
Problem 1 
 
a) For noninteracting capacities with linear resistances subject to a unit-step change in the 
input of the first tank, the material balance can be written as follows: 

1
1 1 1 1

dyA R y R u(t)
dt

+ =  (S1.1) 

2 2
2 2 2 1

1

dy RA R y y
dt R

+ =  (S1.2) 

subject to the initial conditions 

1 1s 1 sy (0) y R u= =  2 2s 2 1 1s 2 sy (0) y R R y R u= = =  (S1.3) 

Defining the deviation variables Y1=y1-y1s, Y2=y2-y2s and Q=u(t)-us, equations (S1.1)-
(S1.2) become: 

1
1 1 1 1

dYA R Y R Q
dt

+ =  (S1.4) 

2 2
2 2 2 1

1

dY RA R Y Y
dt R

+ =  (S1.5) 

subject to the initial conditions 

1Y (0) 0=  2Y (0) 0=  (S1.6) 

Hence, the transfer functions for equations (S1.4)-(S1.5) are: 

1 1
1

1 1

Y (s) RG (s)
Q(s) (A R )s 1

= =
+

 (S1.7) 

2 2 1
2

1 2 2

Y (s) R RG (s)
Y (s) (A R )s 1

= =
+

 (S1.8) 

Since the two noninteracting tanks are placed in series, the overall transfer function is the 
following: 

[ ][ ]
2 2

1 2
1 1 2 2

Y (s) RG(s) G (s)G (s)
Q(s) (A R )s 1 (A R )s 1

= = =
+ +

 (S1.9) 

Rewriting (S1.9) in the standard form, gives: 

2 2
1 2 2

1 1 2 2 1 1 2 2

Y (s) RG(s) G (s)G (s)
Q(s) (A R )(A R )s 2(A R A R ) 1

= = =
⎡ ⎤+ + +⎣ ⎦

 (S1.10) 



For critically damped systems, ξ=1. Therefore, comparing equation (S1.10) with the 
standard form yields: 

2
1 2 1 1 2 2(A R )(A R )τ = τ τ =  (S1.11) 

1 2 1 1 2 2A R A Rτ = τ + τ = +  (S1.12) 

Equations (S1.12)-(S1.11) are simultaneously solved if: 

1 2 1 1 2 2      A R A Rτ = τ ⇒ =  (S1.13) 

In other words, the system is critically damped if the roots of the denominator in (S1.9) 
are in reality one root with multiplicity equal to 2. This immediately implies (S1.13). 
Thus: 

1 2

2 1

R A 1
R A 2

= =  (S1.14) 

  
b) From the textbook, solution to the critically damped second order system subject to a 
unit-step change is: 

t
2

2

Y (t) t1 e 1
R

−
τ ⎛ ⎞= − +⎜ ⎟τ⎝ ⎠

 (S1.15) 

Since it takes 1 min for the change in level of the second tank to reach 50 percent of the 
total change, one obtains: 

1 10.5 1 e 1       0.59 min
−
τ ⎛ ⎞= − + ⇒ τ =⎜ ⎟τ⎝ ⎠

 (S1.16) 

  
c) From the textbook, solution to a first order system (1st tank) subject to a unit-step 
change is: 

t
1

1

Y (t) 1 e
R

−
τ= −  (S1.17) 

Therefore, in order for the level of the first tank to reach 90 percent of the total change it 
takes: 

t
0.590.9 1 e       t 0.59 ln(10) min 1.36 min

−
= − ⇒ = =  (S1.18) 

 
 
Problem 2 
 



Bringining the transfer function in standard form, yields: 

2

20G(s)
4s 0.6s 1

=
+ +

 (S2.1) 

Therefore the natural period of oscillation and the damping factor are the following: 

2 4      2 (time)τ = ⇒ τ =  (S2.2)  

2 0.6 (time)     0.6 (2 ) 0.15  (D-less)τξ = ⇒ ξ = τ =  (S2.3) 

Hence, from the page 191 of textbook one obtains: 

2
OS exp 0.62 (D-less)

1

⎛ ⎞−πξ
⎜ ⎟= =
⎜ ⎟− ξ⎝ ⎠

 (S2.4)  

21 cicles0.079
2 2 time

−ξω
ν = = =

π πτ
 (S2.5)  

 
 
Problem 3 
 
Let 1/Rt=1/Ra+1/R1=3/2. Then, the material balance 
on the first tank yields: 

1 1
1 A 1

t

dh hA q (q q ) q
dt R

= − + = −  (S3.1) 

subject to the initial condition h1(0)=h1s=qsRt. 
Equation (3.1) can be rewritten as follows: 

1
1 t 1 t

dhA R h R q
dt

+ =  (S3.2) 

The material balance on the second tank yields: 

2 2
2 2 2 1

1

dh RA R h h
dt R

+ =  (S3.3) 

subject to the initial condition h2(0)=R2/R1h1s. Defining the deviation variables H1=h1-h1s, 
H2=h2-h2s and Q=q-qs, equations (S3.2)-(S3.3) become: 

1
1 t 1 t

dHA R H R Q
dt

+ =  (S3.4) 

2 2
2 2 2 1

1

dH RA R H H
dt R

+ =  (S3.5) 

subject to the initial conditions 

Figure 3.1 



1H (0) 0=  2H (0) 0=  (S3.6) 

Hence, the transfer functions for equations (S3.4)-(S3.5) are: 

t1
1

1 t

RH (s) 2 3G (s)
Q(s) (A R )s 1 4 3s 1

= = =
+ +

 (S3.7) 

2 2 1
2

1 2 2

H (s) R R 1G (s)
H (s) (A R )s 1 s 1

= = =
+ +

 (S3.8) 

Thus, the overall transfer function is the following: 

( )( )
2

1 2
H (s) 2 3G(s) G (s)G (s)
Q(s) 4 3s 1 s 1

= = =
+ +

 (S3.9) 

 
 
Problem 4 
 
a) Linearizing cAcR about cAscRs yields: 

A As A As
R Rs R Rs

A R A R
A R As Rs A As R Rs

C C C CA R
C C C C

As Rs Rs A As As R Rs

(C C ) (C C )C C C C (C C ) (C C ) HOT
C C

        C C C (C C ) C (C C )

= =
= =

δ δ
= + − + − + =

δ δ

+ − + −

 (S4.1) 

Substituting (S4.1) into (4.1a) and (4.2b) gives: 

A
Ai A As Rs Rs A As As R Rs

dC C C kC C kC (C C ) kC (C C )
dt

τ = − − − − − −  (S4.2) 

R
Ri R As Rs Rs A As As R Rs

dC C C kC C kC (C C ) kC (C C )
dt

τ = − + + − + −  (S4.3) 

At steady state, one obtains: 

Ais As As RsC C kC C− =  (S4.4) 

Ris Rs As RsC C kC C− + =  (S4.5) 

Defining the deviation variables A=CA-CAs, R=CR-CRs, QA=CAi-CAis and QR=CRi-CRis 
equations (S4.2)-(S4.3) become: 

A Rs As
dA Q A kC A kC R
dt

τ = − − −  (S4.6) 

R Rs As
dR Q R kC A kC R
dt

τ = − + +  (S4.7) 

Subject to: 



A(0) 0     R(0) 0= =  (S4.8) 

 
b) Taking the Laplace transform of both sides of (S4.6)-(S4.7) and applying the initial 
conditions (S4.8) yields: 

A Rs AssA(s) Q (s) A(s) kC A(s) kC R(s)τ = − − −  (S4.9) 

R Rs AssR(s) Q (s) R(s) kC A(s) kC R(s)τ = − + +  (S4.10) 

Notice that in equation (S4.9) QR(s)=0 since CRi is constant. Thus, solving (S4.10) for A 
gives: 

As

Rs

s 1 kCA(s) R(s)
kC

τ + −
=  (S4.11) 

which substituted into (S4.9) provides the transfer function between R(s) and QA(s): 

Rs

2 Rs As Rs AsA
2

kCR(s)G(s)
k(C C ) 1 k(C C )2Q (s) s 1 s

2

= =
− + −⎡ ⎤ ⎡ ⎤+ + +⎢ ⎥ ⎢ ⎥τ τ⎣ ⎦ ⎣ ⎦

 (S4.12) 

 
c) Notice that the denominator of G(s) can be written as: 

2as bs c+ +  (S4.13) 

where a=1. The condition (CAs-CRs)<1/k ensures that the 1st order and 0th order 
coefficient of the polynomial denominator of G(s) are positive. Hence, since s1s2=c>0, 
then the two roots have the same sign (either positive or negative). Moreover, as –
(s1+s2)=b, then the two roots are both negative. Therefore, the condition (CAs-CRs)<1/k 
guarantees stability for the system. 
 
d) From (S4.12) one obtains: 

Rs Ask(C C )1
2
−

ξ = +  (S4.14) 

Since the term CRs-CAs is positive, so is the term k(CRs-CAs)/2. Therefore, the damping 
factor ξ is bigger than 1 and the system in overdamped. 


