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Chapter 7  Reservoir Geometry and Properties

Reading assignment: Chapter 3 in Reservoir Simulation

If reservoirs were rectangular parallelpipeds then they could be modeled
with Cartesian coordinates.  However, nature is not as orderly as the laboratory
machine shop and thus the reservoir model must conform with the natural
boundaries of the reservoir.  Also, when modeling the details of a single well, the
well is a cylindrical surface that is a boundary for the reservoir.  Coordinates that
conform to the curved reservoir boundaries are curvilinear coordinates.

7.1  Curvilinear Coordinates

The coordinates in a curvilinear system may not have units of distance.
e.g., coordinates in cylindrical polar and spherical polar coordinates may be an
angle.  The metric tensor relates distance to the infinitestimal coordinate
increments.  Denote yi as a Cartesian system of coordinates and xi as a
curvilinear system of coordinates.  The distance between two points with
coordinates yi and yi + dyi is ds, where

3
2

1

k k

k
ds dy dy

=

=� (7.1a)

However,

k
k i

i
ydy dx
x

∂
∂

= (7.1b)

,where summation is understood between a pair of upper and lower indicies,
hence

3
2

1

k k
i j

i j
k

i j
ij

y yds dx dx
x x

g dx dx

∂ ∂
∂ ∂=

� �� �
= � �� �

� �� �

=

� (7.1c)

where

3

1

k k

ij i j
k

y yg
x x

∂ ∂
∂ ∂=

=� (7.1d)

gij is called the (covariant) metric tensor since it relates distance to the
infinitestimal coordinate increments (Aris, 1962).
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For example for the cylindrical polar coordinates
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we have
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The divergence of the gradient or the Laplacian of a scaler is given by the
following expression.
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where gij is contravariant metric tensor which is equal to the inverse of the matrix
of gij and g is the determinate of gij.  g is also equal to the square of the
Jacobian of the transformation from Cartesians y to the coordinates x.  If the
coordinate system is orthogonal, the metric tensor will have nonzero term only
along the diagonal.  If the coordinate system is not orthogonal, the equation 7.1g
will have cross partial terms.  Thus an orthogonal curvilinear coordinate system
should be used unless the algorithm includes cross partial terms.

A differential element of volume transforms between Cartesian and
curvilinear coordinates as follows.
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To illustrate the form of the finite difference expression, the x1 term of the
Laplacian will be expressed in finite differences.
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These coefficients are the grid block bulk volume and transmissibility coefficients
(without permeability).
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These coefficients are analogous to those with Cartesian coordinates except for
the metric tensor.  The finite difference expression with these latter coefficients
appear the same as with Cartesian coordinates.
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7.2 Cylindrical r-z Coordinates

Problems that are axisymmetric can be modeled with cylindrical
(x1,x2,x3)=(r,θ,z) coordinates.  Since there is no dependence on the θ
coordinate, 2x∆  is replaced with 2π.  The components of the metric tensor and
its determinant are as follows.
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The grid block volume and transmissibility coefficients (without
permeability) are as follows.
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The mean radius, ir , must be defined such that it will yeild the correct grid
volume and area for zT .
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The evaluation of 1/ 2ir+∆  depends on where 1andi i+Φ Φ  are evaluated.  If they are
evaluated at the arithemetic mean radius, then 1/ 2ir+∆  is evaluated as in a block
centered grid.  Other possible locations for evaluating the potentials is at the
controid of the grid block or or the log mean radius.  Numerical experiments
showed that the transmissibility calculated based on the potential evaluated at
the log mean (geometric mean) radius gives the best comparison with the
analytical solution.  Settari and Aziz (1974) suggests using a grid point centered
grid and locating the grid block boundaries at the logarithmic mean radius in r2.

The expression for 1/ 2ir+∆  assuming that the pressure is evaluated at the
log mean radius is given below.
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The expression for the radial grid dependent terms of the transmissibility is as
follows.
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The use of Equation 7.2d or 7.2e for the transmissibility coefficient gave a much
better comparison with an analytical solution compared to assuming that the
pressure was evaluated at the midpoint of the grid block.  When plotting the
pressure profile it did not make much difference whether it was assumed that the
pressure was evaluated at the log mean radius, arithmetic mean radius, or the
centroid.

The choice of radial grid spacing depends on the error that is dominating.
Near the well the pressure profile is a linear function of the logarithm of the radial
distance.  Here the discretization error in the profile is reduced by using a grid
that is evenly spaced in the logarithm of the radial distance.  Near the external
boundary the approach to semi-steady state is affected by the difference
between the location of where in the grid block the pressure is evaluated and the
controid of the grid block.  In coning problems the grid spacing is determined to
obtain resolution of the shape of the cone.

The following is an algorithm for calculating the grid spacing for equal
spacing in the logarithm of the radial distance.
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Assignment 7.1  Pressure response with cylindrical coordinates.  Simulate
the system of assignments 6.4 and 6.5 using cylindrical coordinates.  We now
have all four quadrants so adjust the rates accordingly.  Choose the external
radius as to have the same area as assignment 6.4 and 6.5.  Let the well radius
be 0.4 feet.  Use equal grid spacing in the logarithm of radial distance.  Let
NX=10 and 20.  Compare the profiles (at 1, 3, 10, 30, and 50 days) and history
of the pressure at the well with the analytical solution.  Use gjh/class/asg7_1.m
and alf.dat for plotting.

The pressure at the well is calculated from the pressure in the first grid
block by the following equations for a well in an infinite domain.
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The analytical solution for the bounded circular reservoir is given on page
11 of Matthews and Russell, Pressure Buildup and Flow Tests in Wells.
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7.3  Reservoir Geometry

Aquifers and petroleum
reservoirs are natural features that
have boundaries that do not conform
easily to a Cartesian coordinate
system.  A reservoir prototype may be
a representative element of a
reservoir modeled as a rectangular
parallelpipid with Cartesian
coordinates that are rotated with
respect to the sea level.  More often
reservoirs can not be modeled with
planer boundaries and the shape of
the reservoir must be taken into
account.  Figure 7.3a is an example of
cross sectional and three dimensional
grids.  Here the reservoir structure
map (contours of the subsea depth) is
projected on to the top surface of the
reservoir.  The grid extending through
the thickness of the reservoir is
projected vertically downward.  It is
clear that this grid is not orthogonal
and cross derivatives will be required
to properly describe the flux.
Usually, these cross derivatives are
neglected.

Fig. 7.3b is a curvilinear
coordinate system in which the
Cartesian coordinates of the
reference plane are projected on to
the reservoir and the top and bottom
reservoir surfaces are coordinate
surfaces of the third coordinate.  The
coordinate axis of the third
coordinate is thus normal or
orthogonal to the reservoir surfaces
(Hirasaki and O'Dell, 1970).    This
system is much closer to being
orthogonal than the system
illustrated in Fig. 7.3a.

Fig. 7.3a  Example grid system used in
reservoir simulation studies: (a) cross-
sectional model and (b)  3D model (Mattax
and Dalton, 1990)

Fig. 7.3b Curvilinear coordinate system with
x3 coordinate normal to reservoir surface
(Hirasaki and O'Dell, 1970)
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The reservoir geometry data
that is usually available are contour
maps of reservoir thickness and the
depth of the top reservoir surface
trom sea level (Fig. 7.3c).  Usually
these contour maps have either sea
level as a reference plane or a
plane that is approximately parallel
with the reservoir if the reservoir is
steeply dipping.  A system of
Cartesian coordinates, (y1, y2, y3),
may be defined such that the
coordinate surface, y3 = 0,
coincides with the reference plane.
Position on the reference plane may
be determined by the coordinates,
(y1, y2, 0).  If the reference plane is
sea level, then y3 is the depth from sea level; however, if the reference plane is
other than sea level, then the relation between y3 and depth is slightly more
complex.  In either case the reservoir thickness and the distance of the top
reservoir surface from the reference plane is a function of the coordinates, (y1,
y2), on the contour map.

Denote the system of curvilinear coordinates for the reservoir as
(x1, x2, x3).  We may specify the coordinate system to have surfaces that
coincide with the reservoir surface by defining the surfaces x3 = 0 and x3 = 1.0
to coincide with the top and bottom reservoir surfaces, respectively (Fig. 7.3b).
Since the coordinates (y1, y2) have already been defined for the reference
plane, it provides a convenient means for specifying the coordinates, (x1, x2), on
the top reservoir surface. On the top reservoir surface let

1 1 2 2 3, , 0x y x y x= = = (7.3a)

Eq. 7.3a simply define (x1, x2) on the top reservoir surface to be the projection of
(y1, y2) from the reference plane on to the top of the reservoir.  This definition is
convenient, as a coordinate grid on the reference plane will project on to the
same grid on the top reservoir surface (Fig. 7.3d).  Another restriction that we
may place on our coordinate system is for x3 coordinate lines to be orthogonal to
the coordinate lines of x1 and x2. This can be accomplished by making the x3
coordinate lines normal to the top and bottom reservoir surfaces.  However, the
x1 and x2 coordinate lines may not be orthogonal.  The coordinate lines of x1
and x2 will be orthogonal if and only if the dip is zero in one of the coordinate
directions.  The effect of x1 and x2 not being orthogonal is discussed in Hirasaki
and O'Dell, 1970.

Fig. 7.3c  Contour map of reservoir
structure with superimposed Cartesian grid
(Hirasaki and O'Dell, 1970)
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The coordinate grid needs to be
computed for the interior of the reservoir.
A coordinate grid specified for the (y1, y2)
coordinate on the reference plane may be
used to specify the (x1, x2) coordinate grid
on the top surface of the reservoir. The
coordinate intervals in the direction normal
to the top reservoir surface, ∆x3, needs to
be specified.  The coordinate grid for
(x1, x2, x3) define a set of "grid cells" or
"grid blocks" for the reservoir.  We will
refer to the center of the grid blocks as
"grid points ".

A point on the top reservoir surface
has its position in space determined in
terms of the Cartesian coordinate system
of the reference plane.  For example, a
point (x1, x2, 0) on the top reservoir
surface has the Cartesian coordinate
position, (y1, y2, D(y1, y2)], where
D(y1, y2) is the depth of the top reservoir
surface if the sea level is the reference
plane.  The local dip and the direction
normal to the reservoir surface may be
determined by computing the spatial derivatives of depth on the surface.  The
direction normal to the reservoir surface is in the direction of the x3 coordinate
line.  The Cartesian coordinate positions of grid points in the interior of the
reservoir may be computed by integrating along the x3 coordinate lines (Fig.
7.3b).

The calculations are illustrated for integration from the top surface of a
reservoir that is thin compared to the minimum radius of curvature.  Let D be the
depth and h be the thickness measured in the direction normal to the reservoir
surfaces.

Fig. 7.3d  A Cartesian coordinate
grid (y1, y2) on the reference plane
is projected on to the topmost
reservoir surface  to define a
curvilinear coordinate grid, (x1,x2).
(Hirasaki and O'Dell, 1970)
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The determinant of the metric tensor is
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and the conjugate metric tensor is

( )

2
1 2 1 2

2 1 2

2
1 2 1 2

1 2 1

2

1 0

1 0

0 0

ij

D D Dg h g h
y y y

D D Dg g h g h
y y y

h

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

− −

− −

−

� �� �� �
� �� �+ −� �
� �� �	 
� �
� �
� �� �� �
� �� �= − +� �
� �� �	 
� �
� �
� �
� �
� �� �

. (7.3d)

A coordinate system is orthorgonal if and only if

0,ijg i j= ≠ (7.3e)

Thus, we see that the coordinate system on the top surface will be orthogonal if
and only if the reservoir has zero dip in one of the coordinate directions.  From
Eq. 7.3d we see that the off-diagonal terms of the conjugate metric tensor on the
surface will all be zero if and only if the reservoir has zero dip in one coordinate
direction (i.e., if the coordinate system is orthogonal).  If there are non-zero off-



7-11

diagonal terms of the conjugate metric tensor, then the conservation equations
will have non-zero cross partial derivative terms.

Once the Cartesian coordinate positions are known, the metric tensor may
be computed from the derivative of (y1, y2 y3) with respect to (x1, x2, x3).  The
metric tensor is a matrix which relates increments of distance, area and volume
to products of coordinate increments.  It may be interpreted as a "shape
operator" which relates a curved grid block in a curvilinear coordinate system to
a rectangular grid block in a Cartesian coordinate system.  The metric tensor is
needed for the computation of the pore volume and transmissibility coefficient of
a grid block in a curvilinear coordinate system.

Sharp and Anderson (1990, 1993) have developed a method to compute
a grid that conforms with external and internal boundaries and is as orthorgonal
as possible.  Figures 7.3e and 7.3f illustrates two of their grids.  Aziz (1993)
reviewed the state of art in reservoir gridding.  Figures 7.3g and 7.3h illustrates
some grids that have been introduced.

Fig. 7.3e Boundary-conforming full-field grid
with faults (Sharp and Anderson, 1990, 1993)

Fig 7.3f  Boundary-conforming
grid for 1/8 9-spot (Sharp,
1993)

Fig. 7.3h  Examples of
hybrid grid (Aziz, 1993)
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Fig. 7.3g Examples of Voronoi grid
(Aziz, 1993)
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