Comp280 05.spring Summations commentary

Rosen p.229-232 has a fine introduction to summations. The key element to remember is that \sum is just a notation; whenever you see it you should mentally expand it into the sum it represents.

Here are a few problems from Rosen that introduce some standard tricks:

- Rosen 3.2, \#15a:

$$
\begin{aligned}
\sum_{j=0}^{8} 3 \cdot 2^{j} & =3 \cdot 2^{0}+3 \cdot 2^{1}+3 \cdot 2^{2}+\cdots+3 \cdot 2^{8} \\
& =3\left(2^{0}+2^{1}+2^{2}+\cdots+2^{8}\right) \\
& =3 \cdot \sum_{j=0}^{8} 2^{j} \\
& =3 \cdot\left(2^{9}-1\right) \text { by Rosen } 3.2 \text { Th'm } 1
\end{aligned}
$$

The handy trick is that you can pull out the constant factor 3 .

- Rosen 3.2, \#17d: The previous trick is often useful in double sums:

$$
\begin{aligned}
\sum_{i=0}^{2} \sum_{j=0}^{3} i j & =\sum_{i=0}^{2}\left(\sum_{j=0}^{3} i j\right) \\
& =\sum_{i=0}^{2}\left(i \sum_{j=0}^{3} j\right) \\
& =\sum_{i=0}^{2}(i \cdot 6) \\
& =6 \sum_{i=0}^{2} i \\
& =6 \cdot 3 \\
& =18
\end{aligned}
$$

Why was it valid, in the first line, to factor out i from the inner sum? Because (with respect to the inner sum over j) it was a constant. Again, writing it out explicitly makes this clear.

- Difference of sums: When a sum's initial index isn't a nice even 0 or 1 , often we can express the sum as a difference of two others. See Rosen Section 3.2, Example 15:

$$
\sum_{k=50}^{100} k^{2}=\sum_{k=1}^{100} k^{2}-\sum_{k=1}^{49} k^{2}
$$

, and now each of the two sums can be individually computed from Section 3.2, Table 2.

