1 Abstraction

Abstraction is based on the concept of layers in which the details of one layer of
abstraction are hidden from layers at a higher level. A computer scientist uses abstrac-
tion as a thinking tool to understand a system, to model a problem, and to master com-
plexity.

The concept of abstraction is pervasive throughout computer science, and is espe-
cially important in software design. Object orientation is one of the more recent soft-
ware technologies to harness the power of abstraction. This chapter introduces the
abstraction process, on which the design principles of the rest of the book are based.
The deep significance of the concept of abstraction can hardly be overestimated, so this
beginning chapter is essential to the remainder of the book. Later chapters apply the
design principles introduced here to the problem of data structure specification and
implementation.

1.1 Objects and Classes

Abstraction is a process. This section describes the process using the tool of object ori-
entation with the C++ language. The history of computer science shows a steady pro-
gression from lower levels of abstraction to higher levels. When the electronic
computer was first invented in the mid twentieth century, there was no assembly lan-
guage much less the higher level languages with which we are familiar today. It is no
accident that the historic evolution is toward progressively higher levels of abstraction
instead of the other way around. Human intellectual progress shows that generalities
are usually discovered from many specific observations. It is only with hindsight that
you can start with the general case and deduce specific consequences from it.

Data abstraction

Plato, in his theory of forms, claimed that reality ultimately lies in the abstract form
that represents the essence of individual objects we sense in the worldrépthodic
written in the form of a dialogue between Socrates and a student, he writes:

Well then, shall we begin the enquiry in our usual manner: Whenever a number of
individuals have a common name, we assume them to have also a corresponding
idea or form: do you understand me?
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Figure 1.1 Type abstraction for typelouble . In the C++ programming language, an
expression of typelouble must have as its value one of many possible specific values that
define the type. The same principle holds for other types. For example, the tasdueand

false define typebool .

| do.

Let us take any common instance; there are beds and tables in the world—plenty
of them, are there not?

Yes.

But there are only two ideas or forms of them—one the idea of a bed, the other of
a table.

True.

And the maker of either of them makes a bed or he makes a table for our use, in
accordance with the idea—that is our way of speaking in this and similar
instances—nbut no artificer makes the ideas themselves: how could he?

Impossible.

Plato’s consideration between the specific and the general exemplifies the abstrac-
tion process. Another example of the abstraction process is the concept of type in pro-
gramming languages. Consider all the possible real values, such as 2.0, -43.7, 5.2, 0.8,
and so on. In the same way that Plato considered many different instances of a table to
be representations of a single abstract table, from a computation point of view the col-
lection of all possible real values defines a single abstractdiypele . Figure 1.1
shows the abstraction process, knowtyasabstraction for typedouble . A type is
defined by a collection of values. Each value, such as 5.2 in the box on the left, is spe-
cific, while the typedouble is general.

In the history of computing languages, types emerged as one of the first steps toward
higher levels of abstraction. At the machine level, which must be programmed with
machine language or its equivalent assembly language, there are no types other than the
bit patterns of pure binary. With assembly language, you have unlimited freedom to
interpret a bit pattern any way you choose. The same bit pattern in a specific memory
location can be interpreted as an integer and processed with the addition circuitry of the
processor. It can be interpreted as a character and sent to a Web page as such. It can
even be interpreted as an instruction and executed.

In C++, every variable has a name, a type, and a value. The name is an identifier,
defined by the syntax rules of the language. The type is supplied by the language. Both
the name and the type of a variable are determined when the software designer writes
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and compiles the program. The value of a variable, on the other hand, is stored in the
main memory of the computer as the program is executing. The value stored is one of
the values that defines the type.

The compiler enforces type compatibility, which is a restriction on the freedom of
programmers that they do not have with assembly language. The abstraction process
frequently imposes a loss of freedom because the nature of abstraction is the hiding of
detail. Programmers then have no access to the details that are hidden. With the advent
of types to restrict the value that a variable can have to some mathematical entity like a
real number comes the inability to consider the bit pattern behind the value. But the
restriction of freedom to access low-level details is also liberation from the necessity to
do so. Abstraction is powerful because the limitation it places on the programmer’s
ability to access low level details at the same time frees the programmer from that
requirement.

The abstraction process permits the grouping together of specific real values into a
type because each value shares certain characteristics with all the other values. For
example, each value has a sign and a magnitude. Any value can be combined with any
other value with the arithmetic operators like multiplication. And any value can be
compared with any other value to determine whether the first is less than, equal to, or
greater than the second. If it were not for these common properties among individual
values, the grouping together of them to define a type would not be useful.

Furthermore, the collection of many specific numeric values to make a general type
is useful in a programming language because it models the same process in the real
world. For example, the typiouble in C++ corresponds to the notion of a real num-
ber in mathematics. All computer applications exist to solve problems in the human
world. The first step toward solving any problem is to model it with the machine. There
are usually approximations to the model, which may make the solution approximate.
For example, there are only a finite number of real values that a computer can store
while there are an infinite number of real values in mathematics. Nevertheless, one
source of power of the abstraction process in computing is that it can mirror the same
process in the human world and so serve as a model to compute the desired solution.

The next step toward higher levels of abstraction in programming languages
occurred when languages gave programmers the ability to create new types as combi-
nations of primitive types. Collections of primitive types are known as records or struc-
tures in most programming languages. The corresponding abstraction process is called
structureabstraction

For example, Figure 1.2 shows geometrically how the collection of all possible rect-
angles define a single rectangle type. The abstraction process parallels the process of
defining a type as an aggregate of values. An individual rectangle is characterized by its
length, say 2.0, and width, say 5.2. This is not the only possible rectangle. Mathemati-
cally there are an infinite number of rectangles, each with its own length and width.
Because computers can only store a finite number of real values in a memory cell, the
number of possible rectangles that can be characterized in the machine is finite.

Programmer-defined types are powerful because they allow the programmer to con-
veniently model the problem to mirror the situation in the problem domain. For exam-
ple, an airline reservation system might need to store a collection of information for
each ticket it sells, say the passenger’'s name, address, flight date, flight number, and
price of the ticket. Collecting all these types into a single programmer-defined type
allows the program to process a ticket variable as a single entity.
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4 Chapter 1 Abstraction

Figure 1.2 Structure abstraction to abstract from specific shapes of many different sizes to a
single shape with a general size.

Each of the rectangles in Figure 1.2 is specified by its length and width. In C++, you
could define a new typgRectangle as a structure that contains two real numbers for
storing those dimensions.

struct Rectangle {
double length;
double width;
b
You could declare an individual rectangle as a variable ofRgmangle
Rectangle myRectangle;

To set the length ahyRectangle to 2.0 use a period to separate the variable name
from thestruct  field name as follows.

myRectangle.length = 2.0;

Computation abstraction

Abstraction of data is only one side of a two-sided coin. The other side is abstraction of
computation. At the lowest level between programming languages and the machine is
statement abstraction

All computers consist of a central processing unit (CPU) that has a set of instruc-
tions wired into it. The instruction set varies from one computer chip maker to another,
but all commercial CPUs have similar instructions. CPUs contain cells called registers
that store values and perform operations on them. The collection of the operations spec-
ifies a computation.

Typical instructions arad , add, mul, andstore . Theload instruction gets a
value from main memory and stores it in a register of the CPUadtieinstruction
adds the content of two registers. Thel instruction multiplies the content of two reg-
isters. Thestore instruction puts a value from a register of the CPU into main mem-
ory.

Before the advent of high-level languages, programmers wrote their programs using
the individual instructions of the instruction set of the particular CPU on which the pro-
gram was designed to run. Figure 1.3 shows an example of a sequence of instructions
for some hypothetical CPU that computes the perimeter of a rectangle. The first two
instructions load the value téngth into registerl and the value ofvidth into
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load length, r1

load width, r2
addri, r2, r3 perim = 2.0 * (length + width);
mul 2.0, 13, 13

store r3, perim

Figure 1.3 Statement abstraction for the assignment statement. In C++, the assignment
operator evaluates the expression on its right hand side and gives the value to the variable on the
left hand side.

registernr2 . The next instruction adds the contentbftor2 and puts the sum in reg-
isterr3 . Then, 2.0 is multiplied by the contentr8f with the result placed back i ,
after which it is stored in main memory in the location reserved for vapabiie .

The language illustrated by this sequence of instructions is called assembly lan-
guage. When you program in assembly language you must consider the details of the
CPU—how many registers it has, how to access them, and which values you want to
store in which registers. In a high-level language, however, all those details are hidden.
The compiler abstracts them away from the view of the programmer, so that the pro-
grammer need only write the single assignment statement

perim = 2.0 * (length + width);

With statement abstraction, even the structure of the CPU is hidden. The programmer
does not need to know about registers or hardware instruction sets. A single assignment
statement in C++ is translated by the compiler to several instructions in assembly lan-
guage. One statement in a high-level language is defined by many statements at the
machine level like one type in a high-level language is defined by many possible values
at the machine level.

Corresponding to structure abstraction on the data side of the coin is procedure
abstraction on the computation side. In the same way that high-level languages allow
you to collect variables into structures to create a new data type, they allow you collect
statements into procedures to create a new computation. The corresponding abstraction
process iprocedureabstraction

Figure 1.4 shows procedure abstraction for the computation of the perimeter of a
rectangle. The C++ computation of the perimeter of an arbitrary rectangle is encapsu-
lated in a function with formal parametemwhose type iRRectangle . Any time the
programmer needs to compute the perimeter, for example to prirtotito, a simple
call to the function is all that is required. The computation need only be done once,
freeing the programmer from having to remember those details whenever the computa-
tion is required. For example, if you have two variablesyRectangle andyour-
Rectangle —both of typeRectangle , you can output their perimeters with

cout << perimeter (myRectangle);
and

cout << perimeter (yourRectangle);
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6 Chapter 1 Abstraction

double perimeter (Rectangle r) {
return = 2.0 * (r.length + r.width); cout << perimeter (myRectangle);
}

Figure 1.4 Procedure abstraction for the computation of the perimeter of a rectangle. The box
on the left contains the C++ code for defining a function napedcheter . The box on the
right contains an example of how the function is called.

The details of the computation are hidden in the function calls.
The benefit of procedure abstraction can be even more apparent when the procedure
contains many statements. For example, fungah

int gcd (int m, int n) {
if (0==n){
return m;
}
else {
return gcd (n, m % n);
}
}

computes the greatest common divisor of two integers. The algorithm returns the first
integer if the second integer is 0. Otherwise, it recursively returns the greatest common
divisor of the first integer and the second integer modulo the first. If you need to com-
pute the greatest common divisor of two integers,ngsy anddenom that represent

the numerator and denominator of a fraction, you could write the assignment

temp = gcd(num, denom);

As with statement abstraction in Figure 1.3, this one statement at a high level causes the
execution of many statements at a lower level.

Class abstraction

The next step in the evolution of programming languages toward higher levels of
abstraction was the combination of data abstraction with computation abstraction to
produce class abstraction. Consider again the rectangles in Figure 1.2 and imagine what
sort of processing might be required for such geometric figures. A rectangle might rep-
resent part of a building like the interior wall of a room or a door. If the walls and doors
are to be painted your program would need to compute the area of each rectangle to
determine the amount of paint required. Or a rectangle might represent a piece of land
around which a fence is to be erected. Your program would then need to compute the
perimeter to determine the amount of material required for the fence.

Before the advent of object-oriented programming, the function to compute the area
or the perimeter of a rectangle would exist separately from its dimensions. For exam-
ple, you might have this function to compute the perimeter.
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struct Rectangle {

double length;
double width; private
h double length;
double width;
public
double area ();
double area (Rectangle r); double perimeter ();

h
double perimeter (Rectangle r); \ /

/class Rectangle { \

Rectangle

— length: double
— width: double

+ area (): double
+ perimeter (): double

Figure 1.5 Class abstraction that combines the structure abstraction of Figure 1.2 with the
procedure abstraction of Figure 1.4. Data and computation are combined in the definition of the
classRectangle . The box in the lower part of the figure shows a Unified Modeling Language
(UML) depiction of the class.

double perimeter (Rectangle r) {
return 2.0 * (r.length + r.width);

}

The rectangle would be passed as a parameter to the function, and then its constituent
parts—its dimensions—would be used to compute the perimeter. For example, to out-
put the perimeter of variablayRectangle you would write

cout << perimeter (myRectangle);

wheremyRectangle is the actual parameter corresponding to formal parameter

Object orientation includes in the abstraction process not only the aggregation of
data, but the aggregation of computation as well. It is a viewpoint that shifts the focus
from an external operation that requires the input of data about the rectangle, to an
internal operation that is part of the rectangle itself. This is a significant shift in focus.
Computing the perimeter is no longer something that you do to a rectangle. It is some-
thing the rectangle does for you. The rectangle knows its dimensions and should be the
party responsible for computing its perimeter.

In Figure 1.2, each individual rectangle on the left has an area and a perimeter in
addition to its length and width. The area and perimeter are not data values that are
independent from the dimensions. So, their values should not be stored the same way
the dimensions are stored, but they should be computed from the dimensions. In object-
oriented design, the functions to compute the area and perimeter are no longer external
to the type, but are internal. They literally become part of the type.

To emphasize the shift in focus when a function is bound to a type, object-oriented
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UML C++

class class

object object
superclass base class
subclass derived class
attribute data member
operation/method member function
visibility access specifier
parameterized class template
abstract pure virtual

Figure 1.6 Object-oriented terminology for UML and C++.

designers established a new set of terminology. Roughly speaking, in object-oriented
terminology

= classcorresponds ttype
= objectcorresponds twariable
= methodcorresponds tprocedureor function

That is, an object has a class, like a variable has a type. It is more usual to state that an
object is an instantiation of a class rather than to state that an object has a class.

Unified Modeling Language

Object-oriented design is widespread in the computing industry and is not confined to
any one language such as C++. In the late 1980s and early 1990s, many object-oriented
analysis and design methods emerged to aid the software development process. Differ-
ent people devised different methods, but because they all attempted to solve similar
problems they shared common characteristics.

For a while the object-oriented design community was split among several warring
factions who could not agree on a common standard for communicating object-oriented
concepts. Eventually, the major players in the debate teamed up and merged their meth-
ods into what has become an industry standard called the Unified Modeling Language
(UML). One part of UML is a graphic language called a class diagram that is indepen-
dent of any specific programming language.

Part of the UML effort was to establish a common vocabulary for communicating
object-oriented concepts. Unfortunately, each programming language has its own ter-
minology that in many cases predates the UML effort and that differs from the UML
vocabulary. Figure 1.6 lists some UML terms and the corresponding terms in C++.

Figure 1.5 includes a UML depiction of the rectangle class declared in the same fig-
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ure. A box in a UML class diagram represents a class. Generally, a class box contains
three compartments—the class name, the class attributes, and the class operations. The
top compartment contains the name of the class in a bold typeface.

The middle compartment contains the attributes of the class. Attributes in UML ter-
minology correspond to the data part of a class. In Figure 1.2(b), the attributes of class
Rectangle are

— length: double
— width: double

On each line, the visibility marker comes first, followed by the name of the field, fol-
lowed by a colon, followed by the field’s type. In the above examples, the dash charac-
ter indicates that the fields are private. Private attributes are ones that are not accessible
by any other functions except those that are bound to the class. The protection provided
by private attributes is described in more detail later in this chapter.

The bottom compartment contains the operations of the class. Operations in UML
terminology correspond the methods of the class, known as member functions in C++.
In Figure 1.5, the operations of cld&®sctangle are

+ area (): double
+ perimeter (): double

On each line, the visibility marker comes first, followed by the name of the operation,
followed by its formal parameter list enclosed in parentheses, followed by a colon, fol-
lowed by the type returned by the operation. If the operation is a procedure, corre-
sponding to a C++ function that retuw@d |, the returned type and colon are simply
omitted. In the above examples, the plus symbol indicates that the operations are pub-
lic. Public operations are ones that can be called by any other function, such as a main
program.

C++

The syntax of C++ for binding methods to data to make a class is similar to the syntax
for astruct . The similarity is not coincidental, because shict  is what allows
for the grouping of data in the abstraction process. It is simply extended to allow meth-
ods to be included in the grouping as well as data.

Compare the C++ declaration of structi®ectangle from page 4 that abstracts
only the data

struct Rectangle {
double length;
double width;

I

with the corresponding declaration in Figure 1.5 that abstracts the operations as well as
the data.
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10 Chapter 1 Abstraction

class Rectangle {
private:
double length;
double width;
public:
double area ();
double perimeter ();

3

In place of the keywordtruct is the keywordtlass . In addition to grouping the
length andwidth data, you group methods by including the function prototype for
each method within the braces of the class. You indicate the access privileges of an item
in a class with therivate  andpublic  reserved words. Each word is followed by a
colon.

Declaring an object is analogous to declaring a variable. Compare this declaration of
objectmyRectangle

Rectangle myRectangle;

with that of variablanyRectangle on page 4. The declarations are the same.

The syntax for implementing and calling a method, however, differs slightly from
that for implementing and calling a function. When you define a method, you must first
specify the class to which it is bound. For example, the definition of the perimeter
method is

double Rectangle::perimeter () {
return 2.0 * (length + width);

}

Compare this definition with the definition of functiparimeter  on page 7. When

you define a method, you must include the name of the class to which the method is
bound just before the name of the method and separated with the double-colon scope
operator:: . The parameter list for this method is empty. How, you might well ask,
does the method know which rectangle to get the height from? The function on page 7
uses.length , wherer is passed as a parameter. This method simplylersgth

Whose length is it?

The answer is that there is, in effect, an implicit formal parameter not shown in the
definition of the method. The corresponding actual parameter is, however, explicit
when the method is called. To output the perimeter of oljg®ectangle , you
write

cout << myRectangle.perimeter ();

Compare this method call with the corresponding function call on page 7. There,
myRectangle is an actual parameter enclosed in parentheses. Here, it is also an
actual parameter, but it is not enclosed in parentheses. It is placed in front of the
method name and is separated from it by a period. This notation is consistent with the
fact that the method is part of the class alongside the data, as it is accessed with the
same period syntax. In the definition of the method, the expressigth+width

refers to thdength andwidth of the actual parameteryRectangle whose for-

mal parameter does not appear in the definition.
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ot

(a) Behavior abstraction for shapes rendered geometrically.

Abstract
Shape

(b) Behavior abstraction for shapes rendered with the UML symbol for inheritance.

Figure 1.7 Using inheritance to abstract from specific shapes of many different types to a
single shape with a general type.

The difference in syntax for defining and calling a method compared to a function
does not illustrate the power of object oriented design. After all, there is no inherent
benefit to putting an actual parameter in front of a method name instead of enclosing it
in parentheses after a function name. The only thing the object-oriented syntax does is
to emphasize that functions are bound to classes along with the data. The real power of
object-orientation comes with yet another level of abstraction—behavior abstraction
with polymorphism.
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1.2 Abstract Classes and Inheritance

This section presents the next step to higher levels of abstraction. It introduces a com-
plete C++ program that illustrates the highest level of abstraction in object-oriented
design.

An abstract class

The abstraction process consists of collecting together many items that share a common
characteristic and creating a new item that is a general representation of each specific
item. You can collect many individual real values such as 2.0, 5.2, and 12.8 to create an
abstract typelouble . A variable of typedouble has one of the collection of values.

You can collect twalouble s—one each for length and width—and put them together
with methods to create a rectangle class. A specific rectangle will have values for the
two double s and will have methods for computing its area and perimeter.

But there are shapes in the universe other than rectangles. There are circles, lines,
right triangles, and many others. What do these shapes have in common? They are cer-
tainly not all specified by length and width as is the rectangle. A circle, for example, is
specified by its radius. Suppose you want to take a further step towards abstraction and
collect several different shapes together to form an abstract shape. What is common
that can be abstracted out?

Because dimensions for different objects are specified differently, you cannot
include the dimensions in the abstract shape. However, all closed shapes have an area
and a perimeter. So, you can at least include those. You must be careful, however,
because the algorithm for computing the area of a circle is not the same as the algo-
rithm for computing the area of a right triangle. Even though the abstract shape will
specify a method for computing the area, the method cannot implement it because the
algorithm depends on the specific object.

Figure 1.7(a) is a geometric representation of the abstraction process. Many differ-
ent shapes are collected to form an abstract shape represented by the cloud in the box
on the right. Figure 1.7(b) is a representation for the same abstraction process, but in a
graphic form more closely resembling a UML class diagram. The sy#FsoI is the
UML notation for inheritance, which is the relationship between a specific shape and
the general shape. Each specific shape, such as the rectangle, is a subclass of the
abstract shape class, which is called the superclass. A subclass inherits from its super-
class. In C++ terminology, the superclass is known as the base class and the subclass is
known as the derived class.

Figure 1.8 shows how to declare an abstract class in C++. It adds a few more meth-
ods to our geometric shape examphkeale anddisplay —and the virtual destruc-
tor ~aShape . The declaration

class AShape : public virtual AObject

names the class. Thein AShape stands for abstract. The code in Figure 1.8 contains
no objects. It simply declares the abstract claSkape. A colon following a class

name is the C++ notation for inheritance. This declaration stateA$hatpe inherits

from AObject . Appendix A gives the declaration ADbject and a brief description

of its purposeAObject is required for the classes in this book because C++, unlike
many object-oriented languages, does not provide a universal base class from which all
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/I File: ChO1/Shape/AShape.hpp

#ifndef AShape_hpp
#define AShape_hpp

#include "AObject.hpp"

AShape

class ostream; // Forward declaration.

+ area (): double

class AShape : public virtual AObject { + perimeter (): double
ublic: + scale (factor: double)
puble: + display ()
virtual double area () = 0; + promptAndSetDimensions ()

/I Post: The area of this shape is returned.

virtual double perimeter () = 0;
/I Post: The perimeter of this shape is returned.

virtual void scale (double factor) = 0;
/I Pre: factor > 0.0
/I Post: This shape's dimensions are multiplied by factor.

virtual void display (ostreamé& os) = 0;
/I Post: This shape's name and dimensions are printed to os.

virtual void promptAndSetDimensions () = 0;
/I Post: This shape's dimensions are prompted and set.

#endif

Figure 1.8 The content of the C++ header file for declaring the abstract shape class of Figure
1.7. The name of the class in the C++ codd3tape. The UML standard notation for an
abstract class is to render the name of an abstract class in bold slanted type and the name of its
methods in slanted type. The C++ syntax for a formal parameter is to have the type followed by
the name separated by a space. The UML syntax is to have the name followed by the type
separated by a colon. The C++ syntax for the returned type is to have the type precede the
method name separated by a space. The UML syntax is to have the returned type follow the
method name separated by a colon.

other classes inherit. Some classes in later chapters will require that classes in earlier
chapters inherit from a common base class. Rather than try to anticipate which classes
will need to inherit from the universal base class, this book will simply design all
classes to inherit fromObject unless they inherit directly from some other class.
Inheritance fromAObject will be assumed from now on, and will not be indicated in
the UML diagrams.

The first line after the opening brace

public:

states that the following items are public. That is, the following items are available or
accessible for client programs to use.
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The first item in the public list

virtual double area () = 0;
/I Post: The area of this shape is returned.

declares a method namarka . The key wordvirtual at the beginning of the dec-
laration makes it possible to invoke the method with polymorphism, a concept that will
be illustrated in more detail later in the next section. The notafloat the end is a
rather curious syntactic rule of C++, because it looks somehow like zero is being
assigned tarea . But nothing of the kind is implied by that notation. Instead, the nota-
tion indicates that a programmer can overdcka when producing the corresponding
concrete method. The task of writing such code is left to the programmer of the specific
line, rectangle, circle, and right triangle derived classes.

The keywordvirtual together with the0 notation make methoakea what is
known in C++ as a pure virtual function. The idea is that the information in this decla-
ration specifies what the method should do, and not how it should do it, a task that will
be different for each derived class. In this example, every derived cl@sShape
must have a method namacka that returns a double precision real value and has no
parameters in its parameter list.

The comment line specifies the postcondition and serves as documentation of what
the method should do. In this example, the purpose of the method is to compute the
area of the shape. You can see that it would be impossible to write the code for the gen-
eral case because the computation for the area of a shape depends on a specific shape.
For a circle, the area 1stimes the square of the radius, while for a right triangle it is
half the base times the height.

Occasionally, a method will have a precondition as well as a postcondition as does
thescale method. A precondition is a statement that must be true for the method to
produce correct results. A precondition in the documentation of a program corresponds
to a precondition of a Hoare triple. For example, the precondition for a method that
computes the real square root of a number is that the number be nonnegative, because
you cannot take the square root of a negative number. The methods in this book all have
an implied precondition that the object exists, because you cannot compute with a non-
existent object. The specification famea could have been written

virtual double area () = 0;
/I Pre: This shape exists.
/I Post: The area of this shape is returned.

To save space the existence precondition will always be omitted, but implicit. If a client
program invokes a method without satisfying the precondition, the program aborts. It is
the responsibility of the client to insure that the precondition is met when the method is
called.

The fundamental notion of abstraction is hidden detail. GA&sape is abstract
because it hides the details of the computations that must be done by the methods for
the specific shapes. The interface states that all specific shapes must have at least the
four methods-area , perimeter ,scale , anddisplay . These methods represent
behavior abstraction in the abstraction process. The details of how the computations are
done are hidden at this level of abstraction.

The UML diagram in Figure 1.8 corresponds to the C++ code in the header file. A
rectangular block in a UML diagram corresponds to a class. The topmost cell in the
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/I File: ChO1/Shape/Rectangle.hpp

#ifndef Rectangle_hpp
#define Rectangle_hpp

#include "AShape.hpp"

class Rectangle : public AShape { AShape
private:
double _length; : z;i;'arlv(te);e(ic()l;'t)fouble
double _width; + scale (factor; double)
+ display ()
public: + promptAndSetDimensions ()
Rectangle (double length = 0.0, double width = 0.0);
I/l Pre: length >= 0.0 and width >=0.0. Lf
/I Post: This rectangle is initialized with
Rectangle

/I length length and width width.
— _length: double

— _width: double
double area (); -
double perimeter (); + Rectangle (length: double, width: double)
void scale (double factor); + area (): double
void display (ostreamé& 0s); + perimeter (): double

+ scale (factor: double)
] + display (os: ostream&)
3 + promptAndSetDimensions ()

void promptAndSetDimensions ();

#endif

Figure 1.9 Specification for the concrefectangle class. The UML syntax for a private

item is to precede it with the — symbol, and for a public item is to precede it with the + symbol.
The block for the rectangle is divided into three parts—the name of the class, the attributes, and
the operations. Our C++ style convention is to always begin the name of an attribute with the
underscore character .

block contains the name of the class. The figure shows that the syntax of C++ differs
slightly from the syntax of a UML diagram. You should familiarize yourself with UML
diagrams as they are a powerful tool for communication about object-oriented design
and have become an industry standard. In particular, you should be able to make the
connection between C++ program code and UML diagrams.

A concrete class specification

Figure 1.9 shows the content of the header file for one of the concrete classes, the
Rectangle . Theinclude statement

#include "AShape.hpp"

includes the header file fé&«<Shape shown in Figure 1.8. Hence, before the compiler
proceeds with the code in this header file, it has scanned the declaration for the
AShape class.

The declaration foRectangle

class Rectangle : public AShape
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has a colon between the name of the class that is being declared as the derived class and
the name of the base class from which it is derived. The colon in C++ corresponds to
the UML symbol for inheritanccé} . The keywopdiblic  before the base class
indicates public inheritance. Public inheritance means that all the methods that are pub-
lic in the base class will also be public in the derived class. Although C++ has two other
forms of inheritance—protected and private—this book has no occasion to use either.

The shape of a rectangle is specified by its length and width. Corresponding to these
two dimensions are the two attributes in the private part dRdotangle class

private:
double _length;
double _width;

The variable length stores the length of the rectangle amddth stores its width.

Items that are in the private part of a class specification are not directly accessible to
other programs, although they are indirectly accessible through the operations that are
provided in the public part.

C++ provides private and public access to help manage the development of software
when more than one programmer is on the development team. It is common for a class
to be written by one programmer and used by another. The user of the class may not be
familiar with the details of the private part. To allow the user access to the private part is
to risk the possibility that he may modify it somehow erroneously. For example, this
object stores its length and width and insures that these values are always nonnegative.
If the client had public access to the values he could change one of them to a negative
value, after which computation of the area would produce meaningless results. The pur-
pose of the private part is for protection of the object against unauthorized, possibly
erroneous, manipulation.

Figure 1.9 shows the public part of the Rectangle class, consisting of the methods
that are specified in the base class plus one other called a constructor.

Rectangle (double length = 0.0, double width = 0.0);
/I Pre: length >= 0.0 and width >=0.0.

/I Post: This rectangle is initialized with

/I length length and width width.

A constructor is a method that has the same name as the class, and that has no specified
return type, not evewoid . In this example, the name of the clasRéstangle , and
the name of the constructor is aRectangle

A class can have more than one constructor as long as the parameter lists of the dif-
ferent constructors are different. Unlike other methods, constructors are not called
explicitly. Instead, C++ forces them to be called implicitly before the object is first
used. The C++ compiler inserts a call to the constructor when an object is declared, or
when an object is created with thew operator. The purpose of a constructor is to give
an object initial values when it is created.

This constructor has default parameters indicated @y in the formal parameter
list. If the actual parameter list is empty, the constructor is calledlevitith and
width both having their default values of 0.0. If the actual parameter list has one
value, say 5.7, then the constructor is called ieitigth  having value 5.7 andidth
having its default value of 0.0. Default parameters are described in more detail in Sec-
tion A.7 in the appendix.
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/I File: ChO1/Shape/Rectangle.cpp

#include <iostream.h>
#include <assert.h>
#include <string.h>
#include "Rectangle.hpp"
#include "Utilities.hpp"

Rectangle::Rectangle (double length, double width) {
assert (length >= 0.0 && width >= 0.0);
_length = length;
_width = width;

}

double Rectangle::area () {
return _length * _width;

} AShape.hpp

double Rectangle::perimeter () { 4
return 2.0 * (_length + _width); .

} .

Rectangle.hpp

void Rectangle::scale (double factor) {
Il Exercise for the student. A

} :

void Rectangle::display (ostream& o0s) { $ Rectangle.cpp
0s << "Rectangle" << endl;

0s << "Length: " << _length << endl;
0s << "Width: " << _width << endl;

}

void Rectangle::promptAndSetDimensions () {
_length = dPromptGE ("Length?", 0.0);
_width = dPromptGE ("Width?", 0.0);

}

Figure 1.10 Animplementation of thRectangle class. The code for methedale in this

and all the other shapes is left as an exercise for the student. Also shown is a UML component
diagram that displays the chain of compile time dependencies beginning with this file
Rectangle.cpp . The file that contains an implementation is shaded.

It is common for a derived class to have methods in addition to the ones that it inher-
its from its base class. The documentation convention in this book is to specify the pre-
conditions and postconditions for the methods in the abstract class only once, and not
repeat them in the header files of any of the derived classes. Methods that are new to the
derived class, such as tRectangle constructor, are documented in the header file
of the derived class.
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A concrete class implementation

Figure 1.10 shows the implementation of fRectangle class contained in file
Rectangle.cpp . The include statement

#include "Rectangle.hpp"

instructs the compiler to scan the fRectangle.hpp  before scanning the code in
this file. However, Figure 1.9 shows that file instructing the compiler to scan the file
AShape.hpp before scanning its code.

In UML terminology, a physical unit of code, such as the content of source code in a
file, is a component. A component diagram shows the dependencies between compo-
nents with dashed arrows. Figure 1.10 also has a component diagram that shows the
compile time dependencies between the files in Figures 1.8, 1.9, and 1.10. The arrow
from Rectangle.cpp to Rectangle.hpp means thatRectangle.cpp
depends oRRectangle.hpp by virtue of the include statement in Figure 1.10.

The first line of methodrea |,

double Rectangle::area ()

begins with the value returnedpuble in this case. After the value returned is the
name of the class followed by the name of the method separated by double colon scope
operator:: . C++ requires the name of the class to distinguish this method from the
method with the same name for a different concrete class. For exampBidie

class will also have a method nanseda . Its implementation will begin with the line

double Circle::area ()

Within each method, the items in the private part of the class are available to use or
to change. For example, the implementatioaref

return _length * _width;
uses the values ofength  while the implementation of the constructor
_length = length;

changes the value ofength
Preconditions are implemented with thesert function. For example, the pre-
condition for theRectangle constructor from Figure 1.9 is

/I Pre: length >= 0.0 and width >= 0.0
which is implemented with the assert function call as
assert (length >= 0.0 && width >= 0.0);

in Figure 1.10. The effect of the assert function is to abort the program if the boolean
expression in its parameter list is false. The abort is accompanied with an error message
that indicates which assert statement failed. The precondition is a contract between the
server, which is the class, and the client, which in this example is the main program that
uses the class. This contract states that it is the responsibility of the client to insure that
the parameterength andwidth are not negative when the constructor is called.
You may ask, Why put a statement in your program that will cause it to crash? Don't

users hate programs that crash? The answer is that if the client program is written cor-
rectly, the boolean expression in the assert statement of the server program will never

Copyright © 1998, Dung X. Nguyen and J. Stanley Warford Revised: August 18, 2002



Section 1.2 Abstract Classes and Inheritance

19

AShape

+ area (): double

+ perimeter ('): double

+ scale (factor: double)

+ display ()

+ promptAndSetDimensions ()

PAN

Line

Circle NullShape

— _length: double

— _radius: double

+ Line (length: double)

+ Circle (radius: double)

Revised: August 18, 2002

Rectangle RightTriangle

— _base: double
— _height: double

— _length: double
— _width: double

+ RightTriangle (base: double,
height: double)

+ Rectangle (width: double,
height: double)

Figure 1.11 A class diagram for the abstract cl#Shape and the concrete classkige ,

Rectangle , Circle , RightTriangle , andNullShape . Because each concrete class inherits

and implements all the methods of the abstract class, they are not repeated in the operations part
of the class box as they are in the class bdXeofangle in Figure 1.9. Shading is behind those
classes that provide an implementation.

be false and the program will never crash. The assert statement is necessary not for the
user but for the developer of the client program. When the client programmer is testing
her code before releasing it commercially it is useful to have a controlled abort with an
error message that pinpoints the cause of the error. Remember that it is frequently the
case that one programmer writes the server program while another one writes the client
program.

If you write both the server program and the client program you may be able to keep
them consistent without the checks enforced by the contract. However, even if a single
individual does write both programs it is still beneficial to program with preconditions
in the contract. The contract is at the boundary of a low level of abstraction, the server,
and a high level of abstraction, the client. The precondition enforces the abstraction that
relieves you of the burden of maintaining the details of the entire program in your
mind. When you are programming the server, you do not need to think about how the
client will insure thatength is not negative. When you are programming the client,
you do not need to think about how the client will create a new object, as long as you
supply a nonnegative value fiength

Similar implementation code, not shown here, is necessary for each concrete shape.
Figure 1.11 is a UML class diagram that shows the inheritance relationships between
the concrete and abstract shapes. The concrete class Naftitape is included
for the convenience of the client program. It has nothing in its private part, returns zero
for its area and perimeter, and prints nothing for its name and dimensions. As described
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$ AShape.h
N

............................................................

! ! % ShapeMain.h X

| - |

V.- - -»% RightTriangle.h -

Line.h < - - ---

i o

% : : % RightTriangle.cpp X
P % Rectangle.h - - T -»% NullShape.h

Line.cpp

) | }

E % NullShape.cpp

Rectangle.cpp

Circle.h - - - -

' % ShapeMain.cpp

Circle.cpp

Figure 1.12 A UML component diagram of the compiler dependencies for the client program

in ShapeMain.cpp that uses the shape classes. Some library files are not shown, such as the
asserth  header file for the assert statement. Also omitted is a utilityfilées.h that
provides the constamt for the circle implementation and some routines to prompt the user for
numeric input within specified limits.

in the next section, having a null shape simplifies the code in the client program by
eliminating the need to test for the existence of a shape. This design is an example of
what is known as the null object pattern.

A client application

Figure 1.12 is a UML component diagram for a main program that uses the abstract and
concrete shapes. The complete system requires the 13 files shown in the figure plus a
utility file not shown. The implementation file for each concrete class depends on its
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There are [0..4] shapes.

(m)ake (c)lear (a)rea (p)erimeter (s)cale (d)isplay (q)uit: m
Which shape? (0..4): 7

Must be between 0 and 4. Which object? 2

(Dine (r)ectangle (c)ircle right(t)riangle (m)ystery: r

Length? (>= 0): 25

Width? (>= 0): 3.0

There are [0..4] shapes.

(m)ake (c)lear (a)rea (p)erimeter (s)cale (d)isplay (qg)uit: a
Which shape? (0..4): 2
Area: 7.5

There are [0..4] shapes.

(m)ake (c)lear (a)rea (p)erimeter (s)cale (d)isplay (q)uit: d
Which shape? (0..4): 2

Rectangle

Length: 2.5

Width: 3

There are [0..4] shapes.
(m)ake (c)lear (a)rea (p)erimeter (s)cale (d)isplay (qg)uit: q

Figure 1.13 An interactive session of the main program that uses the abstract and concrete
classes. There are five shapes numbered 0 through 4. For any of the five shapes, the user has a
choice to make a new shape, clear the shape to the null shape, compute the area or length of the
perimeter, scale the dimensions by a scale factor, or display the name or dimensions of the shape.
User responses are bold.

specification in the corresponding header file, which in turn depends on the header file

containing the specification for the abstract class. The header file for the main program

depends on the specification of the abstract shape. The implementation file for the main

program depends on the specification of each concrete class and the specification of the
abstract class as well as specifications in its own header file. Figure 1.13 shows a sam-
ple interactive session produced by the main program.

Figure 1.14 shows the header file for the main program. The parameters in all the
parameter lists of the functions refer only to the abstract shape AlShape.
Nowhere in the header file is any reference to a concrete class sRebtasgle
Consequently, this header file depends onl8Shape.h .

Each function is documented with a postcondition and possibly a precondition.
Many of the functions have a side effect of prompting the user for some input, which is
documented as well. It should be straightforward to compare the functions in Figure
1.14 with the interactive session in Figure 1.13 to determine which function is responsi-
ble for which prompt. For examplghapeType produces the prompt

(Dine (r)ectangle (c)ircle right(t)riangle

as a side effect. Its purpose is to return one of the uppercase letters L, R, C, T, or M. The
user has no concept of the null shape, which is not one of the options. In addition to the
line, rectangle, circle, and right triangle there is an option for a mystery shape. This
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/I File: ChO1/Shape/ShapeMain.hpp

#ifndef ShapeMain_hpp
#define ShapeMain_hpp

#include "AShape.hpp"

void initialize (AShape* shapes][], int cap);
/I Pre: shapes|0..cap - 1] is allocated.
/I Post: All shapes|0..cap - 1] are initialized to the null shape.

void cleanUp (AShape* shapes[], int cap);
/I Pre: shapesl[0..cap - 1] is allocated, and all elements are well-defined.
/I Post: All shapes|0..cap - 1] are deleted and set to NULL.

void promptLoop (AShape* shapes[], int cap);
/I Loop to prompt the user with the top-level main prompt.
/I Post: User has selected the quit option.

void makeShape (AShape*& sh);
/I Prompts user for dimensions.
/I Post: Original sh is deleted and new sh is created.

char shapeType ();
/I Prompts user for shape letter, lowercase or uppercase.
/I Post: Uppercase character L, R, C, T, or M is returned.

void clearShape (AShape*& sh);
/I Post: Original sh is deleted and sh is made the null shape.

void printArea (AShape* sh);
/I Post: sh's area is printed to standard output.

void printPerimeter (AShape* sh);
/I Post: The perimeter of this sh is printed to standard output.

void scaleShape (AShape* sh);
/I Prompts user for scale factor.

/I Post: sh's dimensions are multiplied by the factor.

void displayShape (AShape* sh);
/I Post: sh's name and dimensions are printed to standard output.

#endif
Figure 1.14 The header file for a main program that uses the shape classes. In Figure 1.12,

the single dependency arrow pointing fr@napeMain.hpp to AShape.hpp corresponds to
the include statement in this file that inclué&hape.hpp .
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sh E_>%

(a) Visual depiction of parametsh.

shapes[0] E_> %
shapes[1] E_> %
shapes2] E_> %
shapes3] E_> %
shapes[4] E_> %

(b) Visual depiction of parametshapes .

Figure 1.15 Visual depictions of the parameters of the functions in Figure 1.14. Each cloud
represents one abstract shape as in Figure 1.7.

option is provided for the student to complete as an exercise.
The functions in Figure 1.14 have three different types of formal parameters. The
simplest parameter BShape* as in the function

void printArea (AShape* sh);

The asterisk symbdl is the C++ notation for a pointer. This declaration says that for-
mal parametesh is a pointer to the abstract clasShape. If you do not have experi-
ence with pointers in C++ or some other programming language, Chapter 2 describes
pointer manipulations in detail. For now, it is sufficient to simply think of a pointer as
an arrow pointing to an abstract shape, as in Figure 1.15(a).

The second type of parameteAiShape*& as in the function

void makeShape (AShape*& sh);

With this parametersh is also a pointer to an abstract type, as it is in the function
printArea . So, you can also visualize this parameter as in Figure 1.15(aqkie
Shape, howeversh is called by reference, indicated by #asymbol. The purpose of
call by reference is to change the value of the actual parameter in the calling function.
The purpose of functiomakeShape is to prompt the user for a particular shape, then,
depending on the shape, prompt for the desired dimensions. In Figure 1.13, the user
requested a rectangle, and so was prompted for the dimensions length and width. Then,
functionmakeShape changed the actual parameter to be a pointer to a rectangle hav-
ing width 2.5 and height 3.0. Because the pointer changes to point to a different shape
than it was pointing to before, the parameter must be called by reference.

The rule in C++ is that the absence of &symbol implies call by value as the
default. In call by value, the formal parameter gets the value of the actual parameter at
the time of the call. Any changes that the called function makes to the formal parameter
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are made to the value copied at the time of the original call. Those changes are not
reflected in the actual parameter. See Section A.6 in Appendix A for further discussion
of the difference between call by reference and call by value.

The third type of parameterAsSShape* where the parameter name is followed by a
pair of bracket§] asin

void initialize (AShape* shapes][], int cap);

The brackets indicate that the formal paramshapes is an array. AgairAShape*

indicates that it is an array of pointers to abstract shapes. Figure 1.13 shows that the
user has a choice of five shapes, numbered 0 through 4. The five shapes are stored in the
shapes array as Figure 1.15(b) shows.

You can see from the documentationirofialize , that its purpose is to make
all the shapes the null shape. Because each pointer must be changed to point to a null
shapeshapes should be called by reference. So, why does the type in the parameter
list not have th& symbol? Because in C++ the name of an array is different from the
name of other variables. The value of an array is the address of its first element. Conse-
guently, any time the formal parameter is an array, the effect is as if the array is called
by reference, even without ti8e In C++, you cannot pass the values of an array to the
called function.

Figure 1.16 shows the listing of the main program and the functions it calls. The
main program is short, only five lines long. At the highest level of abstraction, the main
program simply declares the array of five shapes and then uses function calls to initial-
ize them, prompt for the user to manipulate them, and finally to delete them.

Functioninitialize illustrates the cardinal rule of object-oriented assignment.
Suppose you have an object narbade instantiated from clad8ase declared as

Base base;

and another objecterived instantiated from clad3erived declared as
Derived derived;

whereDerived inherits fromBase as follows.

class Derived : public Base

The cardinal rule of object-oriented assignment says that you can assign the specific to
the general, but you cannot assign the general to the specific. That is, the assignment

base = derived;
is legal, but the assignment
derived = base;

is not legal.

The class that is general contains items that are common to all the specific classes
derived from it. A specific class inherits all those items and may contain additional
items. Because you can assign a specific object to a general object, you can endow a
general object dynamically (that is, during execution of the program) with more items
than were included in its original specification statically (that is, during compilation of
the program). You can give, but you cannot take away. During execution, an object can
get more specific than its static declaration, but it cannot get more general.
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/I File: Ch0O1/Shape/ShapeMain.cpp

#include <iostream.h> // cin, cout.
#include <stddef.h> // NULL.
#include <ctype.h> // toupper.
#include "Utilities.hpp" // iPromptBetween, dPromptGE.
#include "AShape.hpp"

#include "Line.hpp"

#include "Rectangle.hpp"
#include "Circle.hpp"

#include "RightTriangle.hpp"
#include "NullShape.hpp"
#include "ShapeMain.hpp"

void main() {
const int NUM_SHAPES = 5;
AShape* shapes[NUM_SHAPES];
initialize (shapes, NUM_SHAPES);
promptLoop (shapes, NUM_SHAPES);
cleanUp (shapes, NUM_SHAPES);

}

void initialize (AShape* shapes]], int cap) {
for (inti=0;i<cap;i++) {
shapes][i] = new NullShape;
}
}

void cleanUp (AShape* shapes]], int cap) {
for (inti=0;i<cap;i++) {
delete shapesi];
shapes][i] = NULL;
h
}

25

Figure 1.16 The main program that uses the abstract and concrete classes. Functions
initialize andcleanUp are shown here. The program continues on page 27.

In function initialize , formal parameteshapes is an array of pointers to
AShape, the base class, which is general. An example of assignment of the specific to
the general is wheinitialize executes the statement

shapes][i] = new NullShape;

This statement creates a specific object, a null shape, and atgges[i]  to point

to the newly created null shape. Herslggpes[i] , which is declared to be a pointer

to a general shape statically, gets assigned to point to a specific shape dynamically.
This assignment also illustrates the operationesf. When thenew operator exe-

cutes it
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= allocates storage from the heap for the attributes of the object, and
= returns a pointer to the newly allocated storage.

In the above assignment statement, rtbe/ operator allocates storage from the heap
for a null shape and returns a pointer to the null shape, which is gigkapes|i]

During execution of functiopromptLoop , the user may create and change many
shapes. When the main program calls functi@anUp , shapes could have point-
ers to any combination of shapes with any possible combination of appropriate dimen-
sions. The call teleanUp returns the storage for the shapes to the heap with the
statement

delete shapes]i];

Thedelete operator is the inverse of thhew operator. When programming in C++
you should always be careful with the usaeiv. Every time you write aew opera-
tion you should ask yourself where the correspondielgte is. In this example,
new is in functioninitialize , and the correspondindelete is in function
cleanUp .

Figure 1.16 (page 27) shows the implementation of fungiromptLoop . The
function prompts the user with the main prompt, asking for some action to be executed.
If the user, for example, types the lettetheswitch statement executes

makeShape (shapes[iPromptBetween (“Which shape?”,
0, cap - 1)]);

The subscript o§hapes is
iPromptBetween ("Which object?", 0, cap - 1)

which prompts the user for an integer between 0 and 4. If, as in Figure 1.13, the user
enters the erroneous value of 7 followed by the valid value iBfr@mptBetween
returns 2. The effect of the call is

makeShape (shapes[2]);

So, functionmakeShape is called withshapes[2] passed as the actual parameter.
Figure 1.16 (page 28) shows the implementation of functiakeShape.
FunctionmakeShape contains no arrays. Its formal parameter is a single pointer to
an abstract shape nam&hil. Because the actual parameteshapes[2] , andsh is
called by reference, every changestoin functionmakeShape is really being made
onshapes|2]
FunctionmakeShape executes thewitch statement

switch (shapeType ()

which in turn invokes functioshapeType , which then returns one of the characters
L, R, C, T, or M. Strictly speaking, thaefault  case is not necessary, nor is the last
break statement in thiswitch . However, it is considered good C++ programming
practice to always include them.

FunctionmakeShape illustrates the cardinal rule of object-oriented assignment.
Formal parametesh is a pointer toAShape, the base class, which is general. An
example of assignment of the specific to the general is when the user wants to make a
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void promptLoop (AShape* shapes[], int cap) {
char response ="'\0";
do {
cout << "\nThere are [0.." << cap - 1 << "] shapes." << endl;
cout << "(m)ake (c)lear (a)rea (p)erimeter ";
cout << "(s)cale (d)isplay (q)uit: ";
cin >> response;
switch (toupper (response)) {

}

}

case 'M":
makeShape (shapes[iPromptBetween ("Which shape?"”, 0, cap - 1)]);
break;

case 'C"
clearShape (shapes[iPromptBetween (“Which shape?", 0, cap - 1)]);
break;

case 'A"
printArea (shapes[iPromptBetween ("Which shape?", 0, cap - 1)]);
break;

case 'P"
printPerimeter (shapes[iPromptBetween (“Which shape?", 0, cap - 1)]);
break;

case'S"
scaleShape (shapes[iPromptBetween ("Which shape?”, 0, cap - 1)]);
break;

case 'D":
displayShape (shapes[iPromptBetween ("Which shape?", 0, cap - 1)]);
break;

case 'Q"
break;

default:
cout << "\nPlease enter only one of the following characters: "“;
cout<<"m,c,a, p, s, n,d g" <<end;
break;

} while (toupper (response) !='Q");

Figure 1.16 (continued)  FunctionpromptLoop from the main program listing. The main

program listing continues on page 28.

new rectangle. The statement

sh = new Rectangle;

creates a specific object, a rectangle, and assigns point to the newly created rect-
angle. Hencesh, which is declared to be a pointer to a general shape statically, gets a
pointer to a specific shape dynamically.

This assignment also illustrates the implicit call to a constructor. The existence of a
constructor for the rectangle class causesiéive operation to insert a call to the con-
structor after allocation from the heap. Compare the following steps to those listed on
page 26 where the null shape class does not have a constructor. In this case, because the
rectangle class does have a constructor, wheneteoperator executes it does three
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void makeShape (AShape*& sh) {
switch (shapeType () {
case 'L"
delete sh;
sh = new Line;
break;
case 'R":
delete sh;
sh = new Rectangle;
break;
case 'C"
delete sh;
sh = new Circle;
break;
case 'T"
delete sh;
sh = new RightTriangle;
break;
case 'M"
/[Exercise for the student.
break;
default:
break;
}
sh->promptAndSetDimensions ();

}

char shapeType () {

char ch;

cout << "(l)ine (r)ectangle (c)ircle right(t)riangle (m)ystery:";

cin >> ch;

ch = toupper (ch);

while (ch !I="L' && ch |='R' && ch |='C' && ch = 'T' && ch |='M") {
cout << "Must be |, r, ¢, t, or m. Which type? ";
cin >> ch;
ch = toupper (ch);

}

return ch;

}

Figure 1.16 (continued) FunctionsmakeShape andshapeType from the main program
listing. The main program listing continues on page 30.

thintgs. It
= allocates storage from the heap for the attributes of the object,

= calls the constructor based on the number and types of parameters in the parameter
list, and

= returns a pointer to the newly allocated storage.
In the above assignment statement, firsthe operator allocates storage from the
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heap for the attributes &ectangle , which, from Figure 1.9 (page 15) are

double _length;
double _width;

Second, thenew operator calls the constructor based on the number and types of
parameters. Because the actual parameter list is empty, and the constriRéat-for

angle in Figure 1.9 has two parametégagth andwidth with default values, the
constructor is called with both parameters having their default values of 0.0. Figure
1.10 (page 17) shows the implementation of the constructor, which does the assignment

_length = length;
_width = width;

giving 0.0 to the attributes of the shape object. Thirdnéve operator returns a pointer
to newly allocated and initialized storage.
All that happens on the right hand side of the assignment statement

sh = new Rectangle;

The assignment completes by givsty the pointer to the rectangle. Aftereak exe-
cutes in theswitch  statement, the statement

sh->promptAndSetDimensions ();

executes. What happens now is “polymorphic dispatch”, the topic of the next section.

1.3 Polymorphism

The highest level of abstraction in object-oriented programming languages is behavior
abstraction, which is manifested in polymorphism. This section concludes the discus-
sion of the abstract shape main program, which illustrates polymorphism.

Behavior abstraction

The behavior of a program is determined by the sequential execution of consecutive
statements, selection of various optional sections of code with some fdafm af
switch statement, and repetition with some formadfile or for statement. The
essence of abstraction is the hiding of detail, so behavior abstraction implies the hiding
of one of these control mechanisms, namely selection. With polymorphism you can
eliminateif or switch statements from your code where they would be required
without polymorphism. Consequently, the control structure for objects is simplified by
the abstraction process. The selection of an alternative without the ifisuat
switch statement is known as polymorphic dispatch.

Consider the statement

sh->promptAndSetDimensions ();

from functionmakeShape. The symbot> is the C++ operator for accessing the field
of astruct orclass when the left hand side is a pointer tostreict  orclass .
This statement is located afteswitch statement, ssh could be a pointer to any
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void clearShape (AShape*& sh) {
delete sh;
sh = new NullShape;

}

void printArea (AShape* sh) {
cout << "Area: " << sh->area () << endl;

}

void printPerimeter (AShape* sh) {
cout << "Perimeter: " << sh->perimeter () << end|;

}

void scaleShape (AShape* sh) {
sh->scale (dPromptGE ("Scale factor?", 0.0));

}

void displayShape (AShape* sh) {
sh->display (cout);

Chapter 1 Abstraction

}

Figure 1.16 (continued) Functions clearShape , printArea , printPerimeter ,
scaleShape , anddisplay from the main program listing. The last four functions exhibit
polymorphic dispatch. This concludes the main program listing

one of a number of shapes. The scenario considered at the end of the previous section
assumed that the user selected a rectangle, but he could just have easily picked a circle
or triangle. Furthermore, the static typesbfis AShape, which is general. Think what

the compiler must do to translate this statement. Should the compiler generate machine
language statements to galtbmptAndSetDimensions for a rectangle? Or should

it generate statements to call the corresponding function for a circle or triangle? It can-
not generate statements to gatbmptAndSetDimensions for AShape, because
AShape has no implementation of that function. There are no implementations of
methods folAShape, only their pure virtual specifications in Figure 1.9, page 15.

The answer is that the compiler generates code that, in effect, tests the dynamic type
of sh and calls the corresponding versiorpodmptAndSetDimensions . During
execution, if the dynamic type sh is Rectangle thenpromptAndSetDimen-
sions for Rectangle will be called. If the dynamic type @h is Circle then
promptAndSetDimensions for Circle  will be called. The machine language
code that tests the dynamic typesbf and calls the appropriate version of the method
is hidden at a lower level of abstraction. It does not appear in the C++ program.

As another example of polymorphic dispatch, consider Figure 1.16 (page 30), which
shows the implementation pfintArea , printPerimeter , scaleShape , and
display . For example, the implementation of functmntArea  is

void printArea (AShape* sh) {
cout << “Area: “ << sh->area () << endl;

}

The purpose of the function is to print the name and dimensions of the shape to the
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standard output stream. How does the function know what to print? If the shape is a
rectangle, the function should print the string “Area” followed by the product of its
width and height, but if the shape is a circle it should print the string “Area” followed
by rttimes the square of its radius.

Consider how you would implement this function without polymorphism. You
would need a way to distinguish what kind of shapeis. For example, you might
declare your typ&hape as follows.

enum ShapeKind {
eLINE, eRECTANGLE, eCIRCLE,
eRIGHT_TRIANGLE, eNULL_SHAPE
3
typedef ShapeType {
ShapeKind kind;
double dim1, dim2;
3

Fieldkind in the definition of the type could be used to distinguish what kind of shape
is stored, with the integers interpreted accordingly. For exampkindf had value
eRECTANGLEhendiml1l would store the length of the rectangle a2 would
store its width. But ikind had valueeCIRCLE thendim1 would store the circle’s
radius andlim2 would be ignored.

In your implementation ofrintArea , you would need to test tiénd field to
determine which shape is storedshn as follows.

void printArea (ShapeType* sh) {
switch (sh->kind) {
case eLINE:
cout << "Area: " << lineArea (sh) << endl;
break;
case eRECTANGLE:
cout << "Area: " << rectangleArea (sh) << endl;
break;
etc.
}
}

Each function would return the area of the corresponding shape. For example, function
rectangleArea would be implemented as

double rectangleArea (ShapeType* sh) {
return sh->dim1 * sh->dim2

}

Compare this with the corresponding implementation of the function in Figure 1.10
(page 17) to compute the area of a rectangle object, which is an instantiation of a sub-
class of the abstragtShape class.

double Rectangle::area () {
return _length * _width;

}
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abstraction abstraction
Class
Statement Procedure
Behavior
>_> abstraction
Type Structure Circles
abstraction abstraction

abstraction
Statement Procedure

Figure 1.17 The abstraction process. Each step in the process consists of collecting many
items at one layer into a single concept at the next higher layer. Type and structure abstraction are
aspects of data abstraction, and statement and procedure abstraction are aspects of control
abstraction. See Figure 1.1, page 2 for type abstraction, Figure 1.2, page 4 for structure
abstraction, Figure 1.3, page 5 for statement abstraction, Figure 1.4, page 6 for procedure
abstraction, Figure 1.5, page 7 for class abstraction, and Figure 1.7, page 11 for behavior
abstraction.

Both functions perform the same computation. The difference is how they are called.

Which brings us back to our original question, How doegptimtArea  function
know what to print? It simply calls the functi@h->area() . How does it know
whicharea() method to call? After all, there is anea() method for each shape.
Furthermore, the compiler cannot detect from the typghofvhich method should be
called, becaussh is an abstract shape, and it could be any specific shape at execution
time.

Again, the answer is polymorphic dispatch. At a lower level of abstraction, invisible
to the programmer at the C++ level, the compiler includes a tag field, much like the
field kind in the above description, with every instantiation of a subclass. Also, when
the compiler translates the function dil>area() it uses the tag field to look up in
a table (called a virtual method table) the appropriate function to call. Even though the
compiler does not know at compile time which method will be called, it generates code
to make that determination at execution time. The programmer only needs to make the
function callsh->area() . Itis as if thesh object knows what shape it is and returns
its area without the programmer needing to test what its shape is.

Behavior abstraction with polymorphism is the highest level of abstraction within
object-oriented languages such as C++. In the same way that class abstraction brings
together attributes and operations into a single class, behavior abstraction brings
together a collection of different classes under the umbrella of an abstract class. At the
highest level, the programmer writes code to the abstraction provided by the abstract
class and lets polymorphic dispatch automatically take care of the details at a lower
level of abstraction. Figure 1.17 shows the progression of the abstraction process.
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Reusability and extensibility

[This section will describe the benefits of OO design using the Shapes example as a
point of departure.]

Design patterns

The first question to ask when solving a problem is, What is the problem? Before you
can write a program to solve a problem you must understand the specification of the
problem. Abstraction is a tool that helps you determine at a high level the specification
of the problem. At this level of abstraction many details are hidden with only the essen-
tials exposed.

To solve a problem you must implement its specification. An implementation
requires you to structure your data to create a model of the abstract view. The narrower
the gap between the structure of the data and the abstract view of the problem, the eas-
ier it is to write a correct solution. A narrow gap between the abstract view and the
implementation usually produces a more elegant solution as well.

Not only can you design an abstraction boundary between the specification of a
problem and its implementation, you can also design layers of abstraction within the
implementation. Within one of the layers of abstraction you can subdivide the problem
into a system of cooperating objects to further reduce complexity. Without layers of
abstraction, a problem solution becomes one large monolithic program that is difficult
to understand and debug. Layering structures a complex problem into more manage-
able parts that are then easier to understand and construct.

[This section will describe the idea of OO design patterns in the context of abstrac-
tion.]

Exercises

This book comes with a set of software called the “distribution software”, that you
should have access to for study and for working exercises. Exercises at the end of the
chapter ask you to implement or modify parts of the distribution software. The distribu-
tion software is available from the Internet at

ftp://ftp.pepperdine.edu/pub/compsci/dp4ds/

Implement the code for thecale method for the shapésne , Rectangle , and
Circle . Include the precondition test in your code.

Implement the code for all the methods includscgle for the shap&ightTri-
angle . Include the precondition tests in your code.

Choose a shape other than a line, rectangle, circle or right triangle and implement all
the methods for it includingcale as the mystery shape in Figure 1.13. Include the
precondition tests in your code.

The precondition for functiooleanUp in ShapeMain.h from Figure 1.14 contains
the phrase
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Pre: shapes|0..cap - 1] is allocated,
and all elements are well-defined.

Rewrite the phrase “all elements are well-defined” formally using the proper quantifi-
cation from the predicate calculus. Assume the predigat®efined(s) to indicate
thatsis well-defined.
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