-- V = # vertices, 
-- E = # edges
-- F = # faces
-- H = # holes in faces
-- C = # connected components
-- G = # holes in the solid (genus).  



Kuratowski’s Theorem

Theorem
Every Non-Planar Graph contains either K3,3 or K5.

Proof
Hard



Graph Coloring

Graph Coloring
• An assignment of colors to the vertices of a graph so that 

no two adjacent vertices have the same color.

Chromatic Number
• The smallest number of colors needed to color a graph.

Examples
• Kn  requires n colors

• Km,n  requires 2 colors

• Cn  requires 2 colors if n is even and 3 colors if n is odd

• Wn  requires 3 colors if n is even and 4 colors if n is odd

Applications
• Avoiding Scheduling Conflicts



Graph Coloring Animations

http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson8.htm



Four Color Theorem

Four Color Theorem
Four colors suffice to color any planar graph.

Proof of Four Color Theorem
Difficult.  By Computer!



Graph Coloring Problem

Problem
• Find the chromatic number of an arbitrary graph.

Solution
• Backtracking (Later -- See Trees)

Complexity
• Best known algorithms take exponential time

in the number of vertices of the graph.



Graph Coloring Animations

http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson8.htm


