Comp 212 - Intermediate Programming EXAM #2 April 03, 2002

Rice University - Instructors: Cox & Nguyen NAME:
Instructions

1. Thisexamis conducted under the Rice Honor Code. It isa closed-notes, closed-book exam.

2. Fill inyour name on every page of the exam.

3. If you forget the name of a Java class or method, make up a name for it and write a brief explanation in the
margin.

4. You are expected to know the syntax of defining a classwith appropriate fields, methods, and inheritance
hierarchy. Y ou will not be penalized on trivial syntax errors, such as missing curly braces, missing semi-
colons, etc, but do try to write Java code as syntactically correct as possible. We are more interested in
your ability to show us that you understand the concepts than your memorization of syntax!

5. Write your code in the most object-oriented way possible, that is, with the fewest number of control
statements and no checking of the states and class types of the objectsinvolved.

6. Inall of the questions, feel free to write additional helper methods or visitors to get the job done. Use
anonymous inner classes whenever appropriate.

7. Make sure you use the Singleton pattern whenever appropriate. Unless specified otherwise, you do not
need to write any code for it. Just write "singleton pattern” as a comment.

8. For each algorithm you are asked to write, 90% of the grade will be for correctness, and 10% will be for
efficiency and code clarity.

9. Youmay useal the visitors from the lectures and the homeworks without explanation/implementation.

10. You have two hours and a half to complete the exam.

Please State and Sign your Pledge:

| 1) 20

| 2) 20 13310 | 3015 | 4)15 | 5) 20 | | TOTAL 100

lofl

Comp 212 - Intermediate Programming EXAM #2 April 03, 2002

Rice University - Instructors. Cox & Nguyen NAME:

1.

(20 pts) Consider the following new container class, FixedSizeDict, implementing the IDictionary interface.
FixedSizeDict differsfrom DictBST, DictLRS and DictArray discussed in the lecturesin the following
respects:

a Itcanhold at most afixed number of key-value pairs (DictionaryPair). This number is passed to the
constructor for FixedSizeDict.

b. If the FixedSizeDict isfull and the program attempts to insert a new key-value pair into the container,
the least recently accessed key-value pair is dropped from the FixedSizeDict to make room. An
‘*access’ to akey-value pair is either alookup() for the key or the original insertion of the key-value
pair into the FixedSizeDict.

For example, suppose we create a FixedSizeDict of fixed size four, that isit can contain at most four key-value
pairs. If weinsert the key-value pairs (1,1), (2,2), (3,3), (4,4), and (5,5) in the given order, (1,1) will be dropped
to make room for (5,5). If, however, we insert the key-value pairs (1,1), (2,2), (3,3), and (4,4), followed
immediately by alookup(1) and alookup(2), then (3,3) will be dropped to make room for inserting (5,5).

Specify FixedSizeDict 's data fields and write the code for the constructor, lookup() and insert() methods.

Y ou do not need to implement the other methods of the IDictionary interface. Y our implementation must be
based on LRStruct. You are free to use RemLast, the visitor that removes the last element of a host LRStruct
discussed in class, without writing the code for it. Use anonymous inner classes whenever appropriate.

20f 2

Comp 212 - Intermediate Programming EXAM #2 April 03, 2002
Rice University - Instructors. Cox & Nguyen NAME:

2. (20 pts) Given an LRStruct ("list") containing Integer objects, write a visitor called AddPairs to replace each
pair of consecutive Integersin the host with their sum. For a host with an odd number of elements, the last
element isleft unchanged. For examples, (12 3 4) istransformed into (3 7), and (5 10 20 25 30 -30 17) is
transformed into (15 45 0 17). Use anonymous inner classes whenever appropriate.

30of 3

Comp 212 - Intermediate Programming EXAM #2 April 03, 2002
Rice University - Instructors. Cox & Nguyen NAME:

3. For the binary tree structure (BiTree) discussed in class, we allow the removal of the root only when both left
and right subtrees are empty. In this problem, we want to relax this restriction and allow root removal when at
least one of the subtreesis empty. Suppose that one of the subtreesis empty, then BiTree.remRoot() will
change the state of the current BiTree to the state of the other subtree. For example, when the left subtreeis
empty, root removal of the parent tree will set the parent tree to its right subtree.

a. (10 pts) Write the code for DatNode.remRoot (...).

40f 4

Comp 212 - Intermediate Programming EXAM #2 April 03, 2002

Rice University - Instructors. Cox & Nguyen NAME:

b.

(15 pts) Write aBiTree visitor, called BSTRemove, to delete a given Comparable input from the
BiTree host with the binary search tree (BST) property. The algorithm must be written in away that
exploits the above specification of BiTree.remRoot(). Use anonymous classes whenever appropriate.
You are free to use MaxTreeFinder and MinTreeFinder to obtain the subtrees containing the
maximum and the minimum element, respectively.

50f 5

Comp 212 - Intermediate Programming EXAM #2 April 03, 2002
Rice University - Instructors. Cox & Nguyen NAME:

4. (15 pts) The diagram below illustrates special operations on binary trees called left rotation and right rotation.
These operations are inverses of each other. Write avisitor called LeftRotation to perform aleft rotation on a
BiTree host. Notethat if the host treeisaBST thenitisstill aBST after aleft (or right) rotation.

=
() =) G

A

60f 6

Comp 212 - Intermediate Programming EXAM #2 April 03, 2002
Rice University - Instructors. Cox & Nguyen NAME:

5. (20 pts) Define the level of anode in atree as the number of branches (or edges) from the root node. For
example, the level of the root nodeis 0. Thelevel of the children trees of the root nodeis 1. WriteaBiTree
visitor, called BreadthTraversal, to print the tree nodes in breadth first traversal, that isthe nodes at level n are
printed from left to right before the nodes at level n+1 are printed. For example, the tree

will printas1 2 3456 7.
The stub code below gives some hint as how to write the breadth first traversal algorithm.

public class BreadthTraversal inplenents IVisitor {

private | RAContainer _queue; // first-in-first-out (FIFO restricted access contai ner
/1 (called a queue) to save the subtrees that are yet to be
/1 printed
publ i c Breadt hTraversal (1 RACFactory qFac) {
_queue = gFac. nakeQueue();
}

/**

* What to print here?

*/

public Object enptyCase(Bi Tree host, Cbject nu) {
/1 TO DO

}

/**
* Prints the root, saves the left and right subtrees in _queue. Then process each el enent
* in _queue as follows.
* Get the front of the queue. |It’'s a tree! There are two cases: enpty or non-enpty.
* non-enpty case: print the root, enter the left and right subtrees in the queue and recur
*

enpty case: what should we do here? Think about it!
*/

public Object nonEnptyCase(Bi Tree host, Object nu) {

/1 TO DO

7of 7

Comp 212 - Intermediate Programming

Rice University - Instructors. Cox & Nguyen

EXAM #2

NAME:

April 03, 2002

For your convenience, attached are the UML class diagrams for the binary tree, the mutable linear recursive
structure, the dictionary, and the restricted access container studied in class. You are free to use their public

interfaces without explanation/implementation.

ToSiring
+ ToString : Singleton
— TaString)

+ Chject : emptyCase{BiTree host, Chject w1
+ Chject : nonErmptyCase(BiTree host, Object nu)

BiTree

+ woid : setRaotDat{Chiect dat)
+ BiTzee : getLeftSubTres()
+ BiTree : getRightSub Treed)

ToStringHelp
+ ToStrngHelp - Singleton

= ToStngHelp()
+ Ohject : eaptyCase(BiTree host, Object nu)
+ Chiject : nonFrptyCase(BiTree host, Object lefilzad)

I_.Isj.n.gleton

==I¥isitor==

operates on
= LNode | _rootNode === = T |F Objact : empiy Case (BiTree host, Obfact inp)
+ BiTree() calls on + Object nonEmpity Case(BiTree host, Object inp)
+ Ohject : getRootDaty | T T T T T =

ANode

+ woid : setleftSubhTree(BiTree hiTree)

+ woid : setRightSubTree(BiTree bhiTree)

+ woid ; insertFoot{Thject dat)

+ Chject : rerFoot()

+ Chject : execute(]Visitor alzo, Ohject mp)

+ String - toString{)
wiid © setRootModel A Hode node)
AMode © getRootNode()

et 1iyight

Obfeet ;. potRoofDaffBiTres ovwnar)

vold © sefRoofDaifObfect dat BiTres owner)

EiTree : pefLefifubTree{BiTree ovwner)

EiTree : pefRightSubTree (BiTree owner)

void ; setleftSubTreefBiTree biTree, BiTree owner)
vold © sefRightiub Trea(BiTres biTres, BiTres ovwner)
vold - inseriRoof{Cect daf, BiTres owner)

Object : remPRocf{BiTree ovwner)

Object : axecute(IWizitor algo, Ofject mp, BiTree owner)

= BiTree : _nrightTree

+ Datlfode(Chject dat)
Ohject : getRootDat(BiTres owrer)
woid © setBootDiat{Ohbject dat, BiTree owner)
BiTree : getleftSub Tree(BiTree cwner)
BiTree : getRightSubTree(BiTree owner)
void : setleftSubTree(BiT ree biTree, BiTree owner)
wioid : setHightsub Tree(BiTree biTree, BiTree owner)
woid © imsertRoot{Chject dat, BiTres owrer)
Object : rermBPoot(final BiTree owner)
Object : executefIVisitor algn, Object inp, BiTree owner)

DailNode EmpiyNode
= BiTree : _leftTree EmptyMode : Singleton
= Ohject : _dat = Emptyiode()

Ohject : getFootDat(BiTree owrner)

void : setRootDat{Chject dat, BiTree owner)

BiTtee : getleftSub Tree(BiTree owner)

BiTtee : getRightSub Tree(BiTres owner)

wvoid : setleftSubTree(BiTres biTree, BiTree owmer)
void ; setRightSub Tree(BiTree biTree, BiTree owner)
void : insertRoot{Chiect dat, BiTree owner)

Ohiject : rermFoot(BiTres owner)

Ohiject © execte(IVisitor alzn, Object np, BiTree owmner)

8of 8

Comp 212 - Intermediate Programming EXAM #2 April 03, 2002
Rice University - Instructors. Cox & Nguyen NAME:
==IAlgo== State Design Pattern.
+ Obpact - empty Case(LREruct host, Ofjact inp) LEStruct delegates all public method calls to its state, _head,
+ Object - nonEmpiyCase(LRSruct host, Obfect inp) passing itself and all required pararmeters.
LM ode is the state and has package-private methods to
| ,ff\ "ahetractly” do the job. EmptyNode and NEMode are
| s on) conu:ret.e states and can call LEStruct to change its state
luperates on T onl dymarically.
| | e)
W I T !
LEStruct P ==ghgtract state=>
= AHode _head . ANode
+ LEStmet() e ” String : toString{LRStroct owner)
+ String : toString(} - LRSruct : getRast{L R¥ruct owner)
+ LRStruct : insertFront(Chject dat) context state| Oject : getFirst{LRSfrued ovwner)
+ Ohiject : reracrveFront() LRSruct : sedRest{LRSfruct fail, LRSfruct owner)
+ Ohiject : getFirst() LRNruct : sedFirst(Object dat, LEMruct owner)
+ LRStruet : setFirst{Chiject dat) LRSruct : msariProniiOfject dat, LRSruct owner)
+ LRStruet : getRest() Olect : vemove Fronf{LRMruct owner)
+ LRStret : setBest{LEStruct tail) Olect : execufeflAlge alge, Cbject inp, LRSruct owner)
+ Chject © executeLilen alzn, Chiect mp)
LEStruct{ & Naode node)
LRStruet : setHead{ & Mode head)
AMode : getHead()
1fadl
ompogite
NENode EmpiyNode
= Ohbject : _dat Enptylode : Singleton
= LEStruct : _tail

NENode{Object dat, LRStret tail)
LEStruct : getRest(LEStruct owrer)

= EmptyMode()

LEStruct : getRest(LEStuct owner)
Ohject : getFirst{LEStruct owner)

Ohiect : getFirst{L RS tmet owner)

Chject : reraoveFront(LRStmet owner)

LEStret © setFest{LEStruct tail LTREStmet owner)
LEStruct : setFirst{Object first, LEStroct owner)
LEStruct : insertFront(Ohject dat, LRStruct owner)

Chject : execute(lilan algn, Object ingut, LEStret owner)

LRStruct : setRest(l RStruct tail, I B Struct owner)
LEStruct : setFirst{Ohject dat, LEStruct owrer)
LEStruct : insertFront(Chject dat, LRStruct awnet)
Ohject : reroveFront(LEStruct owner)

Object : executeil&lz0 algo, Ohiject inp, LEStct owner)

I_.Isi.ngleto:

90f 9

Comp 212 - Intermediate Programming EXAM #2 April 03, 2002
Rice University - Instructors. Cox & Nguyen NAME:
{fIRACunta.imarhh instantiates ==z[RACFactory==

+ void cloarf) = = = + JRAContainer | meke Jueuaf)

+ boolean :isEmpiyf) + JRAContamer ;| makeSiack)

+ AList - elemenis()

+ Object : getf)

+ void : pui(Obiect input)

==IDictionary-= DictionaryPair

+ void - clearf)

+ boolean : isEmpif)

+ AList : elemenis()

+ DicfionaryPair : lockup (Comparabls key)
+ void ; msertComparable kay, Object value)
+ DhictionarpParr - remove(Comparabis kap)

10 of 10

= Cormparable © key

— — — immm%:’— Chiject : wvalue

+ DirtionaryPainComparable key, Ohject value)
+ int : compare To{Chject other)

+ Comparahle : getFey()

+ Chiject : getValue()

+ String : toStrng])

