
COMP 210, Spring 2001, Homework 8
Due Wednesday, March 21, 2001 at the start of class

Before you start the homework, you should remind yourself of our General Advice,
Advice on Homeworks, and Grading Guidelines. All are available from the class web
site (http://www.owlnet.rice.edu/~comp210).

This assignment is abbreviated (5 Pts instead of 10 Pts) to give you time to study for the
exam next Wednesday evening.

1. (2 Pts) Use the abstracted functions (functionals) map, foldl , and foldr to solve
the following two programming problems. The solutions do not involve any explicit
use of recursion.

a. (1 Pt) Define a function max-list to compute the maximum of a non-empty
list of numbers. Hint: recall the trick of using #i-inf.0 as the maximum of the
empty list to simplify the recursive decomposition of the problem.

b. (1 Pt) Define a function scalar-prod that computes the scalar product of two
lists of numbers of equal length. The scalar product of (a1 a2 … an) and (b1 b2
… bn) for n ≥ 0 is defined as

a1*b1 + a2*b2 + … + an*bn

Hint: the map function accepts binary functions as well as unary functions.
Hence,

(map f (list a1 a2 … an) (list b1 … bn)) =

 (list (f a1 b1) (f a2 b2) … (f an bn))

2. (3 Pts) Exercises on accumulators.

a. (1 Pt) Recall the function split (which is not accepted as a function name in
some versions of DrScheme because it is a keyword) used as a helper in the
mergesort program in the last homework assignment. Write a definition for
split that uses accumluators to form the "left" and "right" parts of the input list.
Call your function split-list if your version of DrScheme does not accept the
name split.

b. Recall the function flatten from Homework 4 that flattens a list-of-list-
or-symbol to a (list-of symbol). Write a definition for flatten that
uses an accumulator to form the flattened list.

c. Recall the function dup-names from Homework 5 that finds the duplicated
names in a parent-based family tree. Write a definition for dup-names that uses
an accumulator to record the names that been scanned so far.

3. (Extra Credit: 5 Pts) Define a Scheme data representation for boolean expressions
constructed from variables, the unary operator not, and the binary operators and,
or, and implies. Define a Scheme data representation for an environment that

maps some finite collection of variable names to boolean values (true and false).
Define a Scheme function eval with the contract and header

eval: boolean-expression environment -> boolean

(define (eval be env) …)

that evaluates the boolean expression be in the environment env.

