Testing

Four Problems

1. Sum of Consecutive Odd Numbers -- Speed of Algorithms
2. Sum of Consecutive Cubes -- Speed of Algorithms
3. Formula for Generating Prime Numbers -- Cryptography
4. Formula for Counting Prime Numbers -- Cryptography

Sum of Consecutive Odd Numbers

Example

- $1=1^{2}$

Conclusion

- The sum of consecutive odd numbers is equal to a square.

Sum of Consecutive Odd Numbers

Examples

$$
\begin{aligned}
& 1=1^{2} \\
& 1+3=4=2^{2}
\end{aligned}
$$

Conclusion
The sum of consecutive odd numbers is equal to a square.

Sum of Consecutive Odd Numbers

Examples

$$
\begin{aligned}
& 1=1^{2} \\
& 1+3=4=2^{2} \\
& 1+3+5=9=3^{2}
\end{aligned}
$$

Conclusion
The sum of consecutive odd numbers is equal to a square.

Sum of Consecutive Odd Numbers

$$
\begin{aligned}
& \text { Examples } \\
& \qquad \begin{array}{l}
1=1^{2} \\
1+3=4=2^{2} \\
1+3+5=9=3^{2} \\
1+3+5+7=16=4^{2}
\end{array}
\end{aligned}
$$

Sum of Consecutive Odd Numbers

Examples

$$
\begin{aligned}
& 1=1^{2} \\
& 1+3=4=2^{2} \\
& 1+3+5=9=3^{2} \\
& 1+3+5+7=16=4^{2}
\end{aligned}
$$

Conclusion
The sum of the first n odd numbers is equal to n^{2}

$$
1+3+\cdots+2 n-1=n^{2}
$$

Sum of Consecutive Cubes

Example

- $1^{3}=1^{2}$

Conclusion

- The sum of consecutive cubes is equal to a square.

Sum of Consecutive Cubes

Example

$$
\begin{aligned}
& 1^{3}=1^{2} \\
& 1^{3}+2^{3}=1+8=9=3^{2}
\end{aligned}
$$

Conclusion
The sum of consecutive cubes is equal to a square.

Sum of Consecutive Cubes

Example

$$
\begin{aligned}
& 1^{3}=1^{2} \\
& 1^{3}+2^{3}=1+8=9=3^{2} \\
& 1^{3}+2^{3}+3^{3}=1+8+27=36=6^{2}
\end{aligned}
$$

Conclusion
The sum of consecutive cubes is equal to a square.

Sum of Consecutive Cubes

Example

$$
\begin{aligned}
& 1^{3}=1^{2} \\
& 1^{3}+2^{3}=1+8=9=3^{2} \\
& 1^{3}+2^{3}+3^{3}=1+8+27=36=6^{2} \\
& 1^{3}+2^{3}+3^{3}+4^{3}=1+8+27+64=100=10^{2}
\end{aligned}
$$

Sum of Consecutive Cubes

Example

$$
\begin{aligned}
& 1^{3}=1^{2} \\
& 1^{3}+2^{3}=1+8=9=3^{2} \\
& 1^{3}+2^{3}+3^{3}=1+8+27=36=6^{2} \\
& 1^{3}+2^{3}+3^{3}+4^{3}=1+8+27+64=100=10^{2}
\end{aligned}
$$

Conclusion
The sum of consecutive cubes is equal to a square.
$1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2}$

Formula for Generating Prime Numbers

$$
\begin{aligned}
& F(n)=n^{2}+n+41 \\
& \quad F(1)=1^{2}+1+41=43
\end{aligned}
$$

Conclusion
The function $F(n)$ generates a prime number for every value of n.

Formula for Generating Prime Numbers

$$
\begin{aligned}
& F(n)=n^{2}+n+41 \\
& \quad F(1)=1^{2}+1+41=43 \\
& \quad F(2)=2^{2}+2+41=4+2+41=47
\end{aligned}
$$

Conclusion
The function $F(n)$ generates a prime number for every value of n.

Formula for Generating Prime Numbers

$$
\begin{aligned}
& F(n)=n^{2}+n+41 \\
& \quad F(1)=1^{2}+1+41=43 \\
& \quad F(2)=2^{2}+2+41=4+2+41=47 \\
& F(3)=3^{2}+3+41=9+3+41=53
\end{aligned}
$$

Conclusion
The function $F(n)$ generates a prime number for every value of n.

Formula for Generating Prime Numbers

$$
\begin{aligned}
& F(n)=n^{2}+n+41 \\
& \quad F(1)=1^{2}+1+41=43 \\
& F(2)=2^{2}+2+41=4+2+41=47 \\
& F(3)=3^{2}+3+41=9+3+41=53 \\
& F(4)=4^{2}+4+41=16+4+41=61
\end{aligned}
$$

Conclusion
The function $F(n)$ generates a prime number for every value of n.

Formula for Counting Prime Numbers

$\operatorname{PrimePi}(n)=$ number of primes less than or equal to n

$$
\operatorname{Li}(n)=\int_{0}^{n} \frac{d t}{\operatorname{Ln}(t)}
$$

Theorem

$$
\frac{n}{\operatorname{Li}(n)} \leq \frac{n}{\operatorname{PrimePi}(n)} \leq \operatorname{Ln}(n) \quad \text { for } n>20
$$

Four Problems

1. The sum of the first n odd numbers is equal to n^{2}.

$$
1+3+\cdots+2 n-1=n^{2}
$$

2. The sum of consecutive cubes is equal to a square.

$$
1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2}
$$

3. The function $F(n)=n^{2}+n+41$ generates a prime number for every value of n.
4. $\quad \frac{n}{\operatorname{Li}(n)} \leq \frac{n}{\operatorname{PrimePi}(n)} \leq \operatorname{Ln}(n) \quad$ for $n>20$.
