

1 Abstraction
of
ac-
m-

pe-
ft-
the
ed.
this
the
nd

ori-
ro-
ic
n-

no
n
ies
at

of
ing
Abstraction is based on the concept of layers in which the details of one layer
abstraction are hidden from layers at a higher level. A computer scientist uses abstr
tion as a thinking tool to understand a system, to model a problem, and to master co
plexity.

The concept of abstraction is pervasive throughout computer science, and is es
cially important in software design. Object orientation is one of the more recent so
ware technologies to harness the power of abstraction. This chapter introduces
abstraction process, on which the design principles of the rest of the book are bas
The deep significance of the concept of abstraction can hardly be overestimated, so
beginning chapter is essential to the remainder of the book. Later chapters apply
design principles introduced here to the problem of data structure specification a
implementation.

1.1 Objects and Classes
Abstraction is a process. This section describes the process using the tool of object
entation with the C++ language. The history of computer science shows a steady p
gression from lower levels of abstraction to higher levels. When the electron
computer was first invented in the mid twentieth century, there was no assembly la
guage much less the higher level languages with which we are familiar today. It is
accident that the historic evolution is toward progressively higher levels of abstractio
instead of the other way around. Human intellectual progress shows that generalit
are usually discovered from many specific observations. It is only with hindsight th
you can start with the general case and deduce specific consequences from it.

Data abstraction
Plato, in his theory of forms, claimed that reality ultimately lies in the abstract form
that represents the essence of individual objects we sense in the world. In the Republic,
written in the form of a dialogue between Socrates and a student, he writes:

Well then, shall we begin the enquiry in our usual manner: Whenever a number
individuals have a common name, we assume them to have also a correspond
idea or form: do you understand me?
Revised: August 18, 2002 Copyright © 1998, Dung X. Nguyen and J. Stanley Warford

2

Chapter

1 Abstraction

ty

of

in

ac-
ro-

 0.8,
e to
ol-

pe-

ard
th
n the
to
ory
the
t can

er,
oth
ites

t

I do.

Let us take any common instance; there are beds and tables in the world—plen
of them, are there not?

Yes.

But there are only two ideas or forms of them—one the idea of a bed, the other
a table.

True.

And the maker of either of them makes a bed or he makes a table for our use,
accordance with the idea—that is our way of speaking in this and similar
instances—but no artificer makes the ideas themselves: how could he?

Impossible.

Plato’s consideration between the specific and the general exemplifies the abstr
tion process. Another example of the abstraction process is the concept of type in p
gramming languages. Consider all the possible real values, such as 2.0, –43.7, 5.2,
and so on. In the same way that Plato considered many different instances of a tabl
be representations of a single abstract table, from a computation point of view the c
lection of all possible real values defines a single abstract type double . Figure 1.1
shows the abstraction process, known as type abstraction, for type double . A type is
defined by a collection of values. Each value, such as 5.2 in the box on the left, is s
cific, while the type double is general.

In the history of computing languages, types emerged as one of the first steps tow
higher levels of abstraction. At the machine level, which must be programmed wi
machine language or its equivalent assembly language, there are no types other tha
bit patterns of pure binary. With assembly language, you have unlimited freedom
interpret a bit pattern any way you choose. The same bit pattern in a specific mem
location can be interpreted as an integer and processed with the addition circuitry of
processor. It can be interpreted as a character and sent to a Web page as such. I
even be interpreted as an instruction and executed.

In C++, every variable has a name, a type, and a value. The name is an identifi
defined by the syntax rules of the language. The type is supplied by the language. B
the name and the type of a variable are determined when the software designer wr

Figure 1.1 Type abstraction for type double . In the C++ programming language, an
expression of type double must have as its value one of many possible specific values tha
define the type. The same principle holds for other types. For example, the values true and
false define type bool .

2.0 5.2

-13.912.8

-43.7

0.8
4.0 double
Copyright © 1998, Dung X. Nguyen and J. Stanley Warford Revised: August 18, 2002

Section

1.1 Objects and Classes

3

the
 of

f
ess
 of

vent
e a
he
 to
r’s
at

o a
For
any
e
, or
al

pe
real

n
re
te.
ore
ne
me
n.
s
bi-

c-
lled

t-
s of
 its
ti-

h.
the

on-
-

or
and
e

and compiles the program. The value of a variable, on the other hand, is stored in
main memory of the computer as the program is executing. The value stored is one
the values that defines the type.

The compiler enforces type compatibility, which is a restriction on the freedom o
programmers that they do not have with assembly language. The abstraction proc
frequently imposes a loss of freedom because the nature of abstraction is the hiding
detail. Programmers then have no access to the details that are hidden. With the ad
of types to restrict the value that a variable can have to some mathematical entity lik
real number comes the inability to consider the bit pattern behind the value. But t
restriction of freedom to access low-level details is also liberation from the necessity
do so. Abstraction is powerful because the limitation it places on the programme
ability to access low level details at the same time frees the programmer from th
requirement.

The abstraction process permits the grouping together of specific real values int
type because each value shares certain characteristics with all the other values.
example, each value has a sign and a magnitude. Any value can be combined with
other value with the arithmetic operators like multiplication. And any value can b
compared with any other value to determine whether the first is less than, equal to
greater than the second. If it were not for these common properties among individu
values, the grouping together of them to define a type would not be useful.

Furthermore, the collection of many specific numeric values to make a general ty
is useful in a programming language because it models the same process in the
world. For example, the type double in C++ corresponds to the notion of a real num-
ber in mathematics. All computer applications exist to solve problems in the huma
world. The first step toward solving any problem is to model it with the machine. The
are usually approximations to the model, which may make the solution approxima
For example, there are only a finite number of real values that a computer can st
while there are an infinite number of real values in mathematics. Nevertheless, o
source of power of the abstraction process in computing is that it can mirror the sa
process in the human world and so serve as a model to compute the desired solutio

The next step toward higher levels of abstraction in programming language
occurred when languages gave programmers the ability to create new types as com
nations of primitive types. Collections of primitive types are known as records or stru
tures in most programming languages. The corresponding abstraction process is ca
structure abstraction.

For example, Figure 1.2 shows geometrically how the collection of all possible rec
angles define a single rectangle type. The abstraction process parallels the proces
defining a type as an aggregate of values. An individual rectangle is characterized by
length, say 2.0, and width, say 5.2. This is not the only possible rectangle. Mathema
cally there are an infinite number of rectangles, each with its own length and widt
Because computers can only store a finite number of real values in a memory cell,
number of possible rectangles that can be characterized in the machine is finite.

Programmer-defined types are powerful because they allow the programmer to c
veniently model the problem to mirror the situation in the problem domain. For exam
ple, an airline reservation system might need to store a collection of information f
each ticket it sells, say the passenger’s name, address, flight date, flight number,
price of the ticket. Collecting all these types into a single programmer-defined typ
allows the program to process a ticket variable as a single entity.
Revised: August 18, 2002 Copyright © 1998, Dung X. Nguyen and J. Stanley Warford

4

Chapter

1 Abstraction

u

 of
 is

c-
r,
rs
ec-

-

ing
-

ions
wo

 a
Each of the rectangles in Figure 1.2 is specified by its length and width. In C++, yo
could define a new type Rectangle as a structure that contains two real numbers for
storing those dimensions.

struct Rectangle {
 double length;
 double width;
};

You could declare an individual rectangle as a variable of type Rectangle .

Rectangle myRectangle;

To set the length of myRectangle to 2.0 use a period to separate the variable name
from the struct field name as follows.

myRectangle.length = 2.0;

Computation abstraction
Abstraction of data is only one side of a two-sided coin. The other side is abstraction
computation. At the lowest level between programming languages and the machine
statement abstraction.

All computers consist of a central processing unit (CPU) that has a set of instru
tions wired into it. The instruction set varies from one computer chip maker to anothe
but all commercial CPUs have similar instructions. CPUs contain cells called registe
that store values and perform operations on them. The collection of the operations sp
ifies a computation.

Typical instructions are load , add , mul , and store . The load instruction gets a
value from main memory and stores it in a register of the CPU. The add instruction
adds the content of two registers. The mul instruction multiplies the content of two reg-
isters. The store instruction puts a value from a register of the CPU into main mem
ory.

Before the advent of high-level languages, programmers wrote their programs us
the individual instructions of the instruction set of the particular CPU on which the pro
gram was designed to run. Figure 1.3 shows an example of a sequence of instruct
for some hypothetical CPU that computes the perimeter of a rectangle. The first t
instructions load the value of length into register r1 and the value of width into

Figure 1.2 Structure abstraction to abstract from specific shapes of many different sizes to
single shape with a general size.
Copyright © 1998, Dung X. Nguyen and J. Stanley Warford Revised: August 18, 2002

Section

1.1 Objects and Classes

5

n-
the

t to
en.
ro-

er
ent
n-

 the
es

re
ow
ct
tion

f a
su-

e,
ta-

nt
 the
register r2 . The next instruction adds the content of r1 to r2 and puts the sum in reg-
ister r3 . Then, 2.0 is multiplied by the content of r3 with the result placed back in r3 ,
after which it is stored in main memory in the location reserved for variable perim .

The language illustrated by this sequence of instructions is called assembly la
guage. When you program in assembly language you must consider the details of
CPU—how many registers it has, how to access them, and which values you wan
store in which registers. In a high-level language, however, all those details are hidd
The compiler abstracts them away from the view of the programmer, so that the p
grammer need only write the single assignment statement

perim = 2.0 * (length + width);

With statement abstraction, even the structure of the CPU is hidden. The programm
does not need to know about registers or hardware instruction sets. A single assignm
statement in C++ is translated by the compiler to several instructions in assembly la
guage. One statement in a high-level language is defined by many statements at
machine level like one type in a high-level language is defined by many possible valu
at the machine level.

Corresponding to structure abstraction on the data side of the coin is procedu
abstraction on the computation side. In the same way that high-level languages all
you to collect variables into structures to create a new data type, they allow you colle
statements into procedures to create a new computation. The corresponding abstrac
process is procedure abstraction.

Figure 1.4 shows procedure abstraction for the computation of the perimeter o
rectangle. The C++ computation of the perimeter of an arbitrary rectangle is encap
lated in a function with formal parameter r whose type is Rectangle . Any time the
programmer needs to compute the perimeter, for example to print it to cout , a simple
call to the function is all that is required. The computation need only be done onc
freeing the programmer from having to remember those details whenever the compu
tion is required. For example, if you have two variables—myRectangle and your-
Rectangle —both of type Rectangle , you can output their perimeters with

cout << perimeter (myRectangle);

and

cout << perimeter (yourRectangle);

load length, r1

load width, r2

add r1, r2, r3

mul 2.0, r3, r3

store r3, perim

perim = 2.0 * (length + width);

Figure 1.3 Statement abstraction for the assignment statement. In C++, the assignme
operator evaluates the expression on its right hand side and gives the value to the variable on
left hand side.
Revised: August 18, 2002 Copyright © 1998, Dung X. Nguyen and J. Stanley Warford

6

Chapter

1 Abstraction

ure

rst
on
-

 the

of
 to
hat
p-
s

e to
nd

the

ea
m-

ox
The details of the computation are hidden in the function calls.
The benefit of procedure abstraction can be even more apparent when the proced

contains many statements. For example, function gcd

int gcd (int m, int n) {
 if (0 == n) {
 return m;
 }
 else {
 return gcd (n, m % n);
 }
}

computes the greatest common divisor of two integers. The algorithm returns the fi
integer if the second integer is 0. Otherwise, it recursively returns the greatest comm
divisor of the first integer and the second integer modulo the first. If you need to com
pute the greatest common divisor of two integers, say num and denom that represent
the numerator and denominator of a fraction, you could write the assignment

temp = gcd(num, denom);

As with statement abstraction in Figure 1.3, this one statement at a high level causes
execution of many statements at a lower level.

Class abstraction
The next step in the evolution of programming languages toward higher levels
abstraction was the combination of data abstraction with computation abstraction
produce class abstraction. Consider again the rectangles in Figure 1.2 and imagine w
sort of processing might be required for such geometric figures. A rectangle might re
resent part of a building like the interior wall of a room or a door. If the walls and door
are to be painted your program would need to compute the area of each rectangl
determine the amount of paint required. Or a rectangle might represent a piece of la
around which a fence is to be erected. Your program would then need to compute
perimeter to determine the amount of material required for the fence.

Before the advent of object-oriented programming, the function to compute the ar
or the perimeter of a rectangle would exist separately from its dimensions. For exa
ple, you might have this function to compute the perimeter.

double perimeter (Rectangle r) {

 return = 2.0 * (r.length + r.width);

}

Figure 1.4 Procedure abstraction for the computation of the perimeter of a rectangle. The b
on the left contains the C++ code for defining a function named perimeter . The box on the
right contains an example of how the function is called.

cout << perimeter (myRectangle);
Copyright © 1998, Dung X. Nguyen and J. Stanley Warford Revised: August 18, 2002

Section

1.1 Objects and Classes

7

uent
ut-

of
us
 an
s.
e-

 the

 in
are
way
ect-
rnal

ed

e
the
double perimeter (Rectangle r) {
 return 2.0 * (r.length + r.width);
}

The rectangle would be passed as a parameter to the function, and then its constit
parts—its dimensions—would be used to compute the perimeter. For example, to o
put the perimeter of variable myRectangle you would write

cout << perimeter (myRectangle);

where myRectangle is the actual parameter corresponding to formal parameter r .
Object orientation includes in the abstraction process not only the aggregation

data, but the aggregation of computation as well. It is a viewpoint that shifts the foc
from an external operation that requires the input of data about the rectangle, to
internal operation that is part of the rectangle itself. This is a significant shift in focu
Computing the perimeter is no longer something that you do to a rectangle. It is som
thing the rectangle does for you. The rectangle knows its dimensions and should be
party responsible for computing its perimeter.

In Figure 1.2, each individual rectangle on the left has an area and a perimeter
addition to its length and width. The area and perimeter are not data values that
independent from the dimensions. So, their values should not be stored the same
the dimensions are stored, but they should be computed from the dimensions. In obj
oriented design, the functions to compute the area and perimeter are no longer exte
to the type, but are internal. They literally become part of the type.

To emphasize the shift in focus when a function is bound to a type, object-orient

+ area (): double
+ perimeter (): double

Rectangle

– length: double
– width: double

Figure 1.5 Class abstraction that combines the structure abstraction of Figure 1.2 with th
procedure abstraction of Figure 1.4. Data and computation are combined in the definition of
class Rectangle . The box in the lower part of the figure shows a Unified Modeling Language
(UML) depiction of the class.

double area (Rectangle r);

double perimeter (Rectangle r);

struct Rectangle {

 double length;

 double width;

};

class Rectangle {

private

 double length;

 double width;

public

 double area ();

 double perimeter ();

};
Revised: August 18, 2002 Copyright © 1998, Dung X. Nguyen and J. Stanley Warford

8

Chapter

1 Abstraction

ted

t an

 to
nted
ffer-
ilar

g
ted
eth-
ge
n-

g
er-
L

g-
designers established a new set of terminology. Roughly speaking, in object-orien
terminology

■ class corresponds to type

■ object corresponds to variable

■ method corresponds to procedure or function

That is, an object has a class, like a variable has a type. It is more usual to state tha
object is an instantiation of a class rather than to state that an object has a class.

Unified Modeling Language
Object-oriented design is widespread in the computing industry and is not confined
any one language such as C++. In the late 1980s and early 1990s, many object-orie
analysis and design methods emerged to aid the software development process. Di
ent people devised different methods, but because they all attempted to solve sim
problems they shared common characteristics.

For a while the object-oriented design community was split among several warrin
factions who could not agree on a common standard for communicating object-orien
concepts. Eventually, the major players in the debate teamed up and merged their m
ods into what has become an industry standard called the Unified Modeling Langua
(UML). One part of UML is a graphic language called a class diagram that is indepe
dent of any specific programming language.

Part of the UML effort was to establish a common vocabulary for communicatin
object-oriented concepts. Unfortunately, each programming language has its own t
minology that in many cases predates the UML effort and that differs from the UM
vocabulary. Figure 1.6 lists some UML terms and the corresponding terms in C++.

Figure 1.5 includes a UML depiction of the rectangle class declared in the same fi

Figure 1.6 Object-oriented terminology for UML and C++.

UML C++

class class

object object

superclass base class

subclass derived class

attribute data member

operation/method member function

visibility access specifier

parameterized class template

abstract pure virtual
Copyright © 1998, Dung X. Nguyen and J. Stanley Warford Revised: August 18, 2002

Section

1.1 Objects and Classes

9

ins
. The

r-
ss

-
c-

sible
ded

L
+.

n,
l-

re-

ub-
ain

ax

th-

l as
ure. A box in a UML class diagram represents a class. Generally, a class box conta
three compartments—the class name, the class attributes, and the class operations
top compartment contains the name of the class in a bold typeface.

The middle compartment contains the attributes of the class. Attributes in UML te
minology correspond to the data part of a class. In Figure 1.2(b), the attributes of cla
Rectangle are

– length: double
– width: double

On each line, the visibility marker comes first, followed by the name of the field, fol
lowed by a colon, followed by the field’s type. In the above examples, the dash chara
ter indicates that the fields are private. Private attributes are ones that are not acces
by any other functions except those that are bound to the class. The protection provi
by private attributes is described in more detail later in this chapter.

The bottom compartment contains the operations of the class. Operations in UM
terminology correspond the methods of the class, known as member functions in C+
In Figure 1.5, the operations of class Rectangle are

+ area (): double
+ perimeter (): double

On each line, the visibility marker comes first, followed by the name of the operatio
followed by its formal parameter list enclosed in parentheses, followed by a colon, fo
lowed by the type returned by the operation. If the operation is a procedure, cor
sponding to a C++ function that returns void , the returned type and colon are simply
omitted. In the above examples, the plus symbol indicates that the operations are p
lic. Public operations are ones that can be called by any other function, such as a m
program.

C++
The syntax of C++ for binding methods to data to make a class is similar to the synt
for a struct . The similarity is not coincidental, because the struct is what allows
for the grouping of data in the abstraction process. It is simply extended to allow me
ods to be included in the grouping as well as data.

Compare the C++ declaration of structure Rectangle from page 4 that abstracts
only the data

struct Rectangle {
 double length;
 double width;
};

with the corresponding declaration in Figure 1.5 that abstracts the operations as wel
the data.
Revised: August 18, 2002 Copyright © 1998, Dung X. Nguyen and J. Stanley Warford

10 Chapter 1 Abstraction

tem

 of

st
er

 is
ope
,
e 7

e
cit

e,
an
he
the
 the
class Rectangle {
 private:
 double length;
 double width;
 public:
 double area ();
 double perimeter ();
};

In place of the keyword struct is the keyword class . In addition to grouping the
length and width data, you group methods by including the function prototype for
each method within the braces of the class. You indicate the access privileges of an i
in a class with the private and public reserved words. Each word is followed by a
colon.

Declaring an object is analogous to declaring a variable. Compare this declaration
object myRectangle

Rectangle myRectangle;

with that of variable myRectangle on page 4. The declarations are the same.
The syntax for implementing and calling a method, however, differs slightly from

that for implementing and calling a function. When you define a method, you must fir
specify the class to which it is bound. For example, the definition of the perimet
method is

double Rectangle::perimeter () {
 return 2.0 * (length + width);
}

Compare this definition with the definition of function perimeter on page 7. When
you define a method, you must include the name of the class to which the method
bound just before the name of the method and separated with the double-colon sc
operator :: . The parameter list for this method is empty. How, you might well ask
does the method know which rectangle to get the height from? The function on pag
uses r.length , where r is passed as a parameter. This method simply uses length .
Whose length is it?

The answer is that there is, in effect, an implicit formal parameter not shown in th
definition of the method. The corresponding actual parameter is, however, expli
when the method is called. To output the perimeter of object myRectangle , you
write

cout << myRectangle.perimeter ();

Compare this method call with the corresponding function call on page 7. Ther
myRectangle is an actual parameter enclosed in parentheses. Here, it is also
actual parameter, but it is not enclosed in parentheses. It is placed in front of t
method name and is separated from it by a period. This notation is consistent with
fact that the method is part of the class alongside the data, as it is accessed with
same period syntax. In the definition of the method, the expression length+width
refers to the length and width of the actual parameter myRectangle whose for-
mal parameter does not appear in the definition.
Copyright © 1998, Dung X. Nguyen and J. Stanley Warford Revised: August 18, 2002

Section 1.1 Objects and Classes 11

n
nt
g it
s is
r of
n

a

The difference in syntax for defining and calling a method compared to a functio
does not illustrate the power of object oriented design. After all, there is no inhere
benefit to putting an actual parameter in front of a method name instead of enclosin
in parentheses after a function name. The only thing the object-oriented syntax doe
to emphasize that functions are bound to classes along with the data. The real powe
object-orientation comes with yet another level of abstraction—behavior abstractio
with polymorphism.

Figure 1.7 Using inheritance to abstract from specific shapes of many different types to
single shape with a general type.

Abstract
Shape

(b) Behavior abstraction for shapes rendered with the UML symbol for inheritance.

(a) Behavior abstraction for shapes rendered geometrically.
Revised: August 18, 2002 Copyright © 1998, Dung X. Nguyen and J. Stanley Warford

12 Chapter 1 Abstraction

m-
d

on
cific
 an

the

nes,
 cer-
is
and
on

ot
area
ver,
lgo-
ill

 the

er-
 box
in a
e
nd
f the
per-
ss is

th-

 all
1.2 Abstract Classes and Inheritance
This section presents the next step to higher levels of abstraction. It introduces a co
plete C++ program that illustrates the highest level of abstraction in object-oriente
design.

An abstract class
The abstraction process consists of collecting together many items that share a comm
characteristic and creating a new item that is a general representation of each spe
item. You can collect many individual real values such as 2.0, 5.2, and 12.8 to create
abstract type double . A variable of type double has one of the collection of values.
You can collect two double s—one each for length and width—and put them together
with methods to create a rectangle class. A specific rectangle will have values for
two double s and will have methods for computing its area and perimeter.

But there are shapes in the universe other than rectangles. There are circles, li
right triangles, and many others. What do these shapes have in common? They are
tainly not all specified by length and width as is the rectangle. A circle, for example,
specified by its radius. Suppose you want to take a further step towards abstraction
collect several different shapes together to form an abstract shape. What is comm
that can be abstracted out?

Because dimensions for different objects are specified differently, you cann
include the dimensions in the abstract shape. However, all closed shapes have an
and a perimeter. So, you can at least include those. You must be careful, howe
because the algorithm for computing the area of a circle is not the same as the a
rithm for computing the area of a right triangle. Even though the abstract shape w
specify a method for computing the area, the method cannot implement it because
algorithm depends on the specific object.

Figure 1.7(a) is a geometric representation of the abstraction process. Many diff
ent shapes are collected to form an abstract shape represented by the cloud in the
on the right. Figure 1.7(b) is a representation for the same abstraction process, but
graphic form more closely resembling a UML class diagram. The symbol is th
UML notation for inheritance, which is the relationship between a specific shape a
the general shape. Each specific shape, such as the rectangle, is a subclass o
abstract shape class, which is called the superclass. A subclass inherits from its su
class. In C++ terminology, the superclass is known as the base class and the subcla
known as the derived class.

Figure 1.8 shows how to declare an abstract class in C++. It adds a few more me
ods to our geometric shape example—scale and display —and the virtual destruc-
tor ~aShape . The declaration

class AShape : public virtual AObject

names the class. The A in AShape stands for abstract. The code in Figure 1.8 contains
no objects. It simply declares the abstract class AShape. A colon following a class
name is the C++ notation for inheritance. This declaration states that AShape inherits
from AObject . Appendix A gives the declaration of AObject and a brief description
of its purpose. AObject is required for the classes in this book because C++, unlike
many object-oriented languages, does not provide a universal base class from which
Copyright © 1998, Dung X. Nguyen and J. Stanley Warford Revised: August 18, 2002

Section 1.2 Abstract Classes and Inheritance 13

rlier
ses
ll

or

re

of its
 by
ype
 the
the
other classes inherit. Some classes in later chapters will require that classes in ea
chapters inherit from a common base class. Rather than try to anticipate which clas
will need to inherit from the universal base class, this book will simply design a
classes to inherit from AObject unless they inherit directly from some other class.
Inheritance from AObject will be assumed from now on, and will not be indicated in
the UML diagrams.

The first line after the opening brace

public:

states that the following items are public. That is, the following items are available
accessible for client programs to use.

// File: Ch01/Shape/AShape.hpp

#ifndef AShape_hpp

#define AShape_hpp

#include "AObject.hpp"

class ostream; // Forward declaration.

class AShape : public virtual AObject {

 public:

 virtual double area () = 0;

 // Post: The area of this shape is returned.

 virtual double perimeter () = 0;

 // Post: The perimeter of this shape is returned.

 virtual void scale (double factor) = 0;

 // Pre: factor > 0.0

 // Post: This shape's dimensions are multiplied by factor.

 virtual void display (ostream& os) = 0;

 // Post: This shape's name and dimensions are printed to os.

 virtual void promptAndSetDimensions () = 0;

 // Post: This shape's dimensions are prompted and set.

};

#endif

Figure 1.8 The content of the C++ header file for declaring the abstract shape class of Figu
1.7. The name of the class in the C++ code is AShape. The UML standard notation for an
abstract class is to render the name of an abstract class in bold slanted type and the name
methods in slanted type. The C++ syntax for a formal parameter is to have the type followed
the name separated by a space. The UML syntax is to have the name followed by the t
separated by a colon. The C++ syntax for the returned type is to have the type precede
method name separated by a space. The UML syntax is to have the returned type follow
method name separated by a colon.

AShape

+ area (): double
+ perimeter (): double
+ scale (factor: double)
+ display ()
+ promptAndSetDimensions ()
Revised: August 18, 2002 Copyright © 1998, Dung X. Nguyen and J. Stanley Warford

14 Chapter 1 Abstraction

ill

g

ific

-
ill

hat
the
en-
hape.

es
to
ds
at
ause
ave
on-

nt
 is
 is

 for
t the

 are

 A
he
The first item in the public list

virtual double area () = 0;
// Post: The area of this shape is returned.

declares a method named area . The key word virtual at the beginning of the dec-
laration makes it possible to invoke the method with polymorphism, a concept that w
be illustrated in more detail later in the next section. The notation =0 at the end is a
rather curious syntactic rule of C++, because it looks somehow like zero is bein
assigned to area . But nothing of the kind is implied by that notation. Instead, the nota-
tion indicates that a programmer can override area when producing the corresponding
concrete method. The task of writing such code is left to the programmer of the spec
line, rectangle, circle, and right triangle derived classes.

The keyword virtual together with the =0 notation make method area what is
known in C++ as a pure virtual function. The idea is that the information in this decla
ration specifies what the method should do, and not how it should do it, a task that w
be different for each derived class. In this example, every derived class of AShape
must have a method named area that returns a double precision real value and has no
parameters in its parameter list.

The comment line specifies the postcondition and serves as documentation of w
the method should do. In this example, the purpose of the method is to compute
area of the shape. You can see that it would be impossible to write the code for the g
eral case because the computation for the area of a shape depends on a specific s
For a circle, the area is π times the square of the radius, while for a right triangle it is
half the base times the height.

Occasionally, a method will have a precondition as well as a postcondition as do
the scale method. A precondition is a statement that must be true for the method
produce correct results. A precondition in the documentation of a program correspon
to a precondition of a Hoare triple. For example, the precondition for a method th
computes the real square root of a number is that the number be nonnegative, bec
you cannot take the square root of a negative number. The methods in this book all h
an implied precondition that the object exists, because you cannot compute with a n
existent object. The specification for area could have been written

virtual double area () = 0;
// Pre: This shape exists.
// Post: The area of this shape is returned.

To save space the existence precondition will always be omitted, but implicit. If a clie
program invokes a method without satisfying the precondition, the program aborts. It
the responsibility of the client to insure that the precondition is met when the method
called.

The fundamental notion of abstraction is hidden detail. Class AShape is abstract
because it hides the details of the computations that must be done by the methods
the specific shapes. The interface states that all specific shapes must have at leas
four methods—area , perimeter , scale , and display . These methods represent
behavior abstraction in the abstraction process. The details of how the computations
done are hidden at this level of abstraction.

The UML diagram in Figure 1.8 corresponds to the C++ code in the header file.
rectangular block in a UML diagram corresponds to a class. The topmost cell in t
Copyright © 1998, Dung X. Nguyen and J. Stanley Warford Revised: August 18, 2002

Section 1.2 Abstract Classes and Inheritance 15

rs

gn
 the

the

the

l.
and
he
block contains the name of the class. The figure shows that the syntax of C++ diffe
slightly from the syntax of a UML diagram. You should familiarize yourself with UML
diagrams as they are a powerful tool for communication about object-oriented desi
and have become an industry standard. In particular, you should be able to make
connection between C++ program code and UML diagrams.

A concrete class specification
Figure 1.9 shows the content of the header file for one of the concrete classes,
Rectangle . The include statement

#include "AShape.hpp"

includes the header file for AShape shown in Figure 1.8. Hence, before the compiler
proceeds with the code in this header file, it has scanned the declaration for
AShape class.

The declaration for Rectangle

class Rectangle : public AShape

// File: Ch01/Shape/Rectangle.hpp

#ifndef Rectangle_hpp

#define Rectangle_hpp

#include "AShape.hpp"

class Rectangle : public AShape {

 private:

 double _length;

 double _width;

 public:

 Rectangle (double length = 0.0, double width = 0.0);

 // Pre: length >= 0.0 and width >= 0.0.

 // Post: This rectangle is initialized with

 // length length and width width.

 double area ();

 double perimeter ();

 void scale (double factor);

 void display (ostream& os);

 void promptAndSetDimensions ();

};

#endif

Figure 1.9 Specification for the concrete Rectangle class. The UML syntax for a private
item is to precede it with the – symbol, and for a public item is to precede it with the + symbo
The block for the rectangle is divided into three parts—the name of the class, the attributes,
the operations. Our C++ style convention is to always begin the name of an attribute with t
underscore character _.

– _length: double
– _width: double

Rectangle

+ Rectangle (length: double, width: double)

+ area (): double
+ perimeter (): double
+ scale (factor: double)
+ display (os: ostream&)
+ promptAndSetDimensions ()

AShape

+ area (): double
+ perimeter (): double
+ scale (factor: double)
+ display ()
+ promptAndSetDimensions ()
Revised: August 18, 2002 Copyright © 1998, Dung X. Nguyen and J. Stanley Warford

16 Chapter 1 Abstraction

s and
 to

ub-
er
r.
ese

 to
are

are
ass
t be
t is
is
tive.
tive
ur-
ly

ds

cified

 dif-
ed
t
, or

e

ec-
has a colon between the name of the class that is being declared as the derived clas
the name of the base class from which it is derived. The colon in C++ corresponds
the UML symbol for inheritance . The keyword public before the base class
indicates public inheritance. Public inheritance means that all the methods that are p
lic in the base class will also be public in the derived class. Although C++ has two oth
forms of inheritance—protected and private—this book has no occasion to use eithe

The shape of a rectangle is specified by its length and width. Corresponding to th
two dimensions are the two attributes in the private part of the Rectangle class

private:
 double _length;
 double _width;

The variable _length stores the length of the rectangle and _width stores its width.
Items that are in the private part of a class specification are not directly accessible
other programs, although they are indirectly accessible through the operations that
provided in the public part.

C++ provides private and public access to help manage the development of softw
when more than one programmer is on the development team. It is common for a cl
to be written by one programmer and used by another. The user of the class may no
familiar with the details of the private part. To allow the user access to the private par
to risk the possibility that he may modify it somehow erroneously. For example, th
object stores its length and width and insures that these values are always nonnega
If the client had public access to the values he could change one of them to a nega
value, after which computation of the area would produce meaningless results. The p
pose of the private part is for protection of the object against unauthorized, possib
erroneous, manipulation.

Figure 1.9 shows the public part of the Rectangle class, consisting of the metho
that are specified in the base class plus one other called a constructor.

Rectangle (double length = 0.0, double width = 0.0);
// Pre: length >= 0.0 and width >= 0.0.
// Post: This rectangle is initialized with
// length length and width width.

A constructor is a method that has the same name as the class, and that has no spe
return type, not even void . In this example, the name of the class is Rectangle , and
the name of the constructor is also Rectangle .

A class can have more than one constructor as long as the parameter lists of the
ferent constructors are different. Unlike other methods, constructors are not call
explicitly. Instead, C++ forces them to be called implicitly before the object is firs
used. The C++ compiler inserts a call to the constructor when an object is declared
when an object is created with the new operator. The purpose of a constructor is to give
an object initial values when it is created.

This constructor has default parameters indicated by = 0.0 in the formal parameter
list. If the actual parameter list is empty, the constructor is called with length and
width both having their default values of 0.0. If the actual parameter list has on
value, say 5.7, then the constructor is called with length having value 5.7 and width
having its default value of 0.0. Default parameters are described in more detail in S
tion A.7 in the appendix.
Copyright © 1998, Dung X. Nguyen and J. Stanley Warford Revised: August 18, 2002

Section 1.2 Abstract Classes and Inheritance 17

er-
re-
not
 the

ent
le
It is common for a derived class to have methods in addition to the ones that it inh
its from its base class. The documentation convention in this book is to specify the p
conditions and postconditions for the methods in the abstract class only once, and
repeat them in the header files of any of the derived classes. Methods that are new to
derived class, such as the Rectangle constructor, are documented in the header file
of the derived class.

// File: Ch01/Shape/Rectangle.cpp

#include <iostream.h>

#include <assert.h>

#include <string.h>

#include "Rectangle.hpp"

#include "Utilities.hpp"

Rectangle::Rectangle (double length, double width) {

 assert (length >= 0.0 && width >= 0.0);

 _length = length;

 _width = width;

}

double Rectangle::area () {

 return _length * _width;

}

double Rectangle::perimeter () {

 return 2.0 * (_length + _width);

}

void Rectangle::scale (double factor) {

 // Exercise for the student.

}

void Rectangle::display (ostream& os) {

 os << "Rectangle" << endl;

 os << "Length: " << _length << endl;

 os << "Width: " << _width << endl;

}

void Rectangle::promptAndSetDimensions () {

 _length = dPromptGE ("Length?", 0.0);

 _width = dPromptGE ("Width?", 0.0);

}

Figure 1.10 An implementation of the Rectangle class. The code for method scale in this
and all the other shapes is left as an exercise for the student. Also shown is a UML compon
diagram that displays the chain of compile time dependencies beginning with this fi
Rectangle.cpp . The file that contains an implementation is shaded.

Rectangle.hpp

AShape.hpp

Rectangle.cpp
Revised: August 18, 2002 Copyright © 1998, Dung X. Nguyen and J. Stanley Warford

18 Chapter 1 Abstraction

le

 a
po-
 the
row

ope
e

 or

an
age
 the
hat
hat

’t
or-
ver
A concrete class implementation
Figure 1.10 shows the implementation of the Rectangle class contained in file
Rectangle.cpp . The include statement

#include "Rectangle.hpp"

instructs the compiler to scan the file Rectangle.hpp before scanning the code in
this file. However, Figure 1.9 shows that file instructing the compiler to scan the fi
AShape.hpp before scanning its code.

In UML terminology, a physical unit of code, such as the content of source code in
file, is a component. A component diagram shows the dependencies between com
nents with dashed arrows. Figure 1.10 also has a component diagram that shows
compile time dependencies between the files in Figures 1.8, 1.9, and 1.10. The ar
from Rectangle.cpp to Rectangle.hpp means that Rectangle.cpp
depends on Rectangle.hpp by virtue of the include statement in Figure 1.10.

The first line of method area ,

double Rectangle::area ()

begins with the value returned, double in this case. After the value returned is the
name of the class followed by the name of the method separated by double colon sc
operator :: . C++ requires the name of the class to distinguish this method from th
method with the same name for a different concrete class. For example, the Circle
class will also have a method named area . Its implementation will begin with the line

double Circle::area ()

Within each method, the items in the private part of the class are available to use
to change. For example, the implementation of area

return _length * _width;

uses the values of _length while the implementation of the constructor

_length = length;

changes the value of _length .
Preconditions are implemented with the assert function. For example, the pre-

condition for the Rectangle constructor from Figure 1.9 is

// Pre: length >= 0.0 and width >= 0.0

which is implemented with the assert function call as

assert (length >= 0.0 && width >= 0.0);

in Figure 1.10. The effect of the assert function is to abort the program if the boole
expression in its parameter list is false. The abort is accompanied with an error mess
that indicates which assert statement failed. The precondition is a contract between
server, which is the class, and the client, which in this example is the main program t
uses the class. This contract states that it is the responsibility of the client to insure t
the parameters length and width are not negative when the constructor is called.

You may ask, Why put a statement in your program that will cause it to crash? Don
users hate programs that crash? The answer is that if the client program is written c
rectly, the boolean expression in the assert statement of the server program will ne
Copyright © 1998, Dung X. Nguyen and J. Stanley Warford Revised: August 18, 2002

Section 1.2 Abstract Classes and Inheritance 19

r the
ng
an
 the
ient

ep
gle
s
er,
hat
r

he

ou

pe.
en

ro
ed

 part
be false and the program will never crash. The assert statement is necessary not fo
user but for the developer of the client program. When the client programmer is testi
her code before releasing it commercially it is useful to have a controlled abort with
error message that pinpoints the cause of the error. Remember that it is frequently
case that one programmer writes the server program while another one writes the cl
program.

If you write both the server program and the client program you may be able to ke
them consistent without the checks enforced by the contract. However, even if a sin
individual does write both programs it is still beneficial to program with precondition
in the contract. The contract is at the boundary of a low level of abstraction, the serv
and a high level of abstraction, the client. The precondition enforces the abstraction t
relieves you of the burden of maintaining the details of the entire program in you
mind. When you are programming the server, you do not need to think about how t
client will insure that length is not negative. When you are programming the client,
you do not need to think about how the client will create a new object, as long as y
supply a nonnegative value for length .

Similar implementation code, not shown here, is necessary for each concrete sha
Figure 1.11 is a UML class diagram that shows the inheritance relationships betwe
the concrete and abstract shapes. The concrete class named NullShape is included
for the convenience of the client program. It has nothing in its private part, returns ze
for its area and perimeter, and prints nothing for its name and dimensions. As describ

Figure 1.11 A class diagram for the abstract class AShape and the concrete classes Line ,
Rectangle , Circle , RightTriangle , and NullShape . Because each concrete class inherits
and implements all the methods of the abstract class, they are not repeated in the operations
of the class box as they are in the class box of Rectangle in Figure 1.9. Shading is behind those
classes that provide an implementation.

– _length: double

Line

+ Line (length: double)

– _radius: double

Circle

+ Circle (radius: double)

NullShape

– _length: double
– _width: double

Rectangle

+ Rectangle (width: double,
height: double)

– _base: double
– _height: double

RightTriangle

+ RightTriangle (base: double,
height: double)

AShape

+ area (): double
+ perimeter (): double
+ scale (factor: double)
+ display ()
+ promptAndSetDimensions ()
Revised: August 18, 2002 Copyright © 1998, Dung X. Nguyen and J. Stanley Warford

20 Chapter 1 Abstraction

by
 of

nd
us a
its

the

r

in the next section, having a null shape simplifies the code in the client program
eliminating the need to test for the existence of a shape. This design is an example
what is known as the null object pattern.

A client application
Figure 1.12 is a UML component diagram for a main program that uses the abstract a
concrete shapes. The complete system requires the 13 files shown in the figure pl
utility file not shown. The implementation file for each concrete class depends on

Figure 1.12 A UML component diagram of the compiler dependencies for the client program
in ShapeMain.cpp that uses the shape classes. Some library files are not shown, such as
assert.h header file for the assert statement. Also omitted is a utility file Utilities.h that
provides the constant π for the circle implementation and some routines to prompt the user fo
numeric input within specified limits.

AShape.h

Line.h

Rectangle.h

Circle.h

RightTriangle.h

NullShape.h

ShapeMain.h

ShapeMain.cpp

Circle.cpp

Rectangle.cpp

Line.cpp

NullShape.cpp

RightTriangle.cpp
Copyright © 1998, Dung X. Nguyen and J. Stanley Warford Revised: August 18, 2002

Section 1.2 Abstract Classes and Inheritance 21

file
am
ain
f the
am-

he

n.
 is
re
si-

The
the
is

te
has a
f the
ape.
specification in the corresponding header file, which in turn depends on the header
containing the specification for the abstract class. The header file for the main progr
depends on the specification of the abstract shape. The implementation file for the m
program depends on the specification of each concrete class and the specification o
abstract class as well as specifications in its own header file. Figure 1.13 shows a s
ple interactive session produced by the main program.

Figure 1.14 shows the header file for the main program. The parameters in all t
parameter lists of the functions refer only to the abstract shape class, AShape.
Nowhere in the header file is any reference to a concrete class such as Rectangle .
Consequently, this header file depends only on AShape.h .

Each function is documented with a postcondition and possibly a preconditio
Many of the functions have a side effect of prompting the user for some input, which
documented as well. It should be straightforward to compare the functions in Figu
1.14 with the interactive session in Figure 1.13 to determine which function is respon
ble for which prompt. For example, shapeType produces the prompt

(l)ine (r)ectangle (c)ircle right(t)riangle ...

as a side effect. Its purpose is to return one of the uppercase letters L, R, C, T, or M.
user has no concept of the null shape, which is not one of the options. In addition to
line, rectangle, circle, and right triangle there is an option for a mystery shape. Th

There are [0..4] shapes.

(m)ake (c)lear (a)rea (p)erimeter (s)cale (d)isplay (q)uit: m

Which shape? (0..4): 7

Must be between 0 and 4. Which object? 2

(l)ine (r)ectangle (c)ircle right(t)riangle (m)ystery: r

Length? (>= 0): 2.5

Width? (>= 0): 3.0

There are [0..4] shapes.

(m)ake (c)lear (a)rea (p)erimeter (s)cale (d)isplay (q)uit: a

Which shape? (0..4): 2

Area: 7.5

There are [0..4] shapes.

(m)ake (c)lear (a)rea (p)erimeter (s)cale (d)isplay (q)uit: d

Which shape? (0..4): 2

Rectangle

Length: 2.5

Width: 3

There are [0..4] shapes.

(m)ake (c)lear (a)rea (p)erimeter (s)cale (d)isplay (q)uit: q

Figure 1.13 An interactive session of the main program that uses the abstract and concre
classes. There are five shapes numbered 0 through 4. For any of the five shapes, the user
choice to make a new shape, clear the shape to the null shape, compute the area or length o
perimeter, scale the dimensions by a scale factor, or display the name or dimensions of the sh
User responses are bold.
Revised: August 18, 2002 Copyright © 1998, Dung X. Nguyen and J. Stanley Warford

22 Chapter 1 Abstraction

12,
// File: Ch01/Shape/ShapeMain.hpp

#ifndef ShapeMain_hpp

#define ShapeMain_hpp

#include "AShape.hpp"

void initialize (AShape* shapes[], int cap);

// Pre: shapes[0..cap - 1] is allocated.

// Post: All shapes[0..cap - 1] are initialized to the null shape.

void cleanUp (AShape* shapes[], int cap);

// Pre: shapes[0..cap - 1] is allocated, and all elements are well-defined.

// Post: All shapes[0..cap - 1] are deleted and set to NULL.

void promptLoop (AShape* shapes[], int cap);

// Loop to prompt the user with the top-level main prompt.

// Post: User has selected the quit option.

void makeShape (AShape*& sh);

// Prompts user for dimensions.

// Post: Original sh is deleted and new sh is created.

char shapeType ();

// Prompts user for shape letter, lowercase or uppercase.

// Post: Uppercase character L, R, C, T, or M is returned.

void clearShape (AShape*& sh);

// Post: Original sh is deleted and sh is made the null shape.

void printArea (AShape* sh);

// Post: sh's area is printed to standard output.

void printPerimeter (AShape* sh);

// Post: The perimeter of this sh is printed to standard output.

void scaleShape (AShape* sh);

// Prompts user for scale factor.

// Post: sh's dimensions are multiplied by the factor.

void displayShape (AShape* sh);

// Post: sh's name and dimensions are printed to standard output.

#endif

Figure 1.14 The header file for a main program that uses the shape classes. In Figure 1.
the single dependency arrow pointing from ShapeMain.hpp to AShape.hpp corresponds to
the include statement in this file that includes AShape.hpp .
Copyright © 1998, Dung X. Nguyen and J. Stanley Warford Revised: August 18, 2002

Section 1.2 Abstract Classes and Inheritance 23

e

es
s

n.

ser
en,
v-
pe

r at
ter

d

option is provided for the student to complete as an exercise.
The functions in Figure 1.14 have three different types of formal parameters. Th

simplest parameter is AShape* as in the function

void printArea (AShape* sh);

The asterisk symbol * is the C++ notation for a pointer. This declaration says that for-
mal parameter sh is a pointer to the abstract class AShape. If you do not have experi-
ence with pointers in C++ or some other programming language, Chapter 2 describ
pointer manipulations in detail. For now, it is sufficient to simply think of a pointer a
an arrow pointing to an abstract shape, as in Figure 1.15(a).

The second type of parameter is AShape*& as in the function

void makeShape (AShape*& sh);

With this parameter, sh is also a pointer to an abstract type, as it is in the function
printArea . So, you can also visualize this parameter as in Figure 1.15(a). In make-
Shape , however, sh is called by reference, indicated by the & symbol. The purpose of
call by reference is to change the value of the actual parameter in the calling functio
The purpose of function makeShape is to prompt the user for a particular shape, then,
depending on the shape, prompt for the desired dimensions. In Figure 1.13, the u
requested a rectangle, and so was prompted for the dimensions length and width. Th
function makeShape changed the actual parameter to be a pointer to a rectangle ha
ing width 2.5 and height 3.0. Because the pointer changes to point to a different sha
than it was pointing to before, the parameter must be called by reference.

The rule in C++ is that the absence of the & symbol implies call by value as the
default. In call by value, the formal parameter gets the value of the actual paramete
the time of the call. Any changes that the called function makes to the formal parame

Figure 1.15 Visual depictions of the parameters of the functions in Figure 1.14. Each clou
represents one abstract shape as in Figure 1.7.

(a) Visual depiction of parameter sh .

(b) Visual depiction of parameter shapes .

sh

shapes[0]

shapes[1]

shapes[2]

shapes[3]

shapes[4]
Revised: August 18, 2002 Copyright © 1998, Dung X. Nguyen and J. Stanley Warford

24 Chapter 1 Abstraction

not
on

 the
n the

 null
ter
e
se-

led

e
in
ial-

c to
nt

ses
al
w a
s
f
an
are made to the value copied at the time of the original call. Those changes are
reflected in the actual parameter. See Section A.6 in Appendix A for further discussi
of the difference between call by reference and call by value.

The third type of parameter is AShape* where the parameter name is followed by a
pair of brackets [] as in

void initialize (AShape* shapes[], int cap);

The brackets indicate that the formal parameter shapes is an array. Again, AShape*
indicates that it is an array of pointers to abstract shapes. Figure 1.13 shows that
user has a choice of five shapes, numbered 0 through 4. The five shapes are stored i
shapes array as Figure 1.15(b) shows.

You can see from the documentation of initialize , that its purpose is to make
all the shapes the null shape. Because each pointer must be changed to point to a
shape, shapes should be called by reference. So, why does the type in the parame
list not have the & symbol? Because in C++ the name of an array is different from th
name of other variables. The value of an array is the address of its first element. Con
quently, any time the formal parameter is an array, the effect is as if the array is cal
by reference, even without the &. In C++, you cannot pass the values of an array to the
called function.

Figure 1.16 shows the listing of the main program and the functions it calls. Th
main program is short, only five lines long. At the highest level of abstraction, the ma
program simply declares the array of five shapes and then uses function calls to init
ize them, prompt for the user to manipulate them, and finally to delete them.

Function initialize illustrates the cardinal rule of object-oriented assignment.
Suppose you have an object named base instantiated from class Base declared as

Base base;

and another object derived instantiated from class Derived declared as

Derived derived;

where Derived inherits from Base as follows.

class Derived : public Base

The cardinal rule of object-oriented assignment says that you can assign the specifi
the general, but you cannot assign the general to the specific. That is, the assignme

base = derived;

is legal, but the assignment

derived = base;

is not legal.
The class that is general contains items that are common to all the specific clas

derived from it. A specific class inherits all those items and may contain addition
items. Because you can assign a specific object to a general object, you can endo
general object dynamically (that is, during execution of the program) with more item
than were included in its original specification statically (that is, during compilation o
the program). You can give, but you cannot take away. During execution, an object c
get more specific than its static declaration, but it cannot get more general.
Copyright © 1998, Dung X. Nguyen and J. Stanley Warford Revised: August 18, 2002

Section 1.2 Abstract Classes and Inheritance 25

 to

ns
In function initialize , formal parameter shapes is an array of pointers to
AShape, the base class, which is general. An example of assignment of the specific
the general is when initialize executes the statement

shapes[i] = new NullShape;

This statement creates a specific object, a null shape, and assigns shapes[i] to point
to the newly created null shape. Hence, shapes[i] , which is declared to be a pointer
to a general shape statically, gets assigned to point to a specific shape dynamically.

This assignment also illustrates the operation of new. When the new operator exe-
cutes it

// File: Ch01/Shape/ShapeMain.cpp

#include <iostream.h> // cin, cout.

#include <stddef.h> // NULL.

#include <ctype.h> // toupper.

#include "Utilities.hpp" // iPromptBetween, dPromptGE.

#include "AShape.hpp"

#include "Line.hpp"

#include "Rectangle.hpp"

#include "Circle.hpp"

#include "RightTriangle.hpp"

#include "NullShape.hpp"

#include "ShapeMain.hpp"

void main() {

 const int NUM_SHAPES = 5;

 AShape* shapes[NUM_SHAPES];

 initialize (shapes, NUM_SHAPES);

 promptLoop (shapes, NUM_SHAPES);

 cleanUp (shapes, NUM_SHAPES);

}

void initialize (AShape* shapes[], int cap) {

 for (int i = 0; i < cap; i++) {

 shapes[i] = new NullShape;

 }

}

void cleanUp (AShape* shapes[], int cap) {

 for (int i = 0; i < cap; i++) {

 delete shapes[i];

 shapes[i] = NULL;

 };

}

Figure 1.16 The main program that uses the abstract and concrete classes. Functio
initialize and cleanUp are shown here. The program continues on page 27.
Revised: August 18, 2002 Copyright © 1998, Dung X. Nguyen and J. Stanley Warford

26 Chapter 1 Abstraction

n-
e

ed.

ser

e a
■ allocates storage from the heap for the attributes of the object, and

■ returns a pointer to the newly allocated storage.

In the above assignment statement, the new operator allocates storage from the heap
for a null shape and returns a pointer to the null shape, which is given to shapes[i] .

During execution of function promptLoop , the user may create and change many
shapes. When the main program calls function cleanUp , shapes could have point-
ers to any combination of shapes with any possible combination of appropriate dime
sions. The call to cleanUp returns the storage for the shapes to the heap with th
statement

delete shapes[i];

The delete operator is the inverse of the new operator. When programming in C++
you should always be careful with the use of new. Every time you write a new opera-
tion you should ask yourself where the corresponding delete is. In this example,
new is in function initialize , and the corresponding delete is in function
cleanUp .

Figure 1.16 (page 27) shows the implementation of function promptLoop . The
function prompts the user with the main prompt, asking for some action to be execut
If the user, for example, types the letter m, the switch statement executes

makeShape (shapes[iPromptBetween (“Which shape?”,
 0, cap - 1)]);

The subscript of shapes is

iPromptBetween ("Which object?", 0, cap - 1)

which prompts the user for an integer between 0 and 4. If, as in Figure 1.13, the u
enters the erroneous value of 7 followed by the valid value of 2, iPromptBetween
returns 2. The effect of the call is

makeShape (shapes[2]);

So, function makeShape is called with shapes[2] passed as the actual parameter.
Figure 1.16 (page 28) shows the implementation of function makeShape.

Function makeShape contains no arrays. Its formal parameter is a single pointer to
an abstract shape named sh . Because the actual parameter is shapes[2] , and sh is
called by reference, every change to sh in function makeShape is really being made
on shapes[2] .

Function makeShape executes the switch statement

switch (shapeType ())

which in turn invokes function shapeType , which then returns one of the characters
L, R, C, T, or M. Strictly speaking, the default case is not necessary, nor is the last
break statement in this switch . However, it is considered good C++ programming
practice to always include them.

Function makeShape illustrates the cardinal rule of object-oriented assignment.
Formal parameter sh is a pointer to AShape, the base class, which is general. An
example of assignment of the specific to the general is when the user wants to mak
Copyright © 1998, Dung X. Nguyen and J. Stanley Warford Revised: August 18, 2002

Section 1.2 Abstract Classes and Inheritance 27

 a

f a

on
e the
new rectangle. The statement

sh = new Rectangle;

creates a specific object, a rectangle, and assigns sh to point to the newly created rect-
angle. Hence, sh , which is declared to be a pointer to a general shape statically, gets
pointer to a specific shape dynamically.

This assignment also illustrates the implicit call to a constructor. The existence o
constructor for the rectangle class causes the new operation to insert a call to the con-
structor after allocation from the heap. Compare the following steps to those listed
page 26 where the null shape class does not have a constructor. In this case, becaus
rectangle class does have a constructor, when the new operator executes it does three

void promptLoop (AShape* shapes[], int cap) {

 char response = '\0';

 do {

 cout << "\nThere are [0.." << cap - 1 << "] shapes." << endl;

 cout << "(m)ake (c)lear (a)rea (p)erimeter ";

 cout << "(s)cale (d)isplay (q)uit: ";

 cin >> response;

 switch (toupper (response)) {

 case 'M':

 makeShape (shapes[iPromptBetween ("Which shape?", 0, cap - 1)]);

 break;

 case 'C':

 clearShape (shapes[iPromptBetween ("Which shape?", 0, cap - 1)]);

 break;

 case 'A':

 printArea (shapes[iPromptBetween ("Which shape?", 0, cap - 1)]);

 break;

 case 'P':

 printPerimeter (shapes[iPromptBetween ("Which shape?", 0, cap - 1)]);

 break;

 case 'S':

 scaleShape (shapes[iPromptBetween ("Which shape?", 0, cap - 1)]);

 break;

 case 'D':

 displayShape (shapes[iPromptBetween ("Which shape?", 0, cap - 1)]);

 break;

 case 'Q':

 break;

 default:

 cout << "\nPlease enter only one of the following characters: ";

 cout << "m, c, a, p, s, n, d, q." << endl;

 break;

 }

 } while (toupper (response) != 'Q');

}

Figure 1.16 (continued) Function promptLoop from the main program listing. The main
program listing continues on page 28.
Revised: August 18, 2002 Copyright © 1998, Dung X. Nguyen and J. Stanley Warford

28 Chapter 1 Abstraction

ter
thintgs. It

■ allocates storage from the heap for the attributes of the object,

■ calls the constructor based on the number and types of parameters in the parame
list, and

■ returns a pointer to the newly allocated storage.

In the above assignment statement, first the new operator allocates storage from the

void makeShape (AShape*& sh) {

 switch (shapeType ()) {

 case 'L':

 delete sh;

 sh = new Line;

 break;

 case 'R':

 delete sh;

 sh = new Rectangle;

 break;

 case 'C':

 delete sh;

 sh = new Circle;

 break;

 case 'T':

 delete sh;

 sh = new RightTriangle;

 break;

 case 'M':

 //Exercise for the student.

 break;

 default:

 break;

 }

 sh->promptAndSetDimensions ();

}

char shapeType () {

 char ch;

 cout << "(l)ine (r)ectangle (c)ircle right(t)riangle (m)ystery: ";

 cin >> ch;

 ch = toupper (ch);

 while (ch != 'L' && ch != 'R' && ch != 'C' && ch != 'T' && ch != 'M') {

 cout << "Must be l, r, c, t, or m. Which type? ";

 cin >> ch;

 ch = toupper (ch);

 }

 return ch;

}

Figure 1.16 (continued) Functions makeShape and shapeType from the main program
listing. The main program listing continues on page 30.
Copyright © 1998, Dung X. Nguyen and J. Stanley Warford Revised: August 18, 2002

Section 1.3 Polymorphism 29

of

re
ent

.

ior
s-

ive

ing
an

y

heap for the attributes of Rectangle , which, from Figure 1.9 (page 15) are

double _length;
double _width;

Second, the new operator calls the constructor based on the number and types
parameters. Because the actual parameter list is empty, and the constructor for Rect-
angle in Figure 1.9 has two parameters length and width with default values, the
constructor is called with both parameters having their default values of 0.0. Figu
1.10 (page 17) shows the implementation of the constructor, which does the assignm

_length = length;
_width = width;

giving 0.0 to the attributes of the shape object. Third, the new operator returns a pointer
to newly allocated and initialized storage.

All that happens on the right hand side of the assignment statement

sh = new Rectangle;

The assignment completes by giving sh the pointer to the rectangle. After break exe-
cutes in the switch statement, the statement

sh->promptAndSetDimensions ();

executes. What happens now is “polymorphic dispatch”, the topic of the next section

1.3 Polymorphism
The highest level of abstraction in object-oriented programming languages is behav
abstraction, which is manifested in polymorphism. This section concludes the discu
sion of the abstract shape main program, which illustrates polymorphism.

Behavior abstraction
The behavior of a program is determined by the sequential execution of consecut
statements, selection of various optional sections of code with some form of if or
switch statement, and repetition with some form of while or for statement. The
essence of abstraction is the hiding of detail, so behavior abstraction implies the hid
of one of these control mechanisms, namely selection. With polymorphism you c
eliminate if or switch statements from your code where they would be required
without polymorphism. Consequently, the control structure for objects is simplified b
the abstraction process. The selection of an alternative without the usual if or
switch statement is known as polymorphic dispatch.

Consider the statement

sh->promptAndSetDimensions ();

from function makeShape. The symbol -> is the C++ operator for accessing the field
of a struct or class when the left hand side is a pointer to the struct or class .
This statement is located after a switch statement, so sh could be a pointer to any
Revised: August 18, 2002 Copyright © 1998, Dung X. Nguyen and J. Stanley Warford

30 Chapter 1 Abstraction

tion
ircle

ine

n-

f

ype

ch

the
one of a number of shapes. The scenario considered at the end of the previous sec
assumed that the user selected a rectangle, but he could just have easily picked a c
or triangle. Furthermore, the static type of sh is AShape, which is general. Think what
the compiler must do to translate this statement. Should the compiler generate mach
language statements to call promptAndSetDimensions for a rectangle? Or should
it generate statements to call the corresponding function for a circle or triangle? It ca
not generate statements to call promptAndSetDimensions for AShape, because
AShape has no implementation of that function. There are no implementations o
methods for AShape, only their pure virtual specifications in Figure 1.9, page 15.

The answer is that the compiler generates code that, in effect, tests the dynamic t
of sh and calls the corresponding version of promptAndSetDimensions . During
execution, if the dynamic type of sh is Rectangle then promptAndSetDimen-
sions for Rectangle will be called. If the dynamic type of sh is Circle then
promptAndSetDimensions for Circle will be called. The machine language
code that tests the dynamic type of sh and calls the appropriate version of the method
is hidden at a lower level of abstraction. It does not appear in the C++ program.

As another example of polymorphic dispatch, consider Figure 1.16 (page 30), whi
shows the implementation of printArea , printPerimeter , scaleShape , and
display . For example, the implementation of function printArea is

void printArea (AShape* sh) {
 cout << “Area: “ << sh->area () << endl;
}

The purpose of the function is to print the name and dimensions of the shape to

void clearShape (AShape*& sh) {

 delete sh;

 sh = new NullShape;

}

void printArea (AShape* sh) {

 cout << "Area: " << sh->area () << endl;

}

void printPerimeter (AShape* sh) {

 cout << "Perimeter: " << sh->perimeter () << endl;

}

void scaleShape (AShape* sh) {

 sh->scale (dPromptGE ("Scale factor?", 0.0));

}

void displayShape (AShape* sh) {

 sh->display (cout);

}

Figure 1.16 (continued) Functions clearShape , printArea , printPerimeter ,
scaleShape , and display from the main program listing. The last four functions exhibit
polymorphic dispatch. This concludes the main program listing
Copyright © 1998, Dung X. Nguyen and J. Stanley Warford Revised: August 18, 2002

Section 1.3 Polymorphism 31

 a

e

ion

0
ub-
standard output stream. How does the function know what to print? If the shape is
rectangle, the function should print the string “Area” followed by the product of its
width and height, but if the shape is a circle it should print the string “Area” followed
by π times the square of its radius.

Consider how you would implement this function without polymorphism. You
would need a way to distinguish what kind of shape sh is. For example, you might
declare your type Shape as follows.

enum ShapeKind {
 eLINE, eRECTANGLE, eCIRCLE,
 eRIGHT_TRIANGLE, eNULL_SHAPE
};
typedef ShapeType {
 ShapeKind kind;
 double dim1, dim2;
};

Field kind in the definition of the type could be used to distinguish what kind of shap
is stored, with the integers interpreted accordingly. For example, if kind had value
eRECTANGLE then dim1 would store the length of the rectangle and dim2 would
store its width. But if kind had value eCIRCLE then dim1 would store the circle’s
radius and dim2 would be ignored.

In your implementation of printArea , you would need to test the kind field to
determine which shape is stored in sh as follows.

void printArea (ShapeType* sh) {
 switch (sh->kind) {
 case eLINE:
 cout << "Area: " << lineArea (sh) << endl;
 break;
 case eRECTANGLE:
 cout << "Area: " << rectangleArea (sh) << endl;
 break;
 etc.
 }
}

Each function would return the area of the corresponding shape. For example, funct
rectangleArea would be implemented as

double rectangleArea (ShapeType* sh) {
 return sh->dim1 * sh->dim2
}

Compare this with the corresponding implementation of the function in Figure 1.1
(page 17) to compute the area of a rectangle object, which is an instantiation of a s
class of the abstract AShape class.

double Rectangle::area () {
 return _length * _width;
}

Revised: August 18, 2002 Copyright © 1998, Dung X. Nguyen and J. Stanley Warford

32 Chapter 1 Abstraction

.

on

e
e
n

he
de
the

ings
gs
the
act
er

ny
 are
ntrol
ure
ure
vior
Both functions perform the same computation. The difference is how they are called
Which brings us back to our original question, How does the printArea function

know what to print? It simply calls the function sh->area() . How does it know
which area() method to call? After all, there is an area() method for each shape.
Furthermore, the compiler cannot detect from the type of sh which method should be
called, because sh is an abstract shape, and it could be any specific shape at executi
time.

Again, the answer is polymorphic dispatch. At a lower level of abstraction, invisibl
to the programmer at the C++ level, the compiler includes a tag field, much like th
field kind in the above description, with every instantiation of a subclass. Also, whe
the compiler translates the function call sh->area() it uses the tag field to look up in
a table (called a virtual method table) the appropriate function to call. Even though t
compiler does not know at compile time which method will be called, it generates co
to make that determination at execution time. The programmer only needs to make
function call sh->area() . It is as if the sh object knows what shape it is and returns
its area without the programmer needing to test what its shape is.

Behavior abstraction with polymorphism is the highest level of abstraction within
object-oriented languages such as C++. In the same way that class abstraction br
together attributes and operations into a single class, behavior abstraction brin
together a collection of different classes under the umbrella of an abstract class. At
highest level, the programmer writes code to the abstraction provided by the abstr
class and lets polymorphic dispatch automatically take care of the details at a low
level of abstraction. Figure 1.17 shows the progression of the abstraction process.

Figure 1.17 The abstraction process. Each step in the process consists of collecting ma
items at one layer into a single concept at the next higher layer. Type and structure abstraction
aspects of data abstraction, and statement and procedure abstraction are aspects of co
abstraction. See Figure 1.1, page 2 for type abstraction, Figure 1.2, page 4 for struct
abstraction, Figure 1.3, page 5 for statement abstraction, Figure 1.4, page 6 for proced
abstraction, Figure 1.5, page 7 for class abstraction, and Figure 1.7, page 11 for beha
abstraction.

Type
abstraction

Statement
abstraction

Structure
abstraction

Procedure
abstraction

Class
abstraction

Circles

Type
abstraction

Statement
abstraction

Structure
abstraction

Procedure
abstraction

Class
abstraction

Rectangles

Behavior
abstraction

Abstract shapes
Copyright © 1998, Dung X. Nguyen and J. Stanley Warford Revised: August 18, 2002

Section 1.3 Polymorphism 33

s a

ou
the
on
n-

n
wer
eas-
e

f a
he
m
of
lt

ge-

c-

u
 the
-

 all
Reusability and extensibility
[This section will describe the benefits of OO design using the Shapes example a
point of departure.]

Design patterns
The first question to ask when solving a problem is, What is the problem? Before y
can write a program to solve a problem you must understand the specification of
problem. Abstraction is a tool that helps you determine at a high level the specificati
of the problem. At this level of abstraction many details are hidden with only the esse
tials exposed.

To solve a problem you must implement its specification. An implementatio
requires you to structure your data to create a model of the abstract view. The narro
the gap between the structure of the data and the abstract view of the problem, the
ier it is to write a correct solution. A narrow gap between the abstract view and th
implementation usually produces a more elegant solution as well.

Not only can you design an abstraction boundary between the specification o
problem and its implementation, you can also design layers of abstraction within t
implementation. Within one of the layers of abstraction you can subdivide the proble
into a system of cooperating objects to further reduce complexity. Without layers
abstraction, a problem solution becomes one large monolithic program that is difficu
to understand and debug. Layering structures a complex problem into more mana
able parts that are then easier to understand and construct.

[This section will describe the idea of OO design patterns in the context of abstra
tion.]

Exercises
This book comes with a set of software called the “distribution software”, that yo
should have access to for study and for working exercises. Exercises at the end of
chapter ask you to implement or modify parts of the distribution software. The distribu
tion software is available from the Internet at

ftp://ftp.pepperdine.edu/pub/compsci/dp4ds/

1–1 Implement the code for the scale method for the shapes Line , Rectangle , and
Circle . Include the precondition test in your code.

1–2 Implement the code for all the methods including scale for the shape RightTri-
angle . Include the precondition tests in your code.

1–3 Choose a shape other than a line, rectangle, circle or right triangle and implement
the methods for it including scale as the mystery shape in Figure 1.13. Include the
precondition tests in your code.

1–4 The precondition for function cleanUp in ShapeMain.h from Figure 1.14 contains
the phrase
Revised: August 18, 2002 Copyright © 1998, Dung X. Nguyen and J. Stanley Warford

34 Chapter 1 Abstraction

-

Pre: shapes[0..cap - 1] is allocated,
and all elements are well-defined.

Rewrite the phrase “all elements are well-defined” formally using the proper quantifi
cation from the predicate calculus. Assume the predicate wellDefined (s) to indicate
that s is well-defined.
Copyright © 1998, Dung X. Nguyen and J. Stanley Warford Revised: August 18, 2002

	1 Abstraction
	1.1� Objects and Classes
	Data abstraction
	Computation abstraction
	Class abstraction
	Unified Modeling Language
	C++

	1.2� Abstract Classes and Inheritance
	An abstract class
	A concrete class specification
	A concrete class implementation
	A client application

	1.3� Polymorphism
	Behavior abstraction
	Reusability and extensibility
	Design patterns

	Exercises

