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1 Introduction 

 
Lists and trees are standard topics in a computer science 
curriculum.  In many applications, they are used to 
implement containers whose main behaviors consist of 
storage, retrieval and removal of data objects.  Various 
forms of self-balancing trees (SBTs) such as B-trees 
guarantee a O(logN) efficiency for these computations.  
Current textbooks on this subject (see for example [2]) 
discuss them in terms of complicated, low-level pseudo-
code.  The abstract nature of the data structures and the 
algorithms that manipulate them is lost in a sea of details.  
The problem lies in the lack of delineation between the 
intrinsic structural operations of a tree and the extrinsic, 
order-driven calculations needed to maintain its balance.   
 
However, the current tree framework proves to be 
inadequate to model self-balancing trees due to the inherent 

limitation of the visitor design pattern with regards to 
dynamically changing numbers of hosts.  In this paper, we 
present enhancements to the current framework that 
overcomes the original limitations and produces an object-
oriented SBT implementation that closely matches the 
abstract view of the structure.  Our paper serves a second 
purpose of exemplifying how good OO design enables one 
to re-focus on the fundamental nature of the problem and 
create solutions that are both simple and powerful. 
 
Section 2 specifies and implements a minimal and 
complete set of behaviors that are intrinsic to the tree 
structure.  Each node in the tree can hold an arbitrary 
number of data elements.  The size of the root node is used 
to represent the current state of the tree.  We design such a 
tree as a composite structure, which behaves as a finite  
state machine whose number of states can vary 
dynamically at run-time. 

 



 
Section 3 describes how we generalize the visitor pattern to 
decouple the extrinsic algorithms that operate on a tree 
from its intrinsic structural behaviors.  In our formulation, 
the extrinsic algorithms act as visitors to the host tree.  
They are capable of not only reconfiguring the tree states 
and their transitions at run-time but also reconfiguring 
themselves to possess an appropriate number of visiting 
methods to match the tree states.  The tree structure and its 
visitors thus form a framework with dynamically re-
configurable components. 
 
Section 4 defines the notion of a height-balanced tree and 
discusses the constraints on any operations that can modify 
the tree structure while maintaining its balance.  In order to 
implement insertion and deletion in SBTs, it is essential to 
be able to move data vertically in the tree without changing 
the tree’s height. 
 
Section 5 describes our SBT insertion algorithm and its 
Java implementation.  The algorithm’s proof-of-correctness 
and complexity analysis will be shown to be 
straightforward, simple and intuitive. 
 
Section 6 describes our SBT deletion algorithm and its Java 
implementation.  As with the insertion algorithm, the 
deletion algorithm’s proof-of-correctness and complexity 
analysis is straightforward, simple and intuitive. 
 

2 The Tree Structure 
 
We consider trees, called TreeN, that can hold multiple 
data elements in each node and where each node can have 
multiple child trees.  Without loss of generality, we limit 
the data elements to be of Integer type.  A TreeN can be 
either empty or non-empty.  A non-empty TreeN holds an 
arbitrary, non-zero, number of data elements, n, and n+1 
TreeN objects called “child trees” .  An empty TreeN holds 
no data and has no child trees.  This recursive definition for 
the tree is well represented by the composite design pattern 
[1].  Since the operations on a tree often depend on the 
number of data elements in the nodes, we can model the 
tree as having different “states” .   The state of the tree is 
defined by the number of data elements in the root node of 
the tree.   We can thus label each state with an integer 
value.  For instance, an empty tree has state = 0, while a 
tree with one data element and two child trees (commonly 
referred to as a “2-node tree” ) is in state = 1.  Operations on 
the tree may cause the tree to transition from one state to 
another as data elements and associated child trees are 
added or removed.  The tree thus behaves as a finite state 
machine.  
 
Figure 1 depicts the UML class diagram of TreeN 
together with algorithms that act as visitors.   The visiting 
algorithms will be discussed in Section 3.   

 

Figure 1: UML class diagram for the tree and algorithms as visitors. 



Code Comment 

public class TreeN { 
    private Vector _children = new Vector(); 
    private Vector _data = new Vector(); 

The data elements and child trees are held in 
Vectors.   The state is the size of the _data 
vector.  The _children.size() = _data.size()+1. 

    public TreeN() { } 
    public TreeN(Integer n) {  this(new TreeN(), n, new TreeN()); } 

Empty and 2-node tree constructors. 

    private TreeN(Vector data, Vector children) { 
 _data = data; _children = children; 
    } 
    private TreeN(TreeN lTree, Object n, TreeN rTree) { 
 _data.add(n); _children.add(lTree); _children.add(rTree); 
    } 

Private constructors for internal use. 

    public Integer getDat(int idx) { return (Integer) _data.get(idx); } 
    public TreeN getChild(int idx) { return (TreeN) _children.get(idx); } 
 

Parameterized accessor methods for the root 
data and child trees. 

    public TreeN spliceAt(int idx, TreeN tree) { 
        int i=tree._data.size(); 
        if (i>0) {  
            if (_data.size() > 0)   _children.set(idx, tree.getChild(i--));   
            else   _children.add(idx,tree.getChild(i--));   
            for (; i>=0;i--) { 
                _data.add(idx,tree.getDat(i)); 
                _children.add(idx, tree.getChild(i)); 
             } 
        } 
       return this; 
    } 

After checking for empty trees, the data and 
child trees are copied from the source tree 
into this tree at the specified index. 

    public TreeN splitUpAt(int idx) { 
       if (_data.size()>1) { 
          TreeN lTree, rTree; 
           Vector newData = new Vector(), newChildren = new Vector(); 
           Object rootDat = _data.remove(idx); 
           for (int i = 0;i<idx;i++) { 
               newData.add(_data.remove(0)); 
               newChildren.add(_children.remove(0)); 
           } 
           newChildren.add(_children.remove(0)); 
           if (newData.size()>0)    lTree = new TreeN(newData,newChildren); 
           else   lTree = (TreeN)   newChildren.firstElement(); 
           if (_data.size()>0)    rTree = new TreeN(_data, _children); 
           else   rTree = (TreeN) _children.firstElement(); 
           (_data = new Vector()).add(rootDat); 
           (_children = new Vector()).add(lTree); 
           _children.add(rTree); 
       } 
      return this; 
    } 

After checking for the empty tree case, the 
new root data, as referenced by the supplied 
idx, is removed.   The left side data and child 
trees are moved to new vectors and a new left 
child tree is constructed.   Note the special 
case if there is no left side data.  The original 
remaining data and child trees become the 
new right child tree, noting the special case of 
no data again.  The removed root data 
becomes the new data for this tree and the 
new left and right child trees are added. 

    public TreeN splitDownAt(int idx) { 
        if (_data.size()>1){ 
            TreeN newChild = new TreeN(getChild(idx),_data.remove(idx),getChild(idx+1)); 
             _children.remove(idx); 
             _children.set(idx, newChild); 
        } 
        else   { 
             _data.clear(); 
             _children.clear(); 
         } 
         return this; 
    } 

A new 2-node tree is made with the removed 
data at idx and its original left and right child 
trees.  The original left child reference is 
removed and the original right child reference 
is replaced with a reference to the new 2-
node tree. However, if this tree is a 2-node to 
start, then the tree is simply cleared back to 
an empty tree.  

    public Object execute(ITreeNAlgo algo, Object param) { 
        return algo.caseAt(_data.size(), this, param); 
    } 
} 

Host hook method for visitors.   The call is 
delegated to the visitor’s case corresponding 
to this tree’s state.  

Listing 1: TreeN implementation 



 
The methods of the tree should represent the intrinsic 
behaviors of the tree.  For maximal decoupling and 
flexibility, the methods should form a complete and 
minimal set of operations from which all other possible  
operations on the tree can be constructed.  The intrinsic 
structural behaviors of the tree serve exactly two purposes: 
• To provide access to the tree’s data and structural 

subcomponents, and 
• To perform constructive and destructive modifications 

of the tree’s internal structure, thus enabling the tree to 
transition from one state to another. 

 
The intrinsic structural behaviors of the tree are invariant, 
that is they remain fixed in all applications, and enable us 
to build trees that can hold an arbitrary number of data 
elements per node. 
 
A problem that one encounters immediately upon 
attempting to find the complete and minimal set of 
operations on a tree is that its constructive and destructive 
processes are not well defined.  For instance, inserting a 
data element into the root node of a tree is not well defined 
because of the inability to unambiguously insert the 
required additional child tree.  Such an insertion can only 
be clearly defined on leaf trees.  The source of the problem 
is that such operations suffer from a mixing of data 
manipulations and structural modifications.  To identify the 
intrinsic operations of the tree, one must separate the 

operations that manipulate data elements from those that 
modify the tree’s structure.  Structural modification should 
involve trees as atomic units and have well defined 
behavior for any tree.  Data operations are relegated to the 
construction of new trees and to simple gettor methods.  
The intrinsic behaviors of a tree can thus be classified as 
constructors, structural modifiers and gettors.  Listing 1 
shows the Java implementation of TreeN and Figure 2 
illustrates the intrinsic structural operations of the tree. 
 
The purpose of a constructor is to initialize the instantiated 
object to a well-defined state.    Since there are two clearly 
distinct states of a tree, empty and non-empty, each has an 
associated constructor.  The empty tree constructor, 
TreeN(), creates a empty (state = 0) tree.  The non-empty 
constructor, TreeN(Integer n),  takes a single data element 
and constructs a 2-node (state = 1) leaf tree.  This can be 
viewed as providing the base case and inductive case 
construction for the system.  There is no need for 
construction of higher states as they can be created through 
structural modifications of 2-node leaf trees.  The set of 
constructors is thus complete and minimal. 
 
Structural modifiers are methods with side effects that 
work strictly on trees and not on data.  They are also well 
defined for all trees in all possible states.  To span the space 
of all possible structural modifications, one must 
fundamentally be able to modify the tree, a 2-dimensional 
entity, in both its width and height directions.   In addition 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 2: Intrinsic structural operations on the tree. 
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to constructive processes in the two directions, a 
destructive process must also be provided.  This only 
implies that the complete and minimal set of structural 
modifies must consist of three methods, none of which can 
be constructed from the other two.  A full proof that only 3 
methods constitute a complete and minimal set is beyond 
the scope of this paper. 
 
spliceAt(int idx, TreeN tree) joins the supplied source 
tree to the target tree at index idx:  The idxth child of the 
target tree is deleted and the source tree is inserted between 
the idxth and idx+1th elements of the target tree.  The 
children of the source tree remain in their respective places 
with regards to the original elements of the source tree.  
Splicing an empty source tree into a non-empty tree is a no-
operation.  Splicing a non-empty source tree into an empty 
tree will mutate the empty target tree into a shallow copy of 
the source tree.   This operation is mainly constructive in 
the horizontal direction.  However, if the source tree being 
spliced into the target tree is a child of the target tree, then 
this method is also destructive in the vertical direction. 
 
splitUpAt(int idx) mutates the tree, in state s, into a 2-node 
tree (state = 1), where the idxth element becomes the root 
data and the left child is a state = idx tree with the 0 
through idx-1 elements of the original root and the right 
tree is a state = s - idx-1 tree with the idx+1 through s 
elements of the original root.  Split up on an empty tree is a 
no-operation.  This method is constructive in the vertical 
direction because the height increases as well as destructive 
in the horizontal direction because the new child trees have 
fewer root data elements than the original root. 
 
splitDownAt(int idx) removes the idxth element from the 
root of the tree including its left and right child trees.   The 
resultant new child tree is a 2-node tree where its root data 
is the original idxth element and where its left and right 
children are the original idxth element’s left and right 
children respectively.  Splitting down a 2-node tree will 
result in an empty tree.  Splitting down an empty tree is a 
no-operation.  Like splitUpAt(), this method is constructive 
in the vertical direction and destructive in the horizontal 
direction. 
 
The standard “settors”  that set a child tree to a new tree at 
index idx, and that set a data element at index idx, can be 
easily replicated using a combination of the above methods.  
 
getDat(int idx) and getChild(int idx) are the standard 
“gettors”  that provide access to data and child trees without 
side-effect.   The root node’s data elements can be accessed 
via an index idx, where 0 

�
idx < state (= node size).  The 
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be accessed through these methods and only through these 
methods, the set of gettors is thus minimal and complete. 
 

execute(ITreeNAlgo algo, Object param) is the 
“accept”  method for a host in the visitor design pattern [1]. 
It provides a “hook”  for all algorithms defined externally to 
the tree to operate properly on the tree without knowing the 
state of the tree.  The abstraction for all such extrinsic 
operations is encapsulated in an interface called 
ITreeNAlgo, which acts as a visitor to the tree host. 
We do not consider operations such as specific insertion 
and deletion algorithms that maintain the balance of a tree 
as intrinsic to the tree’s behavior.  The tree is simply a 
structure and has no inherent knowledge of the properties 
of the data it contains or the heights of its child trees.  
These operations are extrinsic to the tree structure, and as 
Nguyen and Wong advocated in [3], they must be 
decoupled from the intrinsic structural behaviors of the 
tree.  The visitor pattern was used to achieve this 
decoupling. 
 
3 The Visitors 
 
Algorithms on a host tree often depend on its state, the size 
of its root node.  The ITreeNAlgo visitor interface (See 
Figure 1) thus must provide a specific method for each of 
the host states.  Since any tree node can hold an arbitrary 
number of data elements, an arbitrary number of visiting 
methods must be defined.  That is, the visitor must have a 
varying number of visiting methods to match the host’s 
states.  Since standard visitors would match one method per 
host state, the system is hamstrung by physical limitation 
that only a fixed number of methods can be defined.  This 
limitation can be overcome by replacing the multiple 
different methods of the visitor with a single “caseAt”  
method parameterized by an integer index.  The individual 
hosts are now identified by an integer value, the state 
number, and they can now parametrically call their 
respective method in the visitor.  Since the host structure 
provides a complete set of public primitive behaviors, the 
visiting algorithms are not limited in their capabilities. 
 
The roles of TreeN as a host and of ITreeNAlgo as a 
visitor are summarized in the following. 
 
Hosts (TreeN) 

• Characterized by an integer s.  For a finite state 
machine, s represents the state of the host. 

• Host provides a complete set of public methods for 
all tree operations. 

• Hook method of host, execute(v, param), 
guarantees that is will call the s’ th case of the 
visitor (v), i.e. return v.caseAt(s, this, param) . 

Visitors (implement ITreeNAlgo) 
• Provides a single caseAt(int index, TreeN host, 

Object param) method that returns an Object.  
• Guarantees that there is a behavior for all values of 

index.   This includes the possibility of throwing an 
exception or a no-operation. 

 



The effect of the strict contract specified by the last bullet 
items for the host and visitor above is that conditionals 
concerning the state of the tree are eliminated.   Operations 
can thus be performed on the tree without worrying about 
the state of the tree as the tree and visitor combination is 
guaranteed to take the correct action.  
 
ATreeNAlgo is an implementation of ITreeNAlgo (see 
Figure 1 and Listing 2).  Our solution while not unique 
does embody the most salient features of any 
implementation. Since the number of states for which the 
visitor must provide behaviors is arbitrary, the visitor must 
have a way of installing as many behaviors as needed for a 
particular application.   
 
The command design pattern [1] provides an elegant 
solution to this problem.   First, let us examine the methods 
of a visitor. The accepting of a visitor by a host has a 
particular semantic, however, since the host type/state is 
unknown at run time, that semantic cannot depend on 
which concrete host is in use.  Thus each method that the 
visitor supplies for each different host must have identical 
semantics with respect to the visitor.  Conversely, since the 
host has no idea which concrete visitor is being used, the 
visitor is without semantics to the host.  Compare this to the 
semantics of a command object.  Since the invoker of the 
command does not know what concrete command it is 
using nor what that command does, the command has no 
semantic to the invoker.  The command only has a semantic 
to the client that supplied it.  A visitor can thus be 
considered to be a collection of semantically related 
commands. 
 

Thus we can replace each method of the visitor with a 
corresponding command object.  The simplest solution here 
is simply to hold a vector of command objects, 
ICommand, within the visitor ATreeNAlgo.  The 
caseAt(i,…) method simply delegates to the ith command 
in the vector.  If the requested command is not found in the 
vector (i.e. i is out of bounds), the call is instead delegated 
to a specific default command, thus enforcing the visitor’s 
contract to always supply a behavior for every index.  For 
further safety, the default command is initialized to a no-
operation command upon the instantiation of the visitor. 
 
To manage the installed commands, ATreeNAlgo provides 
a gettor and a settor for commands at a specific index, add 
and remove command methods, a gettor and a settor for the 
default behavior command, and a method to get the number 
of installed non-default commands. With these 
management methods, ATreeNAlgo’s have the ability to 
be dynamically reconfigured, including the default case. 
This reconfiguring can be done by an outside entity or by 
the visitor itself and can be performed at any time, 
including during the visitor’s execution by the host.   Since 
the visitors determine what transitions take place and to 
what state the transitions are taken (within the limits of the 
state-transition methods provided by the host), it is possible 
for a visitor to change the number of states available to the 
system as well as change the change the transitions that 
take place.  Thus the visitor can completely reprogram the 
entire finite state machine at run time.  It should be noted 
however, that since the host executes an ITreeNAlgo, not 
an ATreeNAlgo, the host is unaware of any dynamic 
reconfiguration capabilities of the visitor. 
 

Code Comment 

public abstract class ATreeNAlgo implements ITreeNAlgo { 
    public static interface ICommand { 
        public Object apply(int idx, TreeN host, Object param); 
    } 

The command interface used is a 
nested interface. 

    private Vector iCommands = new Vector(); 
    private ICommand defaultCmd = noOpHostCmd; 

Commands stored in a vector plus 
one default command. 

    public Object caseAt(int i, TreeN host, Object param) { 
        if (0<=i && i<iCommands.size()) return ((ICommand)iCommands.get(i)).apply(i, host, param); 
        else  return defaultCmd.apply(i, host, param); 
    } 

To call a case is to call the 
corresponding command or the 
default if it is not in the vector. 

    public void setDefaultCmd(ICommand c) {  defaultCmd = c;  } 
    public ICommand getDefaultCmd() {  return defaultCmd;  } 
    public void addCommand(ICommand c) {  iCommands.add(c);  } 
    public ICommand remCommandAt(int i) {  return (ICommand)iCommands.remove(i); } 
    public void setCommandAt(ICommand c, int i) {  iCommands.set(i, c);  } 
    public ICommand getCommandAt(int i) {  return (ICommand) iCommands.get(i); } 
    public int getNumCommands() {  return iCommands.size();  } 

Command management methods. 

    public static final ICommand noOpHostCmd = new ICommand() { 
        public Object apply(int idx, TreeN host, Object param) {  return host;  } 
    }; 
    public static final ICommand noOpParamCmd = new ICommand() { 
        public Object apply(int idx, TreeN host, Object param) {  return param;  } 
    }; 
} 

No-operation commands for utility 
use. 

Listing 2: ATreeNAlgo visitor code 



The ability to self-(re)configure means that a visitor’s 
constructor can install whatever and as many cases it needs 
to solve a particular problem.   The parameters needed to 
specify a particular problem are given to the constructor as 
input values and the constructor then proceeds to build the 
visitor based on those parameters.   For instance, the 
SplitUpAndSplice visitor (discussed further in Section 5 
and listed in Listing 3) will split up the host tree only if the 
state of the host is greater than a predefined order.  The 
value of order is given to the visitor’s constructor, which 
installs order+1 no-op commands (supplied) into itself 
plus a single default command that splits up the host.  The 
result is that the visitor can distinguish all states > order 
and split up them without any need for conditionals. 
 
As shown by the preceding example, the default case for 
the ATreeNAlgo is more than a safety valve for out-of-
bounds case indices.  Fundamentally, it provides a behavior 
for an unbounded set of indices.  For instance, it can be 
used to define behavior for sets of states such as  “non-
empty trees”  or “ trees with state > 7” .  This also gives the 
visitor the ability to handle changing numbers of states 
without reconfiguring.  For instance, ToStringAlgo in 
Figure 1 can print any tree of arbitrary complexity by only 
using one command for the empty tree and one default 
command that handles the non-empty tree. 
 
While ATreeNAlgo is simple and versatile solution, one 
can easily imagine other possible implementations, 
particularly ones that are not subject to the vector’s 
limitations.  For instance, a hash table of commands would 
allow for arbitrary case definitions or a scheme of 
“breakpoints”  to classify indices would enable single 
commands can handle a range of indices.   
 
4 Self-Balancing Trees 
 
Fundamentally, a tree is not constrained to any sort of 
ordering or balancing—this is the bailiwick of particular 
insertion/deletion algorithms.  That is, the ordering and 
balance of a tree is an extrinsic, variant behavior.  A SBT is 
one whose insertion and deletion algorithms maintain the 
tree’s height balance.  SBTs are usually considered for 
trees whose elements are totally ordered.  We will thus 
consider trees whose root data elements, xi are in strict 
ascending order  Also all data elements in the ith child tree 
are less than xi and all elements in the i+1th child tree are 
greater than xi.  The need for non-trivial balancing only 
arises when there is an imposed maximum on the number 
of data elements per node. We call this maximum number 
the “order”  of the tree, and we will consider only trees with 
order > 1.  For example, the well-known “2-3-4 tree”  is of 
order 3. 
 
However, before one can create an algorithm to create or 
maintain a balanced tree, one must first study what key 

issues affect the tree’s balance.  Here is a recursive 
definition of a balanced tree: 
 
• An empty tree is balanced. 
• A non-empty tree is balanced if and only if all its child 

trees are balanced and all have the same height. 
 
From the definition of a balanced tree, we can see that in 
order to preserve its balance, any operation on the tree must 
affect the depth of all the children equally.  The only place 
in the tree that an operation could have this effect is at the 
root.  The only operations on a tree that can do this are a 
splitting up the root node and splicing all the children into 
the root (“collapsing”).  It turns out that the latter operation 
can be restricted to 2-node roots without loss of generality. 
 
On the other hand, insertion of a data element must take 
place at a leaf node because only by traversing the tree all 
the way down to a leaf can one make the determination that 
the data does not already exist in the tree. 
 
Deletion of a data element is well defined only when the 
tree is a leaf.   Any other situation leads to ambiguous 
choices on the disposal of one or more of the child trees.   
Thus, once again, the deletion of a data element must take 
place at the leaf level of a balanced tree. 
 
Therefore, what we see here is that changes to the height of 
the tree must take place at the root level, but insertion and 
deletion must take place at the leaf level.  Insertion may 
cause “excess”  data, that is, the number of data elements 
exceeds the order of the tree.  We call this situation a 
“virtual state”  because it is disallowed by our BST 
restrictions, but is still a valid operational state of the tree.  
This excess data must therefore be moved to the top of the 
tree where height changes won’ t affect the overall tree 
balance.  The transportation of the data to the root must not 
effect any height increase in the child tree, as this would 
lead to a net imbalance of the whole tree. 
 
Since the data element to be deleted must be ultimately 
located at the leaf level, it must be moved from its original 
location down to the leaf level for deletion.  There is a non-
zero possibility however, that the data to be deleted is 
located in a 2-node, and thus to guarantee no net change in 
height of the child tree, one must move a candidate data 
element down from the root node.  When the data to be 
deleted is encountered, it will become the candidate 
element and continue to be pushed down to the leaves.  
After deletion, there may exist excess data due to the 
downward transportation process.  Thus, just as the 
insertion case, this excess data must be transported upwards 
to the root. 
 
We thus see that vertical transportation of data in a tree, 
without disturbing the height, is a key operation in insertion 
and deletion into/from balanced trees.  This process must 



be understood before an insertion or deletion algorithm can 
be written. It makes sense that the tree should intrinsically 
support the structural operations needed to perform this 
type of data movement.  We will now examine the 
operations needed to move a single data element up or 
down one level without a net change in tree height (see 
Figure 3 ). 
 
Consider first moving a data element up one level.  In this 
case, we wish to move the element “5” , which is located in 
the set of data elements in the root of a child tree.   This 
child tree is the parent’s #3 index child tree (See the left-
side of Figure 3).   The desired destination for the “5”  is in 
the #3 data element location in the parent tree.   Because of 
the strict ordering of the data elements and children trees, 
the starting child index and ending element index will 
always be the same.  This is a very important programmatic 
point to remember.   
 
First we must isolate the “5”  element.   We do so by 
“splitting up”  the child tree (as opposed to “splitting 
down” , which we will discuss later) at the “5”  element.  
This involves taking all the elements to the left of the “5”  
and creating a separate tree with those elements and then 
attaching that new tree as the left child of the “5” .   The 
same is done with the data elements to the right of the “5”  
and attaching them to the right.   The “5”  thus becomes the 
only root data element in a state = 1 node (2-node state).  
The reconfigured child tree is now spliced into the parent, 
and the “5” ’s children trees now return to being direct 
children of the parent.  There has been no net depth 
increase.  Note also that if the “5”  was chosen because it 
was the center root data element of the child tree, the 
splitting up results in a tree that is optimally balanced.  
 
Moving data downwards is very similar to the upward 
movement process.  Starting from the right side of Figure 
3, we isolate the “5”  by “splitting down”  the parent.   The 

means that a new 2-node child tree is formed with the “5”  
as the sole root node data, and the children trees to the left 
and the right of the “5”  remain its children.  The “5”  is then 
“collapsed”  with its two children, which is simply to splice 
the 2-node with the “5” , first with its right child tree and 
then with its left child tree.  Once again, there is no net 
depth change. 
 
The root node offers a couple of special cases.  When data 
is moving upwards and the root node needs to split up, 
perhaps due to exceeding the order of the tree, the split up 
operation is not paired with a splice operation because the 
root has no parent.  Thus, the root node ends up as a 2-node 
and the total depth of the tree has increased by one.  When 
data is moving downwards and the root node is a 2-node, 
the collapse operation is unpaired with a split down 
operation.  The total depth of the tree thus decreases by 
one.  Because changes at the root node affect the depth of 
all the children equally, there is no change in the tree’s 
depth balance by operations at the root. 
 
We can now focus on the essence of insertion and deletion 
into balanced trees: 
 
An insertion algorithm must 
1. Search for the leaf location to insert the key. 
2. Propagate any “excess”  data upwards to the root 

without any net height change of the child trees. 
3. Restrict any net height increase to the root, which will 

happen naturally because its split up will be unpaired 
with a splice. 

 
A deletion algorithm must 
1. Push a deletion candidate downwards to a leaf position 

without any net height change in the child trees, 
replacing the candidate with the actual data when it is 
encountered. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  Height-preserving vertical data movement in the tree. 
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2. Propagate any “excess”  data upwards to the root 
without any net height change of the child trees. 

3. Restrict a net height change to the root, which will 
happen naturally because its collapse is unpaired with 
a split down and its split up is unpaired with a splice. 

 
The deletion algorithm is essentially the same as the 
insertion algorithm except that it transports data from the 
root to the leaves as well as from the leaves to the root. 
 
Since both insertion and deletion both propagate excess 
data upwards to the root, we encapsulate that behavior in a 
visitor algorithm called SplitUpAndSplice (see Listing 3).  
SplitUpAndSplice splits up virtual states and uses a 
supplied command to splice the resultant 2-node tree into 
the host’s parent.   To handle arbitrary tree orders that 
change dynamically, the algorithm self-configures upon 
construction.  SplitUpAndSplice’s constructor loads 
supplied case commands (no-ops generally) into the cases 
for states  "!$#�%�&	#('	)�%+*,&	-�*.- /�&(%�&�01'	2�3 -54�'�*,&(67*�-�'	-�&�*.89!$#�%�&	#�:�; *
to split up the tree and then apply the splice command.   
The splice command is will do the splicing of the host to its 
parent. 
 
5 Self-Balancing Tree Insertion Algorithm 
 
We will now discuss the insertion algorithm for SBTs.  
Listing 4 shows the complete Java implementation. 
 
To insert a key into a host tree, we first express a “helper 
algorithm” that will insert a key into a host tree and re-
establish the tree order and height balance using a supplied 
command. 
 
Helper algorithm: Insert key into host tree using a splice 
command to maintain height balance and tree order.  The 
supplied splice command has access to the host’s parent. 
 
• Empty host case:  Insert the key here by 

1. Instantiating a 2-node tree with the key 

2. Executing the splice command to splice the new 
tree into the host’s parent. 

• Non-empty host case:  
1. Search for the child tree whose key range includes 

the supplied key. 
2. Recursively insert the key into this child tree, 

passing a command that can properly splice the 
child to the host. 

3. Execute SplitUpAndSplice on the host passing it 
the splice command to splice the resultant 2-node 
host into its parent at the host’s location in the 
parent.  

 
The insertion algorithm simply sets up the above helper 
algorithm and passes to it a no-op splice command since 
the root of the tree has no parent. 
 
Insert key into host tree: 
• Empty host case:  Insert key into host by 

1. Instantiating a 2-node tree. 
2. Splicing the new tree into the host. 

• Non-empty host case:  
1. Delegate to helper algorithm with a no-op splice 

command. 
 
As shown in Listing 4, the helper algorithm and the splice 
commands are created on the fly as an anonymous inner 
objects.  The use of anonymous inner classes greatly 
simplifies the code, minimizing parameter passing and 
control structures.  The anonymous inner classes are 
effectively lambda functions and thus enable us to harness 
the power of functional programming in an OO paradigm.  
For instance, the helper algorithm’s closure includes the 
main algorithm, thus it can directly access the key 
parameter, even though it may have recurred many levels 
away from the root.   The splice commands, which are 
really just simple lambda functions are created by the 
parent tree and thus retain the value of the child index in 
their closure.  So when the child tree, via the 
SplitUpAndSplice command, attempts to perform the 

Code Comment 

public class SplitUpAndSplice  extends ATreeNAlgo { 
 
    public SplitUpAndSplice  (int order) { 

Constructor takes the order of the tree and a 
function to execute for states<order. 

        for (int i = 0; i <= order; i++) addCommand(noOpHostcmd);  Load the supplied command in for all cases <>=@? A�BC? D  
        setDefaultCmd(new ICommand() { 
            public Object apply(int idx, TreeN host, Object lambda) { 
                host.splitUpAt((idx - dither()) / 2);    
                 return ((ILambda)lambda).apply(host);  
             } 
   }); 
    } 

Load the default (state>order) case command.  In 
this case, split up the host at its midpoint and then 
run the supplied function with the host as a 
parameter. 

    private final int dither() { 
 return (int)(2 * Math.random()); 
    } 
} 

Randomizes choice of two midpoints when order+1 
is even.  Helps distribute data more evenly. 

Listing 3: SplitUpAndSplice algorithm code 



splice using the parent supplied splice command, the child 
index can be directly accessed without need to recalculate 
it.  The splice command also has direct access to a 
reference to the parent tree in its closure, so the target of 
the splice does not need to be passed as a parameter.   One 
way of understanding the role of the inner classes is to 
compare them to the memento design pattern, which is 
used to store state information for later use [1]. 
 
As is often true, good OO design leads to declarative code 
that follows the proof of correctness exactly.  We can see 
this effect in the proof that the insertion point can be found: 

 
1. An empty tree does not contain the key. 
2. If a non-empty tree does not contain the key, then it is 

obvious that there exists an index x such if the x-1‘ th 
data element exists, it is strictly less than the key and if 
the x‘ th data element exists, it is strictly greater than 
the key.  If x does not exist, then the key is in the tree 
already. 

3. If x exists, then step 2 can be recursively applied to the 
x‘ th child until the child is an empty tree. 

4. If the x‘ th child is an empty tree, then the key does not 
exist in the tree and x is the insertion point for the key. 

Code Comment 

public class InsertNAlgo extends ATreeNAlgo { 
    private SplitUpAndSplice  splitUpAndSplice; 
 
    public InsertNAlgo (int order) { 
        splitUpAndSplice = new SplitUpAndSplice(order, noOpHostCmd); 

The constructor initializes the SplitUpAndSplice 
algorithm to split up only those trees whose state > 
order.The key to insert is the parameter of the 
host’s execute() method. 

        addCommand(new ICommand() { 
            public Object apply(int idx, TreeN host, Object n) { 
                return // student to write code here 
            } 
        }); 

The empty case command is loaded.   The empty 
case simply splices a new tree into the host to 
mutate it into a 2-node tree. 

        setDefaultCmd(new ICommand() { 
            public Object apply(int idx, final TreeN host, final Object n) { 
                host.execute(new ATreeNAlgo() { 
                    { 
                        final ATreeNAlgo helper = this; 

The default (non-empty) case is loaded.  The initial 
call simply sets up a non-recursive call to a helper 
algorithm, passing a no-op splice command. 
The last line is needed to be able to recur on the 
anonymous inner object. 

                        addCommand(new ICommand() { 
                            public Object apply(int idx, TreeN h, Object cmd) { 
                                // student to write code here 
                            } 
                        }); 

The helper’s empty case command is loaded.  The 
host definitely has a parent here.  The empty case 
means that we are at a leaf and that the key was 
not found.  Thus, a new tree is instantiated and 
spliced into the parent.  

                        setDefaultCmd(new ICommand() { 
                            public Object apply(int idx, final TreeN h, final Object cmd) { 

The helper’s default (non-empty) case command is 
loaded. 

                                final int[] x={0}; 
                                for(; x[0] < idx; x[0]++) { 
                                    int d = h.getDat(x[0]).intValue(); 
                                    if (d >= ((Integer)n).intValue()) { 
                                        if (d == ((Integer)n).intValue())  return h; 
                                        else break; 
                                    } 
                                } 

Linear search for the index of the child tree that will 
hold the key (the insertion point).  Could use a 
binary search. 

                                h.getChild(x[0]).execute(helper, new ILambda() { 
                                    public Object apply(Object child) { 
                                        // student to write code here 
                                    } 
                                }); 

Recur, passing it the command (ILambda) to splice 
at the computed insertion point.   The splice 
command’s closure is effectively a memento that 
holds the previous insertion point. 

                                return // student to write code here 
                            } 
                        }); 
                    } 

Split this host if necessary and splice the excess 
data into the parent using the splice command 
supplied by this host’s parent. 

                }, new ILambda() { 
                      public Object apply(Object child){ 
                          return host; 
                      } 
                }); 

The no-op splice command passed to the first call of 
the helper on the root node. 

                return host; 
            } 
        }); 
    } 
} 

Return the host to allow chaining. 

Listing 4: Self-balancing tree insertion algorithm 



 
The proof that the insertion maintains the height balance is 
simple, straightforward and intuitive: 
 
1. The initial call to the root node involves a split up with 

a no-op splice of the root node, which has no effect on 
the tree’s balance.  

2.  The recursive call involves a split up and splice pair, 
which does not affect the height of the tree. 

3. The insertion at the leaf involves replacing an empty 
tree with a 2-node tree that is spliced into its parent. 
This does not change the height of the tree. 

4. Thus, there is no net effect on balance of the tree. 
 
The complexity analysis for the insertion is trivial:  
 
1. All operations at a node are worst case O(order). 
2.  All the algorithm does is to recur once down to the 

bottom of the tree and then return. 
3. Therefore the overall complexity of the algorithm is 

O(log N) where N is the number of elements in the 
tree since the tree is balanced. 

 
6 Self-Balancing Tree Deletion Algorithm 
 
As with the insertion algorithm, the deletion algorithm 
closely follows the abstract description of what deletion 
must do.  Listing 5 shows the complete Java 
implementation.  The deletion code is essentially the same 
as the insertion code except that it identifies the state = 1 
(2-node state) as a special case and it pushes data 
downward as well as upward. 
 
We first describe a helper algorithm to delete a key from a 
host and re-establish the tree order and height balance using 
a supplied command. 
 
Helper algorithm: delete key from host tree using a splice 
command to maintain height balance and tree order.  The 
supplied splice command has access to the host’s parent. 
 
• Empty host case:   

1. Do nothing. 
• State = 1 (2-node) host case: Note that a 2-node host 

must be a leaf. 
1. Key == data:  Split down host tree (deletes the root 

element from the tree) and return the data element 
2. Key != data:  Call supplied splice command to 

splice this tree back into its parent. 
• State > 1 (default) host cases:  

1. Calculate the candidate key in the node, who as a 
tree with its left and right children trees, is 
guaranteed to hold the supplied key if it exists in 
the whole tree. 

2. Split down the host at the candidate key. 
3. Collapse the new 2-node child tree with its two 

children. 

4. Recursively delete the key from that child, passing 
a command that can properly splice the child to the 
host. 

5. Execute SplitUpAndSplice on the host passing it 
the splice command to splice the resultant 2-node 
host into its parent at the host’s location in the 
parent.  

 
The deletion algorithm simply sets up the above helper 
algorithm and passes to it a no-op splice command since 
the root of the tree has no parent. 
 
Delete key from host tree:. 
 
• Empty host case:   

1. Do nothing. 
• State = 1 (2-node) host case:  

1. Collapse the tree with the two children. 
2. Delegate to the default case command. 

• State > 1 (default) host cases: 
1. Delegate to helper algorithm with a no-op splice 

command 
 
The 2-node case is singled out for two reasons:  The first is 
that when the root is a 2-node, data cannot be pushed 
downward from it, so it needs to be collapsed before the 
split down process begins.  This is what one expects 
because the deletion process will cause the tree to shorten 
after enough data elements have been removed.  Essentially 
that point is reached when the root runs out of data to push 
downward.  Having a 2-node root does not guarantee that 
the tree will shorten on the next deletion however, due to 
the excess data being pushed upwards to the root.  The 
second reason for singling out the 2-node case is that when 
a data element is split down from a leaf, it forms a 2-node 
below the leaf level.  This then serves as an indication that 
the leaf level has been reached.  It also conveniently and 
automatically isolates the key to be deleted from the rest of 
the tree.  This situation only occurs during the execution of 
the helper algorithm, so it is also clearly separated from 
previously described root node situation. 
 
Pushing the candidate data downward is accomplished by 
pairing a split down operation with a “collapse”  operation 
as described in Section 4.  The collapsing process may 
create a virtual state if the two children’s states sum to the 
order of the tree (+1 due to the pushed down data).  Once 
again, this is easily handled by the system, as it is still an 
operational state of the tree.  Since one of the data elements 
of the virtual state is pushed down to the next level, when 
the excess data is spliced back in during the recursion’s 
return, the splitting up process will split the virtual state in 
two.  Since the virtual state is split in the middle, the 
resultant children are guaranteed to have states less than or 
equal to the order.   



Code Comment 

public class DeleteNAlgo extends ATreeNAlgo { 
    private SplitUpAndSplice  splitUpAndSplice; 
 
    public DeleteNAlgo (int order) { 
        splitUpAndSplice = new SplitUpAndSplice(order, noOpHostCmd); 

The constructor initializes the SplitUpAndSplice 
algorithm to split up only those trees whose state 
> order. 
The key to delete is the parameter of the host’s 
execute() method. 

        addCommand(noOpParamCmd);  The root level no-op empty case command is 
loaded.   The key is returned. 

        addCommand(new ICommand() { 
             public Object apply(int idx, TreeN host, Object key) { 
                  return getDefaultCmd().apply(idx, collapse2Node(host), key); 
              } 
         }); 

The root level 2-node (state=1) case is loaded.  
This case collapses the 2-node and then 
delegates to the default command. 

        setDefaultCmd(new ICommand() { 
            public Object apply(int idx, final TreeN host, final Object n) { 
                return host.execute(new ATreeNAlgo() { 
                    { 
                        final ATreeNAlgo me = this; 
 

The default (state>1) case is loaded.  The initial 
call simply sets up a non-recursive call to a 
helper algorithm, passing a no-op splice 
command. 
The last line is needed to be able to recur on the 
anonymous inner object. 

                        addCommand(noOpParamCmd); The helper’s no-op empty case command is 
loaded.  The param is returned. 

                        addCommand(new ICommand() {  
                            public Object apply(int idx, TreeN h, Object cmd) { 
                                if (h.getDat(0).equals(key)) { 
                                    Object d = h.getDat(0);  
                                     h.splitDownAt(0);  
                                     return d; 
                                 } 
                                 else { 
                                     ((ILambda)cmd).apply(h); 
                                     return h.getDat(0); 
                                  } 
                             } 
                         });  

Load the 2-node (state=1) case command.  The 
host definitely has a parent here.   This case 
encountered only if the data has been pushed 
down through a leaf.  
If the key is found, then delete it from the 2-node 
using a split down. 
If key is not found, splice the candidate data back 
into the parent. 

                        setDefaultCmd(new ICommand() { 
                            public Object apply(int idx, final TreeN h, final Object cmd) { 
 

The helper’s default (state>1) case command is 
loaded. 

                                final int x = findX(h, idx, ((Integer)key).intValue()); 
                                h.splitDownAt(x); 
                                TreeN newChild = collapse2Node(h.getChild(x));  

Find the candidate key, split the host down there 
and collapse the new child tree. 

                                Object result = newChild.execute(me, new ILambda() { 
                                    public Object apply(Object child) { 
                                        return h.spliceAt(x, (TreeN)child); 
                                    } 
                                });  

Recur, passing it the command (ILambda) to 
splice at the computed insertion point.   The 
splice command’s closure is effectively a 
memento that holds the child insertion point. 

                                h.execute(splitUpAndSplice, cmd); 
                                return result; 
                            } 
                        }); 
                    } 
 

Split this host if necessary and splice the excess 
data into the parent using the splice command 
supplied by this host’s parent. 

                }, new ILambda() { 
                      public Object apply(Object child){ 
                          return host; 
                      } 
               }); 
          } 
     }); 
  } 

The no-op splice command passed to the first call 
of the helper on the root node. 

    private final TreeN collapse2Node(TreeN t) { 
         t.spliceAt(1,t.getChild(1)); 
         return t.spliceAt(0,t.getChild(0)); 
    } 

Utility method to collapse a 2-node tree with its 
children. 

    private final int findX(TreeN t, int state, int k) { 
        for(int i = 0;i< state; i++) if(t.getDat(i).intValue()>=k) return i; 
        return state-1; 
    } 
} 

Utility method for linear search for the candidate 
data element.   Candidate may actually be the 
key.  Could use a binary search. 

Listing 5: Self-balancing tree deletion algorithm 



Conspicuously absent in the above algorithm are the 
traditional rotation operations.  Rotations occur when 
locally, there aren’ t enough data elements to maintain the 
tree height.  The above algorithm ensures the proper 
amount of data by always pushing down data from the root.   
In addition, the collapsing and splitting up of the nodes 
promotes tree fullness better than the single element 
transfer in a rotation operation does. 
 
As is with the insertion code, the deletion code is 
declarative and follows the proof of correctness exactly in 
the following proof that the key to be deleted can be found: 
 
1. An empty tree does not contain the key. 
2. If a tree contains the key, then it is obvious that there 

exists an index x such that the 2-node tree formed by 
the x’ th element with its original left and right child 
trees contains that key. 

3. It is obvious that if a 2-node tree contains the key, then 
the collapsed tree contains the key. 

4. Steps 2 and 3 can be recursively applied to the x’ th 
child formed by splitting down the tree at x. 

5. If the result after Step 2 is a 2-node tree, then we are at 
a leaf level.  The key exists in the tree if and only if the 
data element is equal to the key. 

 
The proof that the deletion maintains the tree’s balance is 
simple, straightforward and intuitive: 
 
1. The initial call to the root node may involve collapse 

without a split down, which has no effect on the tree’s 
balance. 

2. The recursive call involves a split down paired with a 
collapse, which has no net effect on the tree’s height. 

3. At the leaf level, the split down is paired with either a 
splice with the parent or a split down of a 2-node tree, 
neither of which has any net effect on the tree height. 

4. The return from the recursive call involves a split up 
paired with a splice, which has no net effect on the tree 
height. 

5. At the root level, the split up of the child is paired with 
a no-op splice of the root node, which has no effect on 
the tree’s balance.  

6. Thus, there is no net effect on balance of the tree. 
 
The complexity analysis once again is trivial: 
 
1. All operations at a node are worst case O(order) 
2. All the algorithm does is to recur once down to the 

bottom of the tree and then return 
3. Therefore the overall complexity of the algorithm is 

O(log N) where N is the number of elements in the 
tree. 

 
 
 
 

7 Conclusion 
 
We have presented our tree framework and exhibited its 
complete Java implementation.  As Listing 4 and Listing 5 
show, the code of SBT insertion and deletion are each 
simple enough to easily fit on one page but yet be almost a 
word for word match with its proof of correctness.   
 
In our framework, the tree structure serves as the re-usable 
invariant component with a complete and minimal set of 
intrinsic behaviors.  The behaviors are partitioned into 
constructors, structural modifiers and data access.  The 
extrinsic algorithms that operate on the tree act as visitors 
and add an open-ended number of variant behaviors to the 
tree. 
 
We generalize the visitor pattern by modeling visitors as 
collections of semantically equivalent commands which 
can be dynamically loaded.  Individual visiting methods are 
replaced with a single parameterized method.  Default 
behavior capability in our implementation allows an 
additional level of program abstraction, greatly simplifying 
the algorithms.  The generalized visitor can handle a 
dynamically changing number of hosts, or in this case, a 
single host with dynamically changing numbers of states, 
each of which may require a different behavior from the 
visitor. 
 
The insertion and deletion process on a SBT relies on 
vertical data movement that preserves the height balance of 
the tree.  The intrinsic structural operations of the tree were 
shown to easily support this process.  The insertion and 
deletion algorithms were then expressed in terms of leaf 
manipulations, vertical data movement and root 
manipulations.  Their implementations closely matched 
their abstract descriptions and their proofs of correctness 
and complexity analysis were simple, straightforward and 
intuitive.  These algorithms, when plugged into the tree 
framework, transform the tree structure into a SBT.  This 
demonstrates the framework’s flexibility and extensibility.  
The algorithms can be easily modified to support other self-
balancing tree structures such as B-trees. 
 
It should be noted that students must be prepared in 
advance before encountering this material.  Students must 
be versed and proficient in abstract behaviors, frameworks 
systems and design patterns, especially the visitor and 
command patterns.   
 
OO and design patterns promote a drive towards proper 
abstraction.  The students can focus on the fundamental 
principles involved with the system without the distractions 
of low-level manipulation code.  Abstract concepts such as 
closures, lambda functions, itemized case analysis and 
other abstract behaviors are well represented in our 
formulation.  Functional programming and declarative 



programming come in naturally without the traditional 
topical boundaries that hinder students’  learning.   
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