CHBE 470 – Process Dynamics and Control – Fall 2007

Homework Set 4

Assigned: Wednesday, September 26

Due: Wednesday, October 3

Note: Please staple your papers and include your name in the first page

Use table 7.1 from textbook wherever you find appropriate

Problem 1: Consider the 2-tank liquid level system where the outlet from the first tank is the inlet to the second tank. Assume linear resistances and that the system operates at steady state when a unit-step change is made in the flow rate entering tank 1. The transient response is critically damped and it takes 1 min for the change in level of the second tank to reach 50 percent of the total change. If the ratio of the cross-sectional areas of the tanks is $A_1/A_2=2$,

- a) Calculate the ratio R_1/R_2 , where R_1 , R_2 are the resistances in the 2 tanks.
- b) Calculate the time constant for each tank.
- c) How long does it take for the change in the level of the first tank to reach 90 percent of the total change?

Problem 2: A step change of magnitude A is introduced into the transfer function

$$G(s) = \frac{10}{2s^2 + 0.3s + 0.5}$$
(2.1)

Determine the overshoot and the frequency of oscillation $v=\omega/(2\pi)$.

Problem 3: Consider a 2-tank liquid level system with linear resistances to flow. There are 2 outputs from the first tank: the first is the inlet to the second tank while the second is a simple output flow rate with resistance $R_a=2$. The resistance of the outlet flow rate F_1 which enters the second tank is $R_1=1$ and the resistance of the outlet flow rate F_2 from the second tank is also $R_2=1$. The cross-sectional areas of the two tanks are $A_1=2ft^2$ and $A_2=1ft^2$, respectively. Starting from first principles (mass balances), derive the transfer functions $H_1(s)/Q(s)$ and $H_2(s)/Q(s)$, where $H_1(s)$, $H_2(s)$ are the Laplace transforms of the liquid levels in the first and second tanks, respectively, while Q(s) is the Laplace transform of the input to the 1st tank (*all in deviation form*). You're expected to give numerical values of the parameters in the transfer functions and show clearly how you derived the transfer functions.

Problem 4: A reaction $A \rightarrow R$ takes place in a constant-volume isothermal CSTR. The component mass balances are:

$$\tau \frac{dC_A}{dt} = C_{Ai} - C_A - kC_A C_R \tag{4.1a}$$

$$\tau \frac{dC_R}{dt} = C_{Ri} - C_R + kC_A C_R \tag{4.1b}$$

In equations (4.1) C_{Ai} is the feed concentration of A (input), C_{Ri} is the feed concentration of R (assumed constant) C_A and C_R are respectively the concentrations of A and R in the reactor and outlet while τ and k are positive constants.

- a) Linearize the equations around the design steady-state (C_{Ais} , C_{As} , C_{Rs}) and put them in deviation variable form
- b) Calculate the transfer function between C_R and C_{Ai} .
- c) Under what conditions on the process parameters and steady state values is the above transfer function stable?
- d) Does the above transfer function correspond to an overdamped or underdamped system? Provide a detailed explanation.