
COMP 210, Spring 2001, Homework 5
Due Wednesday, February 21, 2001 at the start of class

Before you start the homework, you should remind yourself of our General Advice,
Advice on Homeworks, and Grading Guidelines.  All are available from the class web
site (http://www.owlnet.rice.edu/~comp210).

For this assignment, you should follow all the steps of the design methodology and
include the results of each step as comments or code in the final materials that you
submit.

1. (4 pts) In class, we discussed two data definitions for family trees (reproduced
below). Some programs are easier to write using one data organization rather than the
other. To explore this, consider what it would take to develop the following program
using each of the two definitions.

The program find-siblings consumes an input symbol and a family tree. and
produces a list of symbols. The symbols in the output list are the names of the
siblings of the person named in the input symbol.  You may assume that a name
appears at most once in a family tree.

a. (1 pt) Under which data definition is find-siblings easier to develop.

b. (3 pts) Develop the program for the data definition that you named in part (a.)  Be
sure to show all the steps in the design methodology.

As a reminder, here are the two data definitions for family trees:

Child-centric family trees
;; An FT (for family tree) is either

;;     -  empty, or
;;     - (make-child name father mother year eyes)
;; where name and eyes are symbols,
;;       father and mother are FT’s, and
;;       year is a number

      (define-struct child (name father mother year eyes))

Parent-centric trees
;;  A person is a structure
;;     (make-person name year eyes children)
;;  where name and eyes are symbols, year is a num,
;;            and children is a list-of-person.

(define-struct person (name year eye-color children))

;; A list-of-person is either
;;  - empty, or
;;  - (cons f r)

;;  where f is a person and r is a list-of-person

The text discusses both types of trees in Sectios 14 and 15, respectively.  It uses
the name parent instead of  person in the struct for parent-centric trees.



2. (3 points) Using the definitions for directory trees given in lecture 12 (online),
develop the following program.

dup-names: directory àà list-of-symbols  Your program should
consume a directory tree and return a list containing all the names that occur more
than once in the entire directory tree. (The function dup-names differs from the
function any-duplicate-names? in the lab tutorial because it must check the
entire directory tree.  That is, if ‘foo occurs in two different subtrees of the
directory, your program should find that duplication and report it by including ‘foo
in the resulting list.)

Extra credit : (1 point)  Write dup-names so that no symbol that appears more than
once in an output list.  In other words, when a name appears more than twice in the
input list, you must include it only once in the output list.

3. (4 points) Work Exercise 17.6.6 from the book (page 246 in my copy) to develop the
program DNAprefix.   Show all the steps in the design methodology.

4. Extra credit: (10 points)  The fibonacci function fib is defined the equations

            fib(0) = 1

fib(1) = 1

fib(n+2) = fib(n+1) + fib(n)    for n ≥ 0

§ In the naïve implementation of this definition as a program, computing fib(n) requires
O(2^n) (a number proportional to 2^n) steps (count each reduction performed by the
DrScheme stepper as a step).  It is not difficult to write a program that reduces the
running time to O(n) steps.   But it is possible to do much better.  The function fib(n)
can be computed in O(log n) steps.  Write a program to compute fib(n) in O(log n)
steps.

§ Hints:

1) Devise a recurrence expressing fib(2*n) and fib(2*n+1) in terms of fib(n) and
fib(n+1).

2) Initially design your program only for values of n that are powers of 2.  Then
revise it to work for all non-negative n.


