
Chapter 6 Finite Difference Solution in Multidimensions 
 
 The partial differential equations for multiphase fluid flow derived in the 
previous section can be numerically solved by employing finite difference 
approximations for the partial differential equations.  The finite difference 
procedure evaluates the dependent variables (pressure and saturation) at 
discrete points in space and in time.  The derivatives are approximated by a 
difference of the dependent variable between two or more discrete points in 
space or in time. 
 
 The accuracy of the finite difference approximation is dependent on the 
formulation of the procedure and the size of the space or time increment. The 
dependence of the accuracy of the approximation on the size of the time or 
space increment can be estimated by a Taylor's series expansion.  The effect of 
the size of the space or time increment on the reservoir performance can be 
directly determined by simulating the performance with different size increments. 
 
 The finite difference approximation should also be formulated such that it 
is consistent with the material balance over the entire reservoir over any discrete 
time interval.  This will be discussed in a following section. 

 
6.1  Approximation of Time Derivative 
 
 The solutions to the multiphase equations (pressure and saturations) are 
computed at discrete time intervals, 
 
         (6.1a) 0 1 2 1, , , ... , , ...n nt t t t t t +=
 
where to is the initial time when the initial conditions are specified.  The time 
increment from tn to tn+1 is denoted as Δt. 
 

         (6.1b) 1n n nt t t
t

+ − = Δ
= Δ

1+

 
The value of the time increment, Δtn+1 can be arbitrarily specified each time step 
independent of the size of the previous time increment.  With this being 
understood, the subscript n + 1 will be omitted from Δtn+1. 
 
 A time derivative appears in the accumulation term of the material 
conservation equations. 
 

 C f q
t

∂
∂

= −∇ ⋅ +         (6.1c) 

The generalized concentration, C, is of the form 
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 C b Sφ=          (6.1d) 
 
where the porosity and the reciprocal formation volume factor change with time 
as a function of pressure. 
 
 The partial derivative of C with time can be expressed as 
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      (6.1e) 

 
 The finite difference approximation of the partial derivative of C should be 
formulated such that it is consistent with the material balance. The finite 
difference approximation of the derivative can be approximated as 
 

 1nC CC
t t

n∂
∂

+ −
≈

Δ
        (6.1f) 

 
By substituting the equation for C into the difference approximation, the 
difference approximation for C can be expressed in terms of the difference 
approximation of S and p . 
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  (6.1g) 

 
This equation is not a unique formulation for the difference approximation to C, 
but it is a formulation that is consistent with the material balance and evaluates 
the coefficients of the time difference of S and p such that it is convenient to 
solve the system of equations. 
 
 The symbol, tΔ  will be used to denote the time change of a variable, e.g., 
 

       (6.1h) 
( ) 1 1 1

1
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φ φ φ+ + +

+

Δ ≡ −

Δ ≡ −
 
6.2  Equal Grid Spacing 
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 The finite difference approximation to the conservation equations relates 
the dependent variables (pressure and saturations) at a number of discrete grid 
points or grid block in the reservoir.  A grid system in the x-y plane with equal grid 
spacing may appear as in Figure 6.1.  The grid points are denoted by the solid 
circles in the center of each grid block, The grid points are connected by the 
dashed lines. 
 

 
Fig. 6.1  Equal grid spacing 
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 The spatial derivatives appear in the conservation equations in Cartesian 
coordinates as (assuming that the coordinate directions coincide with the 
principal directions of the permeability tensor.) 
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 The derivative of pressure in the x -direction at xi can be approximated as 
 

( ) ( ), 1/ 2 1 , 1/ 2 1
2
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The finite difference equation for the spatial derivative of p at xi has values of p at 
xi-1, xi, and xi+l as shown on Figure 6.2.  

 
Fig. 6.2 Grid increments in the x-direction 
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 The truncation error for the approximation will be evaluated for the case 
when K = 1. 
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   (6.2c) 

 
Thus, the truncation error of the finite difference approximation for the case of 
constant K and equal grid spacing is proportional to the square of xΔ . 
 
 The terms Ki-1/2 and Ki+l/2 must be computed from the values at the grid 
points.  The relative permeability is a function of the saturation and is computed 
from the upstream grid point or points.  The pressure dependent quantities, b and 
μ, are just computed as an average between adjacent grid points.  The 
permeability is computed as a harmonic mean value between the two grid blocks. 
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        (6.2d) 

 
The harmonic average is the result from assuming uniform permeability in each 
grid block and one-dimensional flow.  The result is equivalent to the average 
conductance of two resistances in series,  The permeability, kx, is the 
permeability in the x-direction. 
 
 The finite difference equation can be multiplied by the product, x y zΔ Δ Δ , 
which is equal to the bulk volume of the grid block, to express it in the form 
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  (6.2e) 

 
The coefficient, Tx , has been denoted as an interblock transmissibility 
coefficient.  It may be interpreted as a product of the following factors 
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It can be expressed in practical units as 
 

 1
887.2

x r
x

k k b y zT
xμ

Δ Δ
=

Δ
       (6.2g) 

 
where  
Tx   = interblock transmissibility coefficient, (STB/D)/psi or (Mcf/D)/psi 
kx   = permeability in x-direction, md 
kr  = relative permeability 
b  = reciprocal formation volume factor, STB/RB or Mcf/RB 
μ  = viscosity, cp 

, ,x yΔ Δ Δ z  = grid spacing, ft. 
 
 Thus, the product of the interblock transmissibility coefficient at xi+l/2 and 
the pressure drop, pi+1 - pi, represents the flow in STB/D or Mcf/D from the i+1   
grid block into the i   grid block (see Figure 6.2) due to the pressure gradient. 
 
 The no-flow boundary conditions are imposed by using a zero value of the 
transmissibility at the boundaries.  By using this method for specifying the 
boundary condition, the finite difference equations using the boundary condition 
is the same expression as for the interior grid blocks. 
 
 The notation for the differences will be condensed by using the Δ symbol 
to denote differences. 
 
 ( ) ( ) ( ), 1/ 2 1 , 1/ 2 1x i i i x i i i x x xT p p T p p T+ + − −− − − ≡ Δ Δ p     (6.2h) 
 
FORTRAN code does not use fractional indices for arrays.  Thus the 
transmissibility coefficients are stored as , 1/2 ( ), 1, , 1x i xT T i i NX− = =

, 1/20; ( 1) 0x NX xT T NX+

+ .  No flow 
boundaries are represented by T T,1/2 (1)x x= = = + = . 
 
 The finite difference approximation for the divergence can now be 
expressed in the finite difference notation. 
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  (6.2i) 

 
 This equation represents the net influx into a grid block in STB/D or Mcf/D 
from all of the adjacent grid blocks. 
 
 The source terms,  have the units of rate per unit bulk volume 
of the reservoir.  By multiplying the source terms by (

, , andw o gq q q
x y zΔ Δ Δ ), the bulk volume 

of the grid block, we have 
 
         (6.2j) (q x y z= Δ Δ Δ )q
 
where q now has the units of rate of injection or negative of the rate of production 
(in STB/D or Mcf/D) into the grid block. 
 
 The accumulation term was expressed as a difference in time. 
 

 ( ) 1 1 11 n n n n n n
t

b S b Sb S
t t

φ φφ + + + −
Δ =

Δ Δ
     (6.2k) 

 
The pressure dependence of the porosity can be expressed as 
 
        (6.2l) (1 1

1n o r w n
c pφ φ δ+ +

= + )
 

oφ  = porosity at pressure, po 
cr  = rock compressibility 
δp   = difference in water phase pressure from po . 
The porosity, oφ  , can be factored out of equation (6.2k). 
 

 ( ) ( )1 1o
t t rb S c p b S

t t w
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The equation for the accumulation can be multiplied by the grid block bulk 
volume, x y zΔ Δ Δ , to be expressed as follows. 
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or in practical units, 
 

 
5.615po o
x y zV φ Δ Δ Δ

=  ,  grid block pore volume, bbl.   (6.2o) 

 
 The finite difference approximation to the conservation equation for water 
and oil can now be expressed as 
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The conservation equation for gas with the black oil model can be expressed as 
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6.3  Variable Grid Spacing 
 
 Similar concepts apply to the formulation of the difference equations as 
with equal grid spacing.  However, the expressions for the interblock 
transmissibility coefficient and grid block pore volume will be different. 
 
 With variable grid spacing, the grid system and finite difference 
expressions can be formulated with either the "grid block" formulation as shown 
on Figure 6.3 or the "grid point" formulation shown on Figure 6.4. The two 
formulations become the same with equal grid spacing.  With the grid block 
formulation, the length of the grid blocks, Δxi, Δyj, and Δzk are specified and the 
grid points are determined as the midpoint of the grid blocks.  With the grid point 
formulation, the distances between the grid points, Δxi+1/2, Δyj+1/2, and Δzk+1/2  
are specified and the faces of the grid block are defined to be at a equal distance 
between grid points.  The boundaries of the region is equal distance from grid 
point as the opposite face of the grid block. 

 
Fig. 6.3  Grid block formulation 
 

 
Fig. 6.4  Grid point formulation 
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 The grid block formulation has been thought to be less accurate than the 
grid point formulation because the truncation error analysis requires that the grid 
spacing vary smoothly in space for the grid block formulation1. However, no 
significant difference in accuracy has been observed between the grid block and 
grid point formulation in a number of practical test problems.  It is more difficult to 
select grid points than grid blocks for a practical reservoir problem.  The points 
must be selected such that the grid block boundaries coincide with the reservoir 
external boundaries and internal boundaries such as lease boundaries or 
between different rock properties in stratified reservoirs.  
 
The finite difference expression for the spatial derivatives are different between 
the grid block and grid point formulations.  The truncation error is proportional to 
Δx as Δx goes to zero if the spatial distribution of Δx changes uniformly. The 
truncation is proportional to Δx2 for equal grid spacing. 
 
 The finite difference expression for the spatial derivative with the grid 
block formulation is 
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The expression for the interblock transmissibility coefficient is 
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where the average permeability is computed as 
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       (6.3c) 

 
The grid block pore volume is expressed as 
 
 po o i j kV x yφ= Δ Δ Δ        (6.3d) 
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 The spatial derivative is approximated with the grid point formulation as 
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The expression for the interblock transmissibility coefficient is 
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where the average permeability is computed as 
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        (6.3g) 

 
The expression for the grid block pore volume is 
 
 ( ) ( ) ( )1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 21/ 2 1/ 2 1/ 2po o i i j j k kV x x y y zφ + − + − + −= Δ + Δ Δ + Δ Δ + Δ z  
           (6.3h) 
 
6.4  Material Balance Check 
 
 The conservation equations were derived based on the conservation of 
matter.  The finite difference equations should also be formulated so that it too is 
consistent with the conservation of matter.  It will be shown that the finite 
difference equations that have been formulated in the previous sections will 
satisfy the material balance condition, 
 
 (net cumulative injection) = (present fluid in place) - (initial fluid in place) 
           (6.4a) 
 
where net cumulative injection is the difference between cumulative injection and 
cumulative production.  This material balance condition should be satisfied 
exactly at any time during the simulation if the finite difference equations are 
computed with no error.  However, the material balance will not be satisfied 
exactly because of the round off error of the computer and because of using only 
a finite number of iterations in the pressure solution technique.  In principal the 
error due to using a finite number of iterations can be reduced to the level of the 
round off error by reducing the magnitude of the error tolerance for the iterations.  
The user must judge between the accuracy of the material balance and the 
computing cost of taking a large number of iterations. 
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 The total material balance is derived by summing the finite difference 
conservation equations over all grid blocks and over all time steps that have 
been computed.  Denote the summation of one of the conservation equations as 
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 (6.4b) 

 
denotes the summation over all grid blocks and 
 

  
1

0

tN

n

−

=
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denotes the summation from the initial conditions to time, tNt.  The two 
summations are interchangeable. 
 
 It can be shown that the summation of the flux terms over all the grid 
blocks is equal to zero.  To illustrate this, the flux in the x-direction will be 
considered.  To simplify the notation, define ΔΦ  such that 
 
       (6.4c) ( )x x x x xT p g D TρΔ Δ − Δ = Δ Δ Φ
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All of the terms cancel by pairs except the first and the last. 
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The transmissibility coefficient at the boundaries, T-1/2 and TNX+1/2 are zero so 
the entire sum is zero.  The same applies to the y and z directions.  This 
condition that the sum of the flux terms are zero results from formulating the flux 
terms such that the flux out of one grid block is equal to the flux into the adjacent 
grid block. 
 
 Denote the cumulative injection or the negative of the cumulative 
production of a well by Q. 
 

         (6.4f) 
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The net cumulative injection into all of the wells in the reservoir is 
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To simplify the notation, denote the accumulation terms as 
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The summation of the accumulation terms over time can be expressed as 
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The particular expansion of the accumulation term when expressing in finite 
difference form is now evident.  It had to be expanded as an identity for the 
summation over the time steps to cancel pairwise. 
 
 The summation of the accumulation terms over the grid blocks and over 
time is 
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where PFIP is present fluid in place and OFIP is original fluid in place. 
 
 Substituting the earlier equations into the above equation, we have 
 
        (6.4k) 
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This is an expression for the total material balance.  It can also be expressed as 
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The values of OFIP, PFIP, and ΣQ can be computed during each simulation run 
and the value of the ratios examined.  The deviation of the ratios from 1.0 is a 
measure of the material balance error as a fraction of the quantity in the 
denominator.  The user needs to compare the magnitudes of OFIP and ΣQ to 
determine which ratio is a more significant measure of the error.  For example, 
the equation with the cumulative production in the denominator should not be 
used as a measure of the error in the water material balance if little or no water is 
produced.   
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6.5  Solution of the Difference Equations 
 
 The finite difference equations discussed in the previous sections can be 
solved by two different procedures for multiphase problems and with a 
simplification for the single phase problems.  The multiphase problems can either 
be solved with the implicit in pressure, explicit in saturation (IMPES) procedure or 
the procedure that is implicit in both pressure and saturations.  Most reservoir 
recovery processes can be solved using the IMPES procedure.  However, in 
single well coning problems with very small grid blocks near the well, it is 
necessary to use the totally implicit procedure.  In single phase problems, the 
pressure or the real gas pseudo pressure is the only dependent variable and is 
computed implicitly.  Thus, there is no time step limitation due to stability for 
single phase problems. 
 
6.6  The Implicit Pressure - Explicit Saturation Procedure 
 
The IMPES procedure is implicit in pressure and explicit in saturation.  All of the 
capillary pressure and relative permeability terms are computed at the old time 
level, tn , using the known value of saturation, Sn.  The only unknown saturation 
terms in each finite difference equation is in the time difference term.  Thus, the 
procedure is a forward difference or explicit procedure for the saturations.  The 
flux terms are formulated with the unknown pressures, pn+1, at the new time 
level, tn+1.   Thus, the procedure for the pressure is a backward difference or 
implicit procedure. 
 
 The basis of the procedure is to combine the conservation equations such 
as to eliminate the ΔtS terms that contain the unknown saturations.  The result is 
then a single equation for the oil phase pressure.  This equation is solved for the 
pressure using one of the methods such as alternating direction implicit 
procedure (ADIP), strongly implicit procedure (SIP), conjugate gradient, or 
Gaussian elimination.  After the pressures are computed, the saturations are 
explicitly computed from their respective conservation equation. 
 
 The accumulation terms are expanded such that the time differences can 
be expressed in terms of the time difference in pressure, ΔtP, and time difference 
in saturations, ΔtS.  The equations are then combined to eliminate the ΔtS terms.  
The expansion should be expressed such that Sn+1 does not appear in any of 
the coefficients after the ΔtS terms are eliminated.  Moreover, the expansion 
should be consistent with the material balance. 
 
 A consistent expansion of the time difference of product abc in terms of 
the time difference of each of the factors is as follows. 
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Note that the coefficient, cn+1 does not appear in any of the terms.  The 
expansion of the accumulation terms in this way is consistent with the material 
balance discussed earlier. 
 
 The expansion of the accumulation terms for the water and oil 
conservation equations are as follows. 
 

( ) ( ) ( )11 1
1 1 1 't r w r w n t r w n r n nn n

c p b S c p b S c p b S c b S pδ δ δ++ +
⎡ ⎤⎡ ⎤Δ + = + Δ + + + Δ⎣ ⎦ ⎣ ⎦ t  

 (66b) 
 
where 

 1

1

' n

n n

b bb n

p p
+

+

−
=

−
        (6.6c) 

 t w tp pΔ = Δ         (6.6d) 
 
The unsubscripted p is used to denote the oil phase pressure, po .  The term, b' 
contains the unknowns, bn+1  and pn+1.  It is estimated by using the last iterated 
value for bn+1 and pn+1.  Equation (6.6d) implies that the time change in 
capillary pressure is neglected. 
 
 The expansion of the accumulation terms for the gas conservation 
equations is as follows. 
 

  

 (6.6e) 

( )( )
( ) ( ) ( )
( ) ( ) ( ){ }

, 11 1 1

, ,1

1+

1+ 1+

1+ ' '

t r w g g o s o

r w g n t g r w o s t on n n

r w g g n o s o n r g g o s o tn n

c p b S b R S

c p b S c p b R S

c p b S b R S c b S b R S p

δ

δ δ

δ

++ + +

+

⎡ ⎤Δ +⎣ ⎦
= Δ + Δ

⎡ ⎤+ + + +⎣ ⎦ Δ

where 

 , 1 ,

1

' g n g
g

n n

b b
b n

p p
+

+

−
=

−
        (6.6f) 

 

 ( ) ( ) ( )1

1

' o s o sn
o s

n n

b R b R
b R

p p
+

+

−
=

−
n       

 (6.6g) 
 
The accumulation terms for the conservation equations can now be expressed as 
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water:  ( ) 10 111po
t r w w w t t

V
c p b S z p z S

t
δ⎡ ⎤Δ + = Δ + Δ⎣ ⎦Δ w    (6.6h) 

 

oil:  ( ) 20 221po
t r w o o t t

V
c p b S z p z S

t
δ⎡ ⎤Δ + = Δ + Δ⎣ ⎦Δ o    (6.6i) 

 

gas:  ( )( ) 30 33 321po
t r w g g o s o t t g t

V
c p b S b R S z p z S z S

t
δ⎡ ⎤Δ + + = Δ + Δ + Δ⎣ ⎦Δ o

 (6.6j) 
 
The first subscript of z denotes the number (1 for water, 2 for oil, 3 for gas) of the 
conservation equation and the second subscript denotes the time difference term 
(0 for pressure, 1 for water, 2 for oil, 3 for gas). 
 
 The coefficients, zij are as follows: 
 

 ( )10 , , ,1
1 'po

r w w w n r w n w nn

V
z c p b S c b

t
δ

+
⎡ ⎤= + +⎣ ⎦Δ

S     

 (6.6k) 
 

 ( )11 , 11
1po

r w w nn

V
z c p

t
δ b ++

= +
Δ

      (6.6l) 

 

 ( )20 , , ,1
1 'po

r w o o n r o n o nn

V
z c p b S c b

t
δ

+
⎡ ⎤= + +⎣ ⎦Δ

S     

 (6.6m) 
 

 ( )22 , 11
1po

r w o nn

V
z c p

t
δ b ++

= +
Δ

      (6.6n) 

 

 ( ) ( ) ({ }30 , ,1
1 ' 'po

r w g g n o s o n r g g o s on n

V
z c p b S b R S c b S b R

t
δ

+
⎡ ⎤= + + + +⎣ ⎦Δ

)S  (6.6o) 

 

 ( ) (32 1
1po

r w o sn

V
z c p b

t
δ

+
= +
Δ

) 1n
R

+
      (6.6p) 

 

 ( )33 , 11
1po

r w g nn

V
z c p

t
δ b ++

= +
Δ

      (6.6q) 

 

 6-17



It should be noted that although the coefficients are a function of the unknown 
pressure, pn+1 they are not a function of the unknown saturations, Sn+1.  
Furthermore, the coefficients have been defined such that it is consistent with the 
material balance. 
 
 The conservation equations can now be expressed as 
 
     (6.6r) ( ) 10 11w w w w t tT p g D q z p z Sρ⎡ ⎤Δ Δ − Δ + = Δ + Δ⎣ ⎦ w

o

 
     (6.6s) ( ) 20 22o o o o t tT p g D q z p z Sρ⎡ ⎤Δ Δ − Δ + = Δ + Δ⎣ ⎦
 

 
( ) ( )

30 32 33

g g g s o o o

t t o t g

T p g D R T p g D q

z p z S z S

ρ ρ⎡ ⎤ ⎡ ⎤Δ Δ − Δ + Δ Δ − Δ +⎣ ⎦⎣ ⎦
= Δ + Δ + Δ

g   .   (6.6t) 

 
 The conservation equations will now be combined to eliminate the t SΔ  
terms.  Multiplication of equations (6.6r), (6.6s), and (6.6t)by the factors a1, a2, 
and a3, respectively, and adding results in 
 

 

( ) ( )

( ) (
1 2

3 3

1 11 2 22 3 33 3 32

w w w o o o

g g g s o o o

t t w t o t g t

a T p g D a T p g D

a T p g D a R T p g D

C p a z S a z S a z S a z S

ρ ρ

ρ

⎡ ⎤ ⎡Δ Δ − Δ + Δ Δ − Δ⎣ ⎦ ⎣
⎡ ⎤ ⎡Δ Δ − Δ + Δ Δ − Δ +⎣⎣ ⎦

= Δ + Δ + Δ + Δ + Δ

)
o

qρ

⎤⎦

⎤⎦

g

  (6.6u) 

 
where 
 
        (6.6v) 1 2 3w oq a q a q a q= + +
 
        (6.6w) 1 10 2 20 3 30C a z a z a z= + +
 
The condition that 
 
         (6.6x) 1w o gS S S+ + =
 
imposes the condition that 
 
    .       (6.6y) 0t w t o t gS S SΔ + Δ + Δ =
 
We wish to impose the condition that the t SΔ  terms in equation (6.6u) disappear. 
 
     (6.6z) 1 11 2 22 3 32 3 33( )t w t o t ga z S a z a z S a z SΔ + + Δ + Δ = 0
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Equation (6.6z) will be satisfied if the coefficients of the t SΔ  terms are equal.  
This imposes the following conditions on the a1, a2, and a3 factors. 
 

 1
11

poV
a

z t
=

Δ
        (6.6aa) 

 

 32
2

22 33

1poV za
z t z

⎛ ⎞
= −⎜Δ ⎝ ⎠

⎟        (6.6bb) 

 

 3
33

poV
a

z t
=

Δ
        (6.6cc) 

 
The factors defined in this way have a magnitude approximately equal to the 
formation volume factor. 
 
 When the free gas phase is not present in a grid block, the gas 
conservation equation is redundant with the oil equation.  In this case only the 
water and oil conservation equations are considered and the factors are 
 

 1
11

poV
a

z t
=

Δ
        (6.6dd) 

 

 2
22

poV
a

z t
=

Δ
   .       (6.6ee) 

 
 The flux terms are expressed in terms of pw , po , and pg.  They need to 
be expressed in terms of the oil phase pressure at the new time level, pn+1.  The 
capillary pressure will be expressed using the saturations at the old time level. 
 
       (6.6ff) (, 1 1 ,w n n cwo w np p P S+ += − )
 
 , 1 1o n np p+ = +

)

        (6.6gg) 
 
 (, 1 1 ,g n n cgo gp p P S+ += + n       (6.6hh) 
 
 Equation (6.6u) can now be expressed as 
 

 
( ) ( ) ( ) ( )1 1 2 1 3 1

1

w n o n g n s o n

t

a T p a T p a T p R T p

B q C p
+ + + 1+⎡ ⎤Δ Δ + Δ Δ + Δ Δ + Δ Δ⎣ ⎦

+ + = Δ
  (6.6ii) 
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where 
 

 

( ) ( )
( ) (
( ) ( )

1 1 3

1 2

3

w cwo g cgo

w w o o

g g s o o

B a T P a T P

a T g D a T g D

a T g D R T g D

ρ ρ

ρ ρ

= − Δ Δ + Δ Δ

− Δ Δ − Δ Δ

⎡ ⎤− Δ Δ + Δ Δ⎣ ⎦

)     

 (6.6jj) 
 

The term, B1 represents the flux due to the capillary pressure and gravity. 
It changes during the iterative solution for pn+1 only through changes in the 
value of a1, a2, and a3.  The flux terms can be further summarized as 
 

 
( ) ( )
( ) ( )

1 1 1 2 1

3 1

n w n o n

g n s o n

T p a T p a T p

a T p R T p

+ +

+ +

Δ Δ = Δ Δ + Δ Δ

⎡ ⎤+ Δ Δ + Δ Δ⎣ ⎦1

+
             

(6.6kk) 
 
Equation (6.6kk) is only a notation simplification and does not imply that there are 
no factors multiplying the spatial difference operators.  Equation (6.6ii) can be 
written with this notation as 
 
 1 1nT p B q C p+Δ Δ + + = Δ t

1
k

      (6.6ll) 
 
 Equation (6.6ll) can be written in residual form to reduce the effect of the 
computer round off error.  Denote the change in p from the k th   iteration to the 
k+1 th iteration as 
 
 1 1

1
k k

n np p pδ + +
+= − +              (6.6mm) 

 
where pk  is the k th  iterate to pn+1.  Equation (6.6ll) can now be rewritten as 
 
 1 1k kT p C p Bδ δ+ +Δ Δ − = k     .             (6.6nn) 
 
where 
 
 ( )1

k k k
nB T p B q C p p= −Δ Δ − − + −             (6.6oo) 

 
The term Bk represents the residual after the k th iteration.  The value of Bk is 
zero when pk satisfies equation (6.6ll).  Equation (6.6nn) can be solved with 
procedures such as ADIP, SIP, conjugate gradient, or Gaussian elimination.  The 
iterated value of the estimate to pn+1 is 
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               (6.6pp) 

1 1
1

1 1

or

k k k
n n

k k

p p p

DP DP p

δ

δ

+ +
+

+ +

= +

= + k

n

 
where 
 

              (6.6qq) 1
0

k k
n

n

DP p p

p p
+= −

=
 
The values of ai and zij are dependent on pressure and thus they are updated on 
each iteration of the pressure equation. 
 
 The iterations are continued until the residuals become small enough.  
The magnitude of the value of the residual can be measured in several ways. 
 
 

, ,

k

i j k
ABSUM B= ∑               (6.6rr) 

 
               (6.6ss) 

, ,

k

i j k
ALGSUM B= ∑

 
 

, ,
max k

i j k
BXMAX B=              (6.6tt) 

 

 
, ,

max
k

i j k
po

B
BXVMAX

V

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

             (6.6uu) 

 
where the summation or maximum value are evaluated over all grid blocks.  The 
units of Bk  are barrels (at reservoir conditions) per day.  Thus, the value of Bk  is 
a measure of the error in barrels per day remaining after k iterations. 
 
 The value of the sum of residuals is often normalized by the total pore 
volume, TPV. 
 
                (6.6ww) 

, ,
po

i j k
TPV V= ∑

 
The measure of the error that is compared with the closure tolerance, TOL, for 
Cartesian or reservoir curvilinear coordinates is 
 

 ABSUM TOL
TPV

≤              (6.6xx) 
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In radial coordinates, BXVMAX is compared with TOL.  The residuals that are 
printed out on each iteration by option are ABSUM/TPV, ALGSUM/TPV, and 
BXVMAX.  The user should specify the value of TOL such that the final value of 
ABSUM or BXVMAX represent a tolerable error, e.g., a small fraction (0.005 to 
0.05) of the total production rate.  If the value of TOL is too small, a large number 
of iterations (and large computing time) may be necessary to reach the specified 
accuracy.  On the other hand, if the value of TOL is too large, material balance 
errors may become significant. 
 
 After the solution for the pressure has converged, the values of  and 

  are computed from equations (6.6r) and (6.6s).  
t wSΔ

t oSΔ t gSΔ  is not computed from 
equation (6.6t) because  is dependent on t gSΔ t SwΔ  and t oSΔ  from equation 
(6.6y).  The gas conservation equation, (6.6t) is represented in the combined 
equation for pressure, equation (6.6ll).  If the free gas phase is not present, only 
one of either  or  needs to be computed. t wSΔ tSΔ o

 
 The limitation of the explicit calculation of the saturations is that the size of 
the time step, Δt, may be limited by stability3.  The time step limitation due to 
evaluating the relative permeability at the old, tn , time step can be approximated 
as 
 

 
'

poV
t

f u A
Δ ≤                 (6.6yy) 

 
where uA represents the volumetric flow rate through a grid block (throughput) 

and f' is the derivative of the fractional flow curve.  The time step limitation may 
be severe with small grid blocks (Vpo small) or with large throughput ( u A  
large).  This condition occurs in coning problems.  Large value of f' can become 
significant for unfavorable mobility ratio displacement, but is not a severe 
limitation for favorable mobility ratio displacement. 

 
 The time step limitation due to evaluating the capillary pressure at the old 
time step can be approximated as 
 

 ( )'
po

c x y z

V
t

P T T T
Δ ≤

+ +
             (6.6zz) 

 
where  is the derivative of the capillary pressure curve and Tx , Ty , Tz are the 
interblock transmissibility coefficients.  The time step limitation may be severe 
with a small grid block, large capillary pressure, or large transmissibility (due to 
large permeability).  For this reason the nearly vertical section of the Pc curve 
near Swc should be modified to be an extrapolation of the remainder of the 
curve. 

'cP
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Assignment 6.1  1-D, 1-phase, constant compressibility simulation for 
pressure.  Parabolic PDE; Recovery by pressure depletion 
 
 This assignment is a step toward 2,3-D, 2-phase IMPES simulation in 
heterogeneous systems of different geometry and multiple wells.  Write the code 
in anticipation that additional features will be added later. 
 
 o o op g D pρ∇ − ∇ = ∇Φ ⇒∇  
 

  
( ) ( )

( ) (
@ 1

@ 1

o o STP o

ic ic
r

b b p c p

p c p pφ φ

⎡ ⎤= +⎣ ⎦
⎡ ⎤= + −⎣ ⎦)

 

 

1
0

1
1 1
1 1
1
1
1
1

1

0

when converged,

k
n n

n n n n
k k k
n n
k
n n
k
n n

n n

p p DP

p p p p

p p p DP

p p DP DPK

p p DP

p p DP

δ

+

+

+ +
+ +

+
+

+
+

+

− ⇒

− = − =

− = ⇒

− ⇒ +

= +

= +

K

 

 
LX=1,000 feet, NX is specified.  LY=100 feet, NY=1.  LZ=10 feet, NZ=1. 
φ=0.30 (@ pic), k=50 md, kro=1.0, μ=1.0 cp, pic=1,000 psi, So=1. 
bo(@pic)=1.0, co=1.0E-5 1/psi, cr=1.0E-5 1/psi. 
qo=-10 STB/day, at i=NX. 
ABSUM/TPV<TOL=1.E-8 (also try TOL = 20.0 and 1.E-5. Number of iterations?) 
(POIP-CUM)/OOIP must be 1.0000 to this many significant digits. 
Case 1: NX=10, DPMAX=10.0 psi 
Case 2: NX=40, DPMAX=2.0 psi 
 
Compare profiles and history with analytical solution using program linear.m 
found in owlnet, gjh, /class/linear.m. 
Show your code. 
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Analytical solution for assignment 6.1 
 

( )

( ) ( )( ) ( )

2

2
2 2

1

5.615( )

3 / 1887.2( )
6

1887.2 2( , ) ( ) ( ) exp / cos /

where
0.00633

ic
avg

x

xx
ss o

r

n

x
avg ss x xo

nr

o
r

q tp t p
c L dy dz

x Lq Lp x
dy dz k k b

q Lp t x p t p x n L t n x L
dy dz k k b n

k k
c

φ

μ

μ κ π π
π

κ
φ μ

∞

=

= +

⎛ ⎞−
⎜ ⎟=
⎜ ⎟
⎝ ⎠

−⎛ ⎞= + − −⎜ ⎟
⎝ ⎠

=

∑  

Assignment 6.2 Variable grid spacing 
 Do assignment 6.1 except use NX=10 and DPMAX=2.0 psi with variable 
grid spacing.  Let DX = 140. 140. 140. 140. 140. 100. 80. 60. 40. 20.. 
 
Assignment 6.3  Extension to two dimensions 
Add option for discretization in the y direction to the code of assignment 6.1.  At 
this point, do the matrix inversion only in the x OR y direction.  Verify that the 
same result is obtained when NX=1, LX=100., NY=10, LY=1000. as for NX=10, 
LX=1000. , NY=1, LY=100.  
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