
COMP 210, Spring 2001, Homework 3
Due Wednesday, February 7, 2001 at the start of class

Before you start the homework, you should remind yourself of our General Advice,
Advice on Homeworks, and Grading Guidelines. All are available from the class web
site (http://www.owlnet.rice.edu/~comp210).

For this assignment, you should follow all the steps of the design methodology and
include the results of each step as comments or code in the final materials that you
submit. (For example, write your template as a comment—at the appropriate point in the
development sequence—and copy it over when you fill it in.)

1. (4 pts) Programs on Lists
Write down a data definition for lists of numbers. Now, develop the following
programs that consume a list of numbers:

a) A function summation that returns the sum of all the numbers in the list

b) A function all-positive? that returns true if and only if every number in the
list is greater than or equal to zero.

c) A function count-positives that returns the number of positive numbers in
the list.

d) A function mostly-positive that returns true if the list contains more positive
numbers (≥ 0) than negative numbers (< 0).

2. (3 pts) Digital Telephone Directory
Once a year, the local telephone company publishes a directory. For our purposes,
the directory is a list of pairs. The pair consists of a symbol, called the key, and a
phone number, represented as a number.

a) Write out the data definitions for this simple online phone directory. You should
have one data definition for pairs and a second data definition for directories.

b) Write a program lookup that consumes a symbol and a phone directory and
produces a phone number. The program lookup should examine the list for a
key that matches the symbol given as input. If it finds a key that matches the
input symbol, it returns that phone number. If no matching record is found, it
returns zero.

Be sure to create a reasonable set of test data and enter it in the definitions window of
DrScheme.

Schemers sometimes call a directory in this form an association list.

3. (3 pts) Programs that return Lists

a) A function positive-elements that consumes a list of numbers and returns a
list containing those elements of the list that are positive.

b) A function even-positions that consumes a list and returns those elements in
the even-numbered positions in the list assuming that the first element has
position 1, the second element has position 2, etc. Hence,

(even-positions (cons 1 (cons 2 (cons 3 (cons 4 empty))))) =

(cons 2 (cons 4 empty))

4. Extra Credit (3 pts) Programs that involve more complex templates

a) A function merge that consumes two lists l1 and l2 of numbers in ascending order
and returns a list containing the elements of both l1 and l2 in ascending order.
Hence,

 (merge (cons 1 (cons 6 (cons 12 empty)))

 (cons –1 (cons 4 (cons 4 empty))))

= (cons –1 (cons 1 (cons 4 (cons 4 (cons 6 (cons 12 empty))))))

b) A function split that takes a list l and returns a pair of lists u and v of nearly the
same length (differing by at most one) which together contain exactly the same
elements as l. Hence,

(split (cons 17 (cons 2 (cons –1 (cons 6 (cons –5 empty)))))) =

(make-Pair (cons –5 (cons –1 (cons 17 empty))) (cons 2 (cons 6 empty)))

 is a possible result for split.

c) A function sort that sorts a list into ascending order using split and merge as
help functions. In sort, the number of cons operations performed in sorting a list
of n elements must be proportional to n * log(n) not n*n.

