Structural Induction

Examples

1. Propositions (Later)
a. Base Case: T, F, p,q,r,...
b. Recursive Step: $\sim p, p \wedge q, p \vee q, p \rightarrow q$
2. Polynomials
a. Base Case: $\quad 1, x$
b. Recursive Step: $\quad p+q, p * q, c p$
3. Binary Trees
a. Base Case: Empty Tree, Tree with one node
b. Recursive Step: Node with left and right subtrees
4. Strings (of Balanced Parentheses)
a. Base Case:
Empty string, ()
b. Recursive Step:
(S), $\mathrm{S}_{1} \mathrm{~S}_{2}$

Principle of Structural Induction

Let R be a recursive definition.
Let S be a statement about the elements defined by R.

If the following hypotheses hold:
i. $\quad S$ is True for every element b_{1}, \ldots, b_{m} in the base case of the definition R.
ii. For every element E constructed by the recursive definition from some elements e_{1}, \ldots, e_{n} :
S is True for $e_{1}, \ldots, e_{n} \Rightarrow S$ is true for E
Then we can conclude that:
iii. $\quad S$ is True for Every Element E defined by the recursive definition R.

Template for Proofs by Structural Induction

Prove
i. S is True for $b_{1}, \ldots, b_{n} \quad\{$ Base Case \}
ii. S is True for $e_{1}, \ldots, e_{n} \Rightarrow S$ is True for E \{Inductive Step\}

Conclude
iii. S is True for Every Element defined by $R \quad$ \{Conclusion)

Observations on Structural Induction

Proofs by Structural Induction

- Extends inductive proofs to discrete data structures -- lists, trees,. . .
- For every recursive definition there is a corresponding structural induction rule.
- The base case and the recursive step mirror the recursive definition.
-- Prove Base Case
-- Prove Recursive Step

Proof of Structural Induction
Let $T=\{E \mid S$ is True for $E\}$.

- $\quad T$ contains the base cases
- $\quad T$ contains all structures that can be built from the base cases

Hence T must contain the entire recursively defined set.

Binary Trees

1. Recursive Definition
a. Base Case:
Empty Tree ϕ
b. Recursive Step: Node with left and right subtrees
2. Structural Induction
a. If $P(\phi)$ and $\forall T_{1}, T_{2}\left\{P\left(T_{1}\right) \wedge P\left(T_{2}\right) \Rightarrow P(T)\right.$ with nodes $\left.T_{1}, T_{2}\right\}$
b. Then $\forall T P(T)$
3. Size of a Tree
a. Base Case: $\quad s(\phi)=0$
b. Recursive Step: $\quad s(T)=1+s\left(T_{1}\right)+s\left(T_{2}\right)$
4. Height of a Tree
a. Base Case: $\quad h(\phi)=0$
b. Recursive Step: $\quad h(T)=1+\max \left(h\left(T_{1}\right), h\left(T_{2}\right)\right)$

Theorem: $\quad s(T) \leq 2^{h(T)+1}-1$
Proof: By Structural Induction.
Base Case: $s(\phi)=0$ and $h(\phi)=0$

$$
s(\phi)=0<1=2-1=2^{h(\phi)+1}-1
$$

Recursive Step: Let T be the tree with nodes T_{1}, T_{2}
Assume: $s\left(T_{1}\right) \leq 2^{h\left(T_{1}\right)+1}-1$ and $s\left(T_{2}\right) \leq 2^{h\left(T_{2}\right)+1}-1$
Must Show: $\quad s(T) \leq 2^{h(T)+1}-1$
Structural Induction: By definition

$$
\begin{aligned}
& h(T)=1+\max \left(h\left(T_{1}\right), h\left(T_{2}\right)\right)=\max \left(1+h\left(T_{1}\right), 1+h\left(T_{2}\right)\right) \\
& s(T)=1+s\left(T_{1}\right)+s\left(T_{2}\right)
\end{aligned}
$$

Induction continued

$$
\begin{aligned}
s(T) & =1+s\left(T_{1}\right)+s\left(T_{2}\right) \\
& \leq 1+\left(2^{h\left(T_{1}\right)+1}-1\right)+\left(2^{h\left(T_{2}\right)+1}-1\right) \quad \text { \{Inductive Hypothesis\} } \\
& \leq 1+2\left(2^{\max \left(h\left(T_{1}\right)+1, h\left(T_{2}\right)+1\right)}-1\right) \\
& \leq 2\left(2^{h(T)}\right)-1 \\
& =2^{h(T)+1}-1
\end{aligned}
$$

Fractals

Theorem

Every angle in a Sierpinski Triangle is 60 degrees.

Proof

Base Case: Easy.
Inductive Step: By Structural Induction.

Balanced Parentheses

1. Definition
a. Base Case: λ (empty string)
b. Recursive Step: $(S), S_{1} S_{2}$
2. Structural Induction
a. $\quad P(\lambda)$ and $\forall S_{1}, S_{2}\left\{P\left[S_{1}\right]\right.$ and $\left.P\left[S_{2}\right]\right\} \rightarrow P\left[\left(S_{1}\right)\right]$ and $P\left[S_{1} S_{2}\right]$ then $\forall S P[S]$
3. Count Function
a. $\quad c[S]=$ \#open parentheses - \#closed parentheses
i. $\quad c(\lambda)=0$
ii. $\quad c[(S)]=c[S]$
iii. $\quad c\left[S_{1} S_{2}\right]=c\left[S_{1}\right]+c\left[S_{2}\right]$

Theorem: $c[S]=0$

Proof: By Structural Induction.
Base Case: $c[\lambda]=0$

Recursive Step;

$$
c[(S)]=c[S]=0
$$

$$
c\left[S_{1} S_{2}\right]=c\left[S_{1}\right]+c\left[S_{2}\right]=0+0=0
$$

More Strings

Recursive Definition

- Base Cases: b
- Recursive Step: $a S a$

Explicit Formula

- $a^{n} b a^{n} \quad n \geq 0$

Structural Induction

- If $P(b)$ and $(\forall S P(S) \rightarrow P(a S a))$, then $\forall S P(S)$

Theorem: Recursive Definition \Leftrightarrow Explicit Definition
Proof: \quad Recursive \Rightarrow Explicit.
Every element constructed recursively is of the form $a^{n} b a^{n}$ By Structural Induction.

Base Case: $b=a^{0} b a^{0}$.
Structural Induction:

- \quad Suppose $S=a^{n} b a^{n}$
- Then $a S a=a\left(a^{n} b a^{n}\right) a=a^{n+1} b a^{n+1}$

Explicit \Rightarrow Recursive.
Every element of the form $a^{n} b a^{n}$ can be constructed recursively.
By Weak Induction on n.
Base Case: $n=0 \Rightarrow a^{0} b a^{0}=b \quad$ Okay.

Induction

Assume: Every element of the form $a^{n} b a^{n}$ can be constructed recursively.

Must Show: Every element of the form $a^{n+1} b a^{n+1}$ can be constructed recursively.

Observe: $\quad a^{n+1} b a^{n+1}=a\left(a^{n} b a^{n}\right) a=a S a$.

By the inductive hypothesis: $a^{n} b a^{n}$ satisfies the recursive definition;
Hence by the recursive step, so does $a^{n+1} b a^{n+1}$.

Polynomials

Recursive Definition

- Base Cases: $1, x$
- Recursive Step: $p+q, p * q, c p$

Explicit Definition

- $p(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n}$

Structural Induction

- If $S(1), S(x)$ and $(\forall p, q S(p) \wedge S(q) \rightarrow S(p+q), S(p * q), S(c p))$, then $\forall p S(p)$

Theorem: Recursive Definition \Leftrightarrow Explicit Definition
Proof: \quad Recursive \Rightarrow Explicit.
Every element constructed recursively is of the form

$$
p(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n} .
$$

By Structural Induction.
Base Case: 1, x. Okay.
Structural Induction:

- Suppose

$$
\begin{aligned}
& p(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n} \\
& q(x)=d_{0}+d_{1} x+\cdots+d_{m} x^{m}
\end{aligned}
$$

- Then $p+q, p * q, c p$ are also of the form

$$
r(x)=e_{0}+e_{1} x+\cdots+e_{k} x^{k}
$$

Explicit \Rightarrow Recursive.
Every polynomial

$$
p(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n}
$$

can be constructed recursively.
By Weak Induction on n.
Base Case: $\operatorname{degree}(p)=0 \Rightarrow p=c 1$. Okay.
Recursive Step: Suppose every polynomial

$$
q(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n}
$$

of degree n can be constructed recursively.
Must Show: Every polynomial

$$
p(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n}+c_{n+1} x^{n+1}=q(x)+c_{n+1} x^{n+1}
$$

of degree $n+1$ can be constructed recursively.
By the inductive hypothesis: $q(x)$ and x^{n} are can both be constructed recursively
Hence by the recursive definition so can

$$
c_{n+1} x^{n+1}=c_{n+1}\left(x x^{n}\right) \text { and } p(x)=q(x)+c_{n+1} x^{n+1} .
$$

Structural Induction on the Natural Numbers

Recursive Definition

- Base Case: $\quad 0$ is in N
- Recursive Step: \quad if n is in N, the $s(n)=n+1$ is in N

Observation

- Structural Induction \Leftrightarrow Weak Induction

Theorem: Structural Induction on Recursive Schemes \Leftrightarrow Weak Induction

Proof: $\quad \Rightarrow$: Weak Induction follows from Structural Induction because weak induction is structural induction on the natural numbers.
$\Leftarrow: \quad$ Structural Induction follows from weak induction by induction on the number of operations $=$ number of recursive steps .

Structural Induction on Pairs of Natural Numbers

Lexicographic Order on $N \times N$

- Think order on two letter words
-- at, in, it, an
-- $(2,3),(9,7),(2,7),(7,7)$

Well Ordering on $N \times N$

- Every non-empty subset of $N \times N$ has a smallest element.
- But there are infinitely many elements smaller than any element in $N \times N$
-- List all elements less than $(4,7)$

Well Ordering on $N \times N$

Theorem: Every non-empty subset of $N \times N$ has a smallest element.
Proof: Let

$$
\begin{aligned}
& S=\text { a nonempty subset of } N \times N . \\
& S_{1}=\{s \in N \mathrm{I} \text { there is a number } t \text { such that }(s, t) \in S\} \\
& s^{*}=\text { smallest element in } S_{1} \\
& S_{2}=\left\{t \in N \mid\left(s^{*}, t\right) \in S_{1}\right\} \\
& t^{*}=\text { smallest element in } S_{2}
\end{aligned}
$$

Claim: $\left(s^{*}, t^{*}\right)=$ smallest element in S
Proof: $s^{*}=$ smallest s, and for this smallest $s, t^{*}=$ the smallest t.

Strong Induction on Pairs of Natural Numbers

Let $P(m, n)$ be a statement about the pair of integers (m, n).
If the following hypotheses hold
i. Base Case: $\quad P(0,0)$
ii. Recursive Step: $\quad P(a, b)$ for all $(a, b)<(c, d) \Rightarrow P(c, d)$

Then we can conclude that
iii. $P(m, n)$ is True for every pair of integers (m, n)

Proof: By Well Ordering Principle:
There is no smallest element where $P(m, n)$ is False.

Example

Recursive Definition

- $a_{0,0}=0$
- $a_{m, 0}=a_{m-1,0}+1$
- $a_{m, n}=a_{m, n-1}+n \quad n>0$

Theorem: $a_{m, n}=m+n(n+1) / 2$
Proof: By Strong Induction on $N \times N$.
Base Case: Obvious. $(0=0)$
Recursion: Two cases:
Case 1: $a_{m, 0}=a_{m-1,0}+1=(m-1)+1=m$.

Case 2: $\quad a_{m, n}=a_{m, n-1}+n=m+(n-1) n / 2+n=m+n(n+1) / 2$.

Bad Recursive Definitions

Legal Definitions

- New objects must be built from objects already in the set

Incorrect Example: Strings with more 0's than I's

- Base Case: 0
- Recursive Step: $0 S, S 0$, where S has same number of 0 's and 1's.

Observation

- This recursive definition is not legal, since S is not in the set!
- Need to tell how S is constructed!

