
Structural Induction



Examples

1. Propositions  (Later)
a. Base Case: T, F, p,q,r,...
b. Recursive Step: ~p, p^q, p∨q, p→q

2. Polynomials
a. Base Case: 1, x
b. Recursive Step: p + q, p∗q, c p

3. Binary Trees
a. Base Case: Empty Tree, Tree with one node
b. Recursive Step: Node with left and right subtrees

4. Strings (of Balanced Parentheses)
a. Base Case: Empty string, ()
b. Recursive Step: (S), S1S2



Principle of Structural Induction

Let R be a recursive definition.

Let S be a statement about the elements defined by R.

If the following hypotheses hold:

i. S is True for every element  b1,…,bm  in the base case of the definition R.

ii. For every element E constructed by the recursive definition from some 
elements  e1,…,en :

S is True for  e1,…,en ⇒  S is true for E

Then we can conclude that:

iii.  S is True for Every Element E defined by the recursive definition R.



Template for Proofs by Structural Induction

Prove

i. S is True for  b1,…,bn  {Base Case}

ii. S is True for  e1,…,en ⇒  S is True for E {Inductive Step}

Conclude

iii.  S is True for Every Element defined by R {Conclusion)



Observations on Structural Induction

Proofs by Structural Induction

• Extends inductive proofs to discrete data structures -- lists, trees, …

• For every recursive definition there is a corresponding structural induction rule.  

• The base case and the recursive step mirror the recursive definition.

-- Prove Base Case

-- Prove Recursive Step

Proof of Structural Induction

Let T = E | S  is  True for E{ } .

• T contains the base cases

• T contains all structures that can be built from the base cases

Hence T must contain the entire recursively defined set.



Binary Trees

1. Recursive Definition
a. Base Case: Empty Tree   φ
b. Recursive Step: Node with left and right subtrees

2. Structural Induction
a. If P(φ)   and  ∀T1,T2 P(T1)∧ P(T2 )⇒ P(T ) with nodes T1,T2{ }
b. Then  ∀T P(T )

3. Size of a Tree
a. Base Case: s(φ) = 0
b. Recursive Step: s(T ) = 1 + s(T1) + s(T2 )

4. Height of a Tree
a. Base Case: h(φ) = 0

b. Recursive Step: h(T ) = 1 + max h(T1), h(T2 )( )



Theorem: s(T ) ≤ 2h(T )+1 −1

Proof: By Structural Induction.

Base Case: s(φ) = 0  and  h(φ) = 0

s(φ) = 0 < 1 = 2 −1 = 2h(φ )+1 −1

Recursive Step: Let T  be the tree with nodes T1, T2

Assume:  s(T1) ≤ 2h(T1 )+1 −1  and  s(T2 ) ≤ 2h(T2 )+1 −1

Must Show:  s(T ) ≤ 2h(T )+1 −1

Structural Induction:   By definition

h(T ) = 1 + max h(T1), h(T2 )( ) = max 1 + h(T1),  1+ h(T2 )( )
s(T ) = 1 + s(T1) + s(T2 )



Induction continued

s(T ) = 1 + s(T1) + s(T2 )

≤ 1+ 2h(T1 )+1 −1( ) + 2h(T2 )+1 −1( ) {Inductive Hypothesis}

≤ 1+ 2 2max h(T1 )+1, h(T2 )+1( ) −1( )
≤ 2  2h(T )( ) −1

= 2h(T )+1 −1



Fractals

Theorem
Every angle in a Sierpinski Triangle is 60 degrees.

Proof

Base Case:  Easy.

Inductive Step:   By Structural Induction.



Balanced Parentheses

1. Definition
a. Base Case:       λ (empty string)
b. Recursive Step: (S) , S1S2

2. Structural Induction

a. P(λ ) and ∀S1,S2 P[S1] and  P[S2 ]{ } → P[(S1)] and  P[S1S2 ]

then ∀S P[S]

3. Count Function
a. c[S]  = #open parentheses – #closed parentheses

i. c(λ) = 0

ii. c[(S)] = c[S]

iii. c[S1S2 ] = c[S1] + c[S2 ]



Theorem:  c[S] = 0

Proof: By Structural Induction.

Base Case:  c[λ] = 0

Recursive Step;

c[(S)] = c[S] = 0

c[S1S2 ] = c[S1] + c[S2 ] = 0 + 0 = 0



More Strings

Recursive Definition

• Base Cases:       b

• Recursive Step: aSa

Explicit Formula

• anban  n ≥ 0

Structural Induction

• If  P(b)  and ∀S  P(S)→ P(aSa)( ),  then ∀S P(S)



Theorem:  Recursive Definition ⇔  Explicit Definition

Proof: Recursive ⇒ Explicit.   

Every element constructed recursively is of the form anban  

By Structural Induction.

Base Case:  b = a0b a0 .

Structural Induction:

• Suppose S = an ban   

 • Then  aSa = a(an ban )a = an+1ban+1

Explicit ⇒ Recursive.   

Every element of the form anban  can be constructed recursively.

By Weak Induction on n.

Base Case:   n = 0 ⇒ a0ba0 = b    Okay.



Induction

Assume:  Every element of the form anban  can be constructed recursively.

Must Show:  Every element of the form an+1ban+1  can be constructed recursively.

Observe: an+1ban+1 = a(anban )a = aSa .

By the inductive hypothesis: anban  satisfies the recursive definition;  

Hence by the recursive step, so does an+1ban+1 .



Polynomials

Recursive Definition

• Base Cases: 1, x

• Recursive Step: p + q, p∗q, c p

Explicit Definition

•  p(x) = c0 + c1x ++ cn xn

Structural Induction

• If  S(1), S(x)  and ∀p, q  S(p)∧ S(q)→ S(p + q), S(p∗q), S(c p)( ) ,  

then ∀pS(p)



Theorem:  Recursive Definition ⇔  Explicit Definition

Proof: Recursive ⇒ Explicit.

Every element constructed recursively is of the form 

 p(x) = c0 + c1x ++ cn xn .

By Structural Induction.

Base Case:  1, x . Okay.

Structural Induction:
• Suppose 

 p(x) = c0 + c1x ++ cn xn  

 q(x) = d0 + d1x ++ dm xm

 • Then  p + q, p∗q, c p  are also of the form

 r(x) = e0 + e1 x ++ ek xk



Explicit ⇒ Recursive.   
Every polynomial

 p(x) = c0 + c1x ++ cn xn  

can be constructed recursively.

By Weak Induction on n.

Base Case:  degree( p) = 0 ⇒ p = c1 .  Okay.

Recursive Step:  Suppose every polynomial 

 q(x) = c0 + c1x ++ cn xn

of degree n can be constructed recursively.

Must Show:  Every polynomial

 p(x) = c0 + c1x ++ cn xn + cn+1xn+1 = q(x) + cn+1xn+1

of degree n + 1 can be constructed recursively.

By the inductive hypothesis: q(x)  and xn  are can both be constructed recursively 

Hence by the recursive definition so can 

cn+1xn+1 = cn+1(xxn )   and  p(x) = q(x) + cn+1x n+1 .



Structural Induction on the Natural Numbers

Recursive Definition

• Base Case: 0 is in N

• Recursive Step: if n is in N, the s(n) = n + 1 is in N

Observation

• Structural Induction ⇔  Weak Induction

Theorem: Structural Induction on Recursive Schemes ⇔ Weak Induction

Proof: ⇒: Weak Induction follows from Structural Induction because weak 
induction is structural induction on the natural numbers.

⇐: Structural Induction follows from weak induction by induction on 
the number of operations = number of recursive steps.



Structural Induction on Pairs of Natural Numbers

Lexicographic Order on N × N

• Think order on two letter words

-- at, in, it, an

-- (2,3), (9, 7), (2,7), (7, 7)

Well Ordering on N × N

• Every non-empty subset of N × N  has a smallest element.

• But there are infinitely many elements smaller than any element in N × N

-- List all elements less than (4, 7)



Well Ordering on N × N

Theorem:  Every non-empty subset of N × N  has a smallest element.

Proof:  Let 

S = a nonempty subset of N × N .

S1 = s ∈N  | there is a number  t  such  that  (s, t )∈S{ }

s∗ = smallest  element  in  S1

S2 = t ∈N  | (s∗, t )∈S1{ }
t∗ = smallest  element  in  S2

Claim:  (s∗, t∗) = smallest  element   in  S

Proof:  s∗= smallest s, and for this smallest s, t∗= the smallest t.



Strong Induction on Pairs of Natural Numbers

Let P(m, n)  be a statement about the pair of integers (m, n).

If the following hypotheses hold

i. Base Case: P(0, 0)

ii. Recursive Step: P(a, b)  for  all  (a, b) < (c, d)⇒ P(c, d )

Then we can conclude that 

iii. P(m, n)  is True for every pair of integers (m, n)

Proof:  By Well Ordering Principle:

There is no smallest element where P(m, n)  is False.



Example

Recursive Definition
• a0,0 = 0

• am, 0 = am−1,0 + 1

• am, n = am,n−1 + n      n > 0

Theorem:  am, n = m + n(n + 1) / 2

Proof:  By Strong Induction on N × N .

Base Case:  Obvious.  (0 = 0)

Recursion:  Two cases:

Case 1:  am, 0 = am−1,0 + 1 = (m −1) + 1 = m .

Case 2: am, n = am,n−1 + n = m + (n −1)n / 2 + n = m + n(n + 1) / 2 .



Bad Recursive Definitions

Legal Definitions

• New objects must be built from objects already in the set

Incorrect Example:  Strings with more 0’s than 1’s

• Base Case:  0

• Recursive Step:  0S, S0, where S has same number of 0’s and 1’s.

Observation

• This recursive definition is not legal, since S is not in the set!

• Need to tell how S is constructed!


