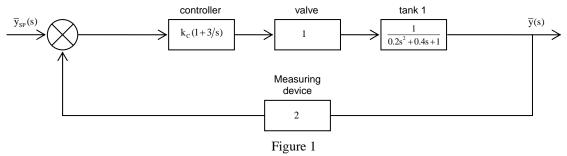
Problem 1



The characteristic equation for the closed loop in figure 1 can be written as follows:

$$1 + G_{OL}(s) = 1 + \frac{2k_{C}(1 + 3/s)}{0.2s^{2} + 0.4s + 1}$$
(S1.1)

Setting (S1.1) equal to zero and substituting $k_c=2$ yields:

$$0.2s^3 + 0.4s^2 + 5s + 12 = 0 \tag{S1.2}$$

Test 1: All the coefficients of (S1.2) are positive. Therefore, one can move to test 2. Test 2: (S1.2) is a 3^{rd} order polynomial. Thus, the Routh-Hurwitz array is composed of 4 rows.

	Column 1	Column 2
Row 1	0.2	5
Row 2	0.4	12
Row 3	[(0.4*5) - (12*0.2)]/0.4 = -1	0
Row 4	(-1*12)/-1=12	0

As all the coefficients of the first column of the Routh-Hurwitz array are not positive, the system is unstable. Moreover, as the sign changes two times (from row 2 to row 3 and row 3 to row 4), there are two roots with positive real part.

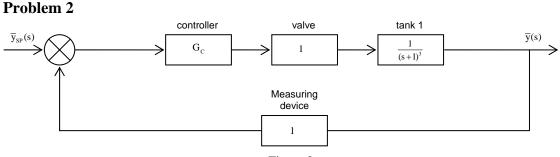


Figure 2

For the proportional controller, the characteristic equation for the closed loop in figure 2 can be written as follows:

$$1 + G_{OL}(s) = 1 + \frac{k_C}{(s+1)^3}$$
(S2.1)

Setting (S2.1) equal to zero yields:

$$s^{3} + 3s^{2} + 3s + (1 + k_{c}) = 0$$
(S2.2)

Test 1: All the coefficients of (S2.2) are positive. Therefore, one can move to test 2. Test 2: (S2.2) is a 3^{rd} order polynomial. Thus, the Routh-Hurwitz array is comprised of 4 rows.

	Column 1	Column 2
Row 1	1	3
Row 2	3	$1 + k_{C}$
Row 3	$A_1 = [9 - (1 + k_c)]/3$	0
Row 4	$1 + k_{\rm C}$	0

In order to ensure stability, it is sufficient to impose that A_1 is positive. Thus, if $k_c < 8$ the system is stable, while the condition $k_c = 8$ leads the system to the verge of instability.

For the proportional-derivative controller, the characteristic equation for the closed loop in figure 2 can be written as follows:

$$1 + G_{OL}(s) = 1 + \frac{k_C (1 + \tau_D s)}{(s+1)^3}$$
(S2.3)

Setting (S2.3) equal to zero yields:

$$s^{3} + 3s^{2} + (3 + 10\tau_{p})s + 11 = 0$$
(S2.4)

Test 1: All the coefficients of (S2.2) are positive. Therefore, one can move to test 2. Test 2: (S2.4) is a 3^{rd} order polynomial. Thus, the Routh-Hurwitz array is comprised of 4 rows.

	Column 1	Column 2
Row 1	1	$3+10\tau_{\rm D}$
Row 2	3	11
Row 3	$(-2+30\tau_{\rm D})/3$	0
Row 4	11	0

In order to ensure stability, it is sufficient to impose that $-2+30\tau_D$ is positive, which yields $\tau_D > 1/15$.

Problem 3

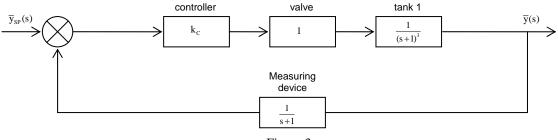


Figure 3

The characteristic equation for the closed loop in figure 3 can be written as follows:

$$1 + G_{OL}(s) = 1 + \frac{k_C}{(s+1)^4}$$
(S3.1)

Setting (S3.1) equal to zero yields:

$$s^{4} + 4s^{3} + 6s^{2} + 4s + (1 + k_{c}) = 0$$
(S3.2)

Test 1: All the coefficients of (S3.2) are positive. Therefore, one can move to test 2. Test 2: (S3.2) is a 4th order polynomial. Thus, the Routh-Hurwitz array is comprised of 5 rows.

	Column 1	Column 2	Column3
Row 1	1	6	$1 + k_{\rm C}$
Row 2	4	4	0
Row 3	5	$1+k_{\rm C}$	0
Row 4	$B_1 = [20 - 4(1 + k_c)]/5$	0	0
Row 5	$1 + k_{C}$	0	0

In order to ensure stability, it is sufficient to impose that B_1 is positive. Thus, if $k_c < 4$ the system is stable.

In order to get two imaginary roots, the elements of the 3^{rd} and 5^{th} row have to be positive while that of the 4^{th} row is zero. This is accomplished when $k_c = 4$, which gives the following polynomial:

$$a_1 s^2 + a_2 = 0 ag{S3.3}$$

where $a_1 = 5$ (3rd row element) and $a_2 = 1 + k_c = 5$ (5th row element). Therefore, (S3.3) becomes:

$$5s^{2} + 5 = 5(s - j)(s + j) = 0$$
(S3.4)

which gives $s_1 = j$ and $s_2 = -j$.