Graphs

Part I:

Introduction

Motivation for Graph Theory

Many, Many Applications

Fundamental Data Structures

Neat Algorithms

Engaging Theory

Novel Mathematics

Types of Graphs

- Simple Graph
- Multigraph
- Directed Graph
- Weighted Graph
- Connected
- Planar
- Bipartite
- Complete

Examples and Animations

http://oneweb.utc.edu/~Christopher-Mawata/petersen/

Representations and Special Graphs

Representations

- Diagrams
- Matrices
http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson7.htm
Special Graphs
- $C_{n}=$ Cycle
- $W_{n}=$ Wheel
- $K_{n}=$ Complete Graph
http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson11.htm http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson4.htm

Examples

- Web Graph
- Acquaintance Graph
- Telephone Graph
- Road Graph -- Robotics
- Concurrency Graph -- Programming
- Tournament Graph

Applications

- Path Planning (Robotics)
- Shortest Path
-- Traveling Salesman Problem
-- Cost Minimizing Problems
-- Time Minimizing Problems
- Scheduling (Graph Coloring)
- DNA Sequencing

Handshaking Theorem -- Connected Graphs

$$
\begin{array}{ll}
\text { Theorem: } & 2 e=\sum_{v \in V} \operatorname{deg}(v) \\
& -\quad e=\# \text { edges } \\
& --\operatorname{deg}(v)=\# \text { edges incident on the vertex } v
\end{array}
$$

Proof: Each edges is counted twice on the RHS, since each edge joins two vertices.

Web Page
http://oneweb.utc.edu/~ChristopherMawata/petersen/lesson2.htm

Consequences

1. It is impossible to connect 15 computers so that each computer is connected to exactly 7 other computers.
2. A country with exactly 3 roads out of every city cannot have 1000 roads.

Graph Isomorphisms and Graph Invariants

Problem

- When are two graphs G, H the same?
- Hard to tell from diagrams.

Graph Isomorphisms

- $\quad G$ and H are said to be isomorphic if we can deform G into H.
- $\quad G$ and H are said to be isomorphic if there is function $f: G \rightarrow H$ such that:
-- f maps vertices to vertices
-- f maps edges to edges
-- each vertex of H corresponds to a unique vertex of G
-- each edge of H corresponds to a unique edge of G
-- if e connects u and v, then $f(e)$ connects $f(u)$ and $f(v)$

Examples and Animations

Graph Isomorphisms
http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson3.htm

Graph Invariants

Definition

- A graph invariant is a number or property that is the same for all isomorphic graphs.

Examples

- Number of Vertices and Edges
- Number of Paths between Vertices
- Vertex Degrees
- Circuit Length
- Connectedness
- Chromatic Number

Applications

- Determining that two graphs are not isomorphic

Examples and Animations

Graph Coloring
http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson8.htm

Part II:

Navigation

Paths

- Simple -- Contains Each Edge at Most Once
- Circuit -- Starts and Ends at Same Vertex
- Euler Path/Circuit -- Simple Path Contains Every Edge (Edges, Easy)
- Hamiltonian Path/Circuit -- Simple Path Contains Every Vertex (Vertices, $\underline{\text { Hard }}$)

Euler Paths

Applications

- Layout of Circuits
- DNA Sequencing

Theorems

- Euler Circuit Theorem: Every vertex has even degree.
- Euler Path Theorem: Exactly two vertices of odd degree.

Euler Paths

Google Streetview

- Eulerian path to drive for taking pictures

Routing

- Snow plow routes

DNA Sequencing

- Shortest sequence of nucleotides representing a gene.

DNA Sequencing

Biochemistry (A, G, C, T)

- Find all nucleotides of a fixed small length N in a gene.

Graph Theory (Reassemble the entire gene)

- Vertices $=$ Strands of DNA of Fixed Length $N-1$
- Edges $=$ Connect two vertices u, v if there is a Strand of DNA of Length N whose first $N-1$ nucleotides correspond to u and the last nucleotides correspond to v
- Construct an Euler Path to reassemble the gene

DNA Sequencing

Example

- Sequence of Nucleotides -- AGT, TAG, GTA
- Vertices -- AG, GT, TA
- Edges -- AGT, GTA, TAG
- Reconstructed Gene
-- Juxtaposition = AGTTAGGTA or AGTAGTA
-- Euler Path $=A G T A G$

Euler Animations

http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson12.htm
http://www.cut-the-knot.org/Curriculum/Combinatorics/GraphPractice.shtml
http://www.cut-the-knot.org/Curriculum/Combinatorics/FleuryAlgorithm.shtml
http://cauchy.math.okstate.edu/~wrightd/1493/euler/index.html
h t t p : / / w w w . c u t - t h e knot.org/Curriculum/Combinatorics/GraphPractice.shtml

Euler Circuit Theorem

Theorem

Euler Circuit Exists \Leftrightarrow Every Vertex has Even Degree.
Proof
\Rightarrow : Assume Euler Circuit Exists.

- Let v be any vertex.
- For every entry, there must be an exit, so v has even degree.
- (Note the first vertex is special, but the statement is still true.)
\Leftarrow : Assume Every Vertex is Even.
- Start anywhere and Go as far as you can.
- You must return to start vertex, since every vertex is even.
- If all edges traversed, then done.
- Otherwise, remove traversed edges, and pick an unused edge connected to a vertex in the first path.
- Again go as far as you can and form another circuit.
- Splice circuits together.
- Continue until all edges are traversed.

Euler Path Theorem

Theorem

Euler Path Exists \Leftrightarrow Exactly Two Vertices have Odd Degree.
Proof
\Rightarrow : Assume Euler Path Exists.

- Let v be any vertex, except first and last.
- For every entry, there must be an exit, so v has even degree.
- The first vertex has an exit with no entry.
- The last vertex has an entry with no exit,
- Hence there are exactly two vertices with odd degree.
\Leftarrow : Assume Exactly Two Vertices have Odd Degree.
- Add an edge between the two odd vertices a, b.
- Now every vertex has even degree.
- Therefore an Euler circuit exists, starting with the new edge exiting a.
- Therefore an Euler path exists starting from b and ending at a.

Hamilton Circuits

Examples

- The complete graph K_{n} has many Hamilton circuits.
- The more edges in the graph, the more likely the graph has a Hamilton circuit.

Applications

- Traveling Salesman Problem
-- Shortest Hamilton Circuit in K_{n}
-- FED EX, Garbage Collection

Hamilton Circuits

Graph

- Each House is a Vertex
- Each Road Segment is an Edge

Hamiltonian Paths

- Mail Routes
- Garbage Pickup

Hamilton Animations

http://oneweb.utc.edu/~ChristopherMawata/petersen/lesson12b.htm

Hamilton Circuits -- Theorems

Ore's Theorem (Necessary Conditions)

- $\operatorname{deg}(u)+\operatorname{deg}(v) \geq \# G=n$ for all nonadjacent $u, v \Rightarrow$ Hamilton Circuit Exists Proof: Homework

NP-Completeness Theorem

- Determining if a graph has a Hamilton Circuit is an NP-Complete problem.
-- The existence of a Hamilton Circuit can be verified in Polynomial Time.
-- If a polynomial time algorithm exists that can determine for every graph whether or not there exists a Hamilton Circuit, then every problem that can be verified in polynomial time can be solved in polynomial time!

Proof: Comp 482

Comparisons

Euler Circuits

- Easy
- Linear Time Algorithm -- $O(n)$

Hamilton Circuits

- Hard
- NP-Complete problem -- $O\left(2^{n}\right)$

Shortest Paths

Problem

- Find the Shortest Path between two arbitrary Vertices in a Weighted Graph.
- Typically all Weights are assumed to be Positive.

Applications

- Minimizing Cost, Time, Distance for Travel between Cities.
- Minimizing Cost or Response Time in a Computer Network.

Dijkstra's Shortest Path Algorithm

Problem
Find the Shortest Path in a Weighted Graph G from Vertex a to Vertex z, where all the Weights are assumed to be Positive.

Dijkstra's Algorithm
Base Case: $S_{1}=\{a\}$
Recursion: $\quad S_{k+1}=S_{k} \cup\{v\}$, where v is the vertex closest to S_{k}.
Terminate when $z \in S_{k}$

Proof
By Induction on $k: S_{k}$ contains the shortest path from a to vertices in S_{k}.

Dijkstra Animations

http://www.dgp.toronto.edu/people/JamesStewart/270/9798s/Laffra /DijkstraApplet.html
http://www.cs.auckland.ac.nz/software/AlgAnim/dijkstra.html
http://www.unf.edu/~wkloster/foundations/foundationsLinks.html

Trees

Tree

- A simple graph with no circuits.

Spanning Tree

- A tree containing every vertex of a simple graph G, that is also a subgraph of G.

Minimal Spanning Tree

- A spanning tree on a weighted graph with the smallest sum of weights.

Minimal Spanning Trees

Applications

- Minimizing Network Cost

Algorithms

- Prim's Algorithm
- Kruskal's Algorithm

Prim's Algorithm

Problem

Given a Weighted Graph G, find a Minimal Spanning Tree.

Prim's Algorithm (Greedy Algorithm)
Base Case:

- $T_{1}=\{$ edge with smallest weight $\}$

Recursion:

- $T_{k+1}=T_{k} \cup\{e\}$
- $e=e d g e$ with smallest weight connected to T_{k} not forming a circuit Termination Condition
- $k=n-1$

Proof

By Contradiction: T_{k} is a subtree of the minimal spanning tree.

Complexity

$$
O(e \log (v))
$$

Kruskal's Algorithm

Problem

Given a Weighted Graph G, find a Minimal Spanning Tree.

Kruskal's Algorithm (Greedy Algorithm)
Base Case:

- $T_{1}=\{$ edge with smallest weight $\}$

Recursion:

- $T_{k+1}=T_{k} \cup\{$ edge with smallest weight not forming a circuit $\}$ Termination Condition
- $k=n-1$.

Complexity

- $O(e \log (e))$

Animations

Prim's Algorithm
http://www.unf.edu/~wkloster/foundations/foundationsLinks.html

Kruskal's Algorithm
http://www.unf.edu/~wkloster/foundations/foundationsLinks.html

Planar Graphs

Definition

- A graph G is called planar if G can be drawn on the plane with no crossing edges.

Examples

- K_{4} is planar
- K_{5} and $K_{3,3}$ are not planar

Application

- Printed Circuits

Examples

http://www.personal.kent.edu/~rmuhamma/GraphTheory/MyGraphTheory/planarity.htm

Euler's Formula

Planar Graphs

- $v-e+r=2$
-- $v=$ \# vertices,
-- $\quad e=$ \# edges
-- $r=$ \# regions

Proof

By induction on the number of edges.
Base Case:

- One edge: $v=2, e=1, r=1 \Rightarrow v-e+r=2$

Inductive Hypothesis:

- Euler's formula is valid for planar graphs with n edges.
- Must show that Euler's formula is valid for planar graphs with $n+1$ edges.
- Consider two cases:
i. Connect an edge to one vertex: $\quad v \rightarrow v+1, e \rightarrow e+1$
ii. Connect an edge to two vertices: $e \rightarrow e+1, r \rightarrow r+1$
- In both cases $v-e+r$ does not change.

Euler's Formulas

Planar Graphs

- $v-e+r=2$
-- $\quad v=$ \# vertices,
-- $\quad e=$ \# edges
-- $\quad r=$ \# regions

Polyhedra

- $V-E+F-H=2(C-G)$
-- $\quad V=$ \# vertices,
-- $\quad E=$ \# edges
-- $\quad F=$ \# faces
-- $\quad H=$ \# holes in faces
-- $\quad C=\#$ connected components
-- $\quad G=$ \# holes in the solid (genus).

Kuratowski's Theorem

Theorem
Every Non-Planar Graph contains either $K_{3,3}$ or K_{5}.

Proof
Hard

Graph Coloring

Graph Coloring

- An assignment of colors to the vertices of a graph so that no two adjacent vertices have the same color.

Chromatic Number

- The smallest number of colors needed to color a graph.

Examples

- $\quad K_{n}$ requires n colors
- $K_{m, n}$ requires 2 colors
- C_{n} requires 2 colors if n is even and 3 colors if n is odd
- W_{n} requires 3 colors if n is even and 4 colors if n is odd

Applications

- Avoiding Scheduling Conflicts

Graph Coloring Animations

http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson8.htm

Four Color Theorem

Four Color Theorem
Four colors suffice to color any planar graph.

Proof of Four Color Theorem
Difficult. By Computer!

Graph Coloring Problem

Problem

- Find the chromatic number of an arbitrary graph.

Solution

- Backtracking (Later -- See Trees)

Complexity

- Best known algorithms take exponential time in the number of vertices of the graph.

Graph Coloring Animations

http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson8.htm

