Structural Induction

Examples

- 1. Propositions (Later)
 - a. Base Case: T, F, p,q,r,...
 - b. Recursive Step: $\sim p, p \land q, p \lor q, p \rightarrow q$
- 2. Polynomials
 - a. Base Case: 1, x
 - b. Recursive Step: p+q, p*q, cp

3. Binary Trees

- a. Base Case: Empty Tree, Tree with one node
- b. Recursive Step: Node with left and right subtrees

4. Strings (of Balanced Parentheses)

- a. Base Case: Empty string, ()
- b. Recursive Step: $(S), S_1S_2$

Principle of Structural Induction

Let *R* be a recursive definition.

Let S be a statement about the elements defined by R.

If the following hypotheses hold:

- i. S is True for every element b_1, \ldots, b_m in the base case of the definition R.
- ii. For every element *E* constructed by the recursive definition from some elements *e*₁,...,*e*_n: *S* is True for *e*₁,...,*e*_n ⇒ *S* is true for *E*

Then we can conclude that:

iii. *S* is True for Every Element *E* defined by the recursive definition *R*.

Template for Proofs by Structural Induction

Prove

- i. S is True for b_1, \dots, b_n {Base Case}
- ii. S is True for $e_1, \dots, e_n \Rightarrow S$ is True for E {Inductive Step}

Conclude

iii. S is True for Every Element defined by R {Conclusion)

Observations on Structural Induction

Proofs by Structural Induction

- Extends inductive proofs to discrete data structures -- lists, trees,...
- For every recursive definition there is a corresponding structural induction rule.
- The base case and the recursive step mirror the recursive definition.
 - -- Prove Base Case
 - -- Prove Recursive Step

Proof of Structural Induction

Let $T = \{E \mid S \text{ is True for } E\}.$

- *T* contains the base cases
- *T* contains all structures that can be built from the base cases

Hence T must contain the entire recursively defined set.

Binary Trees

- 1. Recursive Definition
 - a. Base Case: Empty Tree ϕ
 - b. Recursive Step: Node with left and right subtrees
- 2. Structural Induction
 - a. If $P(\phi)$ and $\forall T_1, T_2 \{ P(T_1) \land P(T_2) \Rightarrow P(T) \text{ with nodes } T_1, T_2 \}$
 - b. Then $\forall T P(T)$
- 3. Size of a Tree
 - a. Base Case: $s(\phi) = 0$
 - b. Recursive Step: $s(T) = 1 + s(T_1) + s(T_2)$
- 4. Height of a Tree
 - a. Base Case: $h(\phi) = 0$
 - b. Recursive Step: $h(T) = 1 + \max(h(T_1), h(T_2))$

Theorem: $s(T) \le 2^{h(T)+1} - 1$

Proof: By Structural Induction.

Base Case: $s(\phi) = 0$ and $h(\phi) = 0$ $s(\phi) = 0 < 1 = 2 - 1 = 2^{h(\phi)+1} - 1$

Recursive Step: Let T be the tree with nodes T_1, T_2 Assume: $s(T_1) \le 2^{h(T_1)+1} - 1$ and $s(T_2) \le 2^{h(T_2)+1} - 1$ Must Show: $s(T) \le 2^{h(T)+1} - 1$

Structural Induction: By definition

 $h(T) = 1 + \max(h(T_1), h(T_2)) = \max(1 + h(T_1), 1 + h(T_2))$ $s(T) = 1 + s(T_1) + s(T_2)$

Induction continued

$$\begin{split} s(T) &= 1 + s(T_1) + s(T_2) \\ &\leq 1 + \left(2^{h(T_1)+1} - 1\right) + \left(2^{h(T_2)+1} - 1\right) \\ &\leq 1 + 2\left(2^{\max\left(h(T_1)+1, h(T_2)+1\right)} - 1\right) \\ &\leq 2\left(2^{h(T)}\right) - 1 \\ &= 2^{h(T)+1} - 1 \end{split}$$

{Inductive Hypothesis}

Fractals

Theorem

Every angle in a Sierpinski Triangle is 60 degrees.

Proof

Base Case: Easy.

Inductive Step: By Structural Induction.

Balanced Parentheses

- 1. Definition
 - a. Base Case: λ (empty string)
 - b. Recursive Step: (S), S_1S_2
- 2. Structural Induction
 - a. $P(\lambda)$ and $\forall S_1, S_2 \{P[S_1] \text{ and } P[S_2]\} \rightarrow P[(S_1)] \text{ and } P[S_1S_2]$ then $\forall S P[S]$
- 3. Count Function
 - a. c[S] = #open parentheses #closed parentheses
 - i. $c(\lambda) = 0$
 - ii. c[(S)] = c[S]
 - iii. $c[S_1S_2] = c[S_1] + c[S_2]$

Theorem: c[S] = 0

Proof: By Structural Induction. Base Case: $c[\lambda] = 0$

Recursive Step;

c[(S)] = c[S] = 0

 $c[S_1S_2] = c[S_1] + c[S_2] = 0 + 0 = 0$

More Strings

Recursive Definition

- Base Cases: b
- Recursive Step: *aSa*

Explicit Formula

• $a^n b a^n$ $n \ge 0$

Structural Induction

• If P(b) and $(\forall S \ P(S) \rightarrow P(aSa))$, then $\forall S P(S)$

Theorem: Recursive Definition \Leftrightarrow *Explicit Definition*

Proof: Recursive \Rightarrow Explicit.

Every element constructed recursively is of the form $a^n b a^n$ By Structural Induction. Base Case: $b = a^0 b a^0$. Structural Induction:

- Suppose $S = a^n b a^n$
- Then $aSa = a(a^{n}ba^{n})a = a^{n+1}ba^{n+1}$

Explicit \Rightarrow Recursive.

Every element of the form $a^n b a^n$ can be constructed recursively.

By Weak Induction on *n*.

Base Case: $n = 0 \Rightarrow a^0 b a^0 = b$ Okay.

Induction

Assume: Every element of the form $a^n b a^n$ can be constructed recursively.

Must Show: Every element of the form $a^{n+1}ba^{n+1}$ can be constructed recursively.

Observe:
$$a^{n+1}ba^{n+1} = a(a^nba^n)a = aSa$$
.

By the inductive hypothesis: $a^n b a^n$ satisfies the recursive definition;

Hence by the recursive step, so does $a^{n+1}ba^{n+1}$.

Polynomials

Recursive Definition

- Base Cases: 1, x
- Recursive Step: p+q, p*q, cp

Explicit Definition

• $p(x) = c_0 + c_1 x + \dots + c_n x^n$

Structural Induction

• If S(1), S(x) and $(\forall p,q \ S(p) \land S(q) \rightarrow S(p+q), S(p*q), S(cp))$, then $\forall p \ S(p)$

Theorem: Recursive Definition \Leftrightarrow *Explicit Definition*

Proof: Recursive \Rightarrow Explicit.

Every element constructed recursively is of the form

 $p(x) = c_0 + c_1 x + \dots + c_n x^n.$

By Structural Induction.

Base Case: 1, x. Okay.

Structural Induction:

• Suppose

$$p(x) = c_0 + c_1 x + \dots + c_n x^n$$
$$q(x) = d_0 + d_1 x + \dots + d_m x^m$$

• Then p+q, p*q, cp are also of the form $r(x) = e_0 + e_1 x + \dots + e_k x^k$ Explicit \Rightarrow Recursive.

Every polynomial

 $p(x) = c_0 + c_1 x + \dots + c_n x^n$

can be constructed recursively.

By Weak Induction on *n*.

Base Case: $degree(p) = 0 \Rightarrow p = c1$. Okay.

Recursive Step: Suppose every polynomial

$$q(x) = c_0 + c_1 x + \dots + c_n x^n$$

of degree *n* can be constructed recursively.

Must Show: Every polynomial

$$p(x) = c_0 + c_1 x + \dots + c_n x^n + c_{n+1} x^{n+1} = q(x) + c_{n+1} x^{n+1}$$

of degree n+1 can be constructed recursively.

By the inductive hypothesis: q(x) and x^n are can both be constructed recursively Hence by the recursive definition so can

$$c_{n+1}x^{n+1} = c_{n+1}(xx^n)$$
 and $p(x) = q(x) + c_{n+1}x^{n+1}$.

Structural Induction on the Natural Numbers

Recursive Definition

- Base Case: 0 is in N
- Recursive Step: if *n* is in *N*, the s(n) = n+1 is in *N*

Observation

• Structural Induction \Leftrightarrow Weak Induction

Theorem: Structural Induction on Recursive Schemes \Leftrightarrow *Weak Induction*

- Proof: \Rightarrow : Weak Induction follows from Structural Induction because weak induction is structural induction on the natural numbers.
 - ⇐: Structural Induction follows from weak induction by induction on the number of operations = number of recursive steps.

Structural Induction on Pairs of Natural Numbers

Lexicographic Order on $N \times N$

- Think order on two letter words
 - -- at, in, it, an
 - -- (2,3), (9,7), (2,7), (7,7)

Well Ordering on $N \times N$

- Every non-empty subset of $N \times N$ has a smallest element.
- But there are infinitely many elements smaller than any element in $N \times N$
 - -- List all elements less than (4,7)

<u>Well Ordering on $N \times N$ </u>

Theorem: Every non-empty subset of $N \times N$ has a smallest element.

Proof: Let

 $S = a \text{ nonempty subset of } N \times N .$ $S_{1} = \{s \in N \mid there \text{ is a number } t \text{ such that } (s, t) \in S\}$ $s^{*} = smallest \text{ element in } S_{1}$ $S_{2} = \{t \in N \mid (s^{*}, t) \in S_{1}\}$ $t^{*} = smallest \text{ element in } S_{2}$ $Claim: (s^{*}, t^{*}) = smallest \text{ element in } S$

Proof: $s^* = smallest s$, and for this smallest s, $t^* = the smallest t$.

Strong Induction on Pairs of Natural Numbers

Let P(m,n) be a statement about the pair of integers (m,n).

If the following hypotheses hold

- i. Base Case: P(0,0)
- ii. Recursive Step: P(a,b) for all $(a,b) < (c,d) \Rightarrow P(c,d)$

Then we can conclude that

iii. P(m,n) is True for every pair of integers (m,n)

Proof: By Well Ordering Principle:

There is no smallest element where P(m,n) is False.

Example

Recursive Definition

- $a_{0,0} = 0$
- $a_{m,0} = a_{m-1,0} + 1$
- $a_{m,n} = a_{m,n-1} + n$ n > 0

Theorem: $a_{m,n} = m + n(n+1)/2$

Proof: By Strong Induction on $N \times N$.

Base Case: Obvious. (0 = 0)

Recursion: Two cases:

Case 1: $a_{m,0} = a_{m-1,0} + 1 = (m-1) + 1 = m$.

Case 2: $a_{m,n} = a_{m,n-1} + n = m + (n-1)n/2 + n = m + n(n+1)/2$.

Bad Recursive Definitions

Legal Definitions

• New objects must be built from objects already in the set

Incorrect Example: Strings with more 0's than 1's

- Base Case: 0
- Recursive Step: 0*S*, *S*0, where *S* has same number of 0's and 1's.

Observation

- This recursive definition is not legal, since *S* is not in the set!
- Need to tell how S is constructed!