Comp 212 February 12, 2001

LRStruct: An Enhanced AList

e Consider the following set of operations:

LRStruct L = new LRStruct();
LRStruct M = L;
L.insertFront(new Integer(7));
L.insertFront(new Integer(3));
L.removeFront () ;
L.removeFront () ;

e See the handout for their effects on the structure.



Comp 212 February 12, 2001

Program #1: Hangman



Comp 212 February 12, 2001

Program #1: Hangman (cont.)

| po__mo_p_1i_m

Player loses!



Comp 212 February 12, 2001

Program #1: Hangman (cont.)

e In the hangman game, a character in the target word can be either in
the hidden state or the visible state.

— When it is hidden, it converts to a String as " _
— When it is visible, it converts to a String as the String consisting

of its actual character value.



Comp 212 February 12, 2001

Program #1: Hangman (cont.)

e We can apply the state pattern here to implement hangman characters
as objects with states. The pattern calls for the following design steps:

1. Define class WordChar to represent the characters in a hangman word.

2. Define abstract class ACharState.
3. Define classes Hidden and Visible as concrete subclasses of

ACharState.
— ACharState and its concrete variants represent the states of a

WordChar.
4. Define a field in WordChar to reference an ACharState, its current

state.
— All method calls in WordChar are delegated to its state.



Comp 212 February 12, 2001

Program #1: Hangman (cont.)

Secret Word: cat aisvisble c andt are hidden

NonEmptyWord EmptyWord

AWord _rest )
Singleton

WordChar _wordChar

WordChar

char _vaue

ACharState _state

Singleton



Comp 212 February 12, 2001

Program #1: Hangman (cont.)

e The UML diagram on the handout illustrates the above design.

— This design makes use of the composite pattern, the state pattern,
and the singleton pattern.



