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Summations commentary

Rosen p.229–232 has a fine introduction to summations. The key element to
remember is that

∑

is just a notation; whenever you see it you should mentally
expand it into the sum it represents.

Here are a few problems from Rosen that introduce some standard tricks:

• Rosen 3.2, #15a:
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− 1)by Rosen 3.2 Th’m 1

The handy trick is that you can pull out the constant factor 3.

• Rosen 3.2, #17d: The previous trick is often useful in double sums:
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Why was it valid, in the first line, to factor out i from the inner sum?
Because (with respect to the inner sum over j) it was a constant. Again,
writing it out explicitly makes this clear.

• Difference of sums: When a sum’s initial index isn’t a nice even 0 or 1,
often we can express the sum as a difference of two others. See Rosen
Section 3.2, Example 15:
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, and now each of the two sums can be individually computed from Sec-
tion 3.2, Table 2.

2


