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Chapter 4  1-Dimensional Displacement with Pressure
and Capillary Pressure

The formulation with saturation as the only dependent variable can be
used for 1-D problems but can not be extended to two or three dimensions.  The
total flux is no longer known apriori in more than one dimension.  One could
calculate the total flux field and calculate stream tubes in which the fluid flows as
if the displacement is one dimensional within the stream tube.  This approach
was widely used before finite difference simulation came into practice.  This
approach is valid if the total flux field does not change with time.  However, the
total flux changes if relative well rates change or the displacement is not a unit
mobility ratio displacement.

In 1-D it is not necessary to include pressure as a dependent variable.
However, we do so in anticipation of multi-dimensional problems.  We first start
with the Buckley-Leverett displacement problem that we calculated with the
method of characteristics and with finite difference with saturation as the only
dependent variable.  The capillary pressure will be included.  The first finite
difference formulation is the implicit pressure, explicit saturation (IMPES)
formulation.  This will require inversion of a tridiagonal matrix.  This formulation
will now have an additional stability criterion because of the introduction of
capillary pressure.  We will overcome the stability limitations by using a semi-
implicit formulation.  This will require inversion of a block tridiagonal matrix.

Differential Equations and boundary Conditions

The formulation will use the subscript d and i to denote the displaced and
invading phases rather than oil and water.  The capillary pressure will be
specified such that the invading phase is nonwetting (i.e. drainage) and the
capillary pressure is an increasing function of the invading phase saturation
when the capillary pressure coefficient is positive.  By making this coefficient
negative, the invading phase will be the wetting phase (i.e., imbibition) and the
capillary pressure will decrease in magnitude with increase in the invading phase
saturation.
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The boundary conditions assume that counter-current flow does not occur at
either end.  Different boundary conditions could be used to simulate counter-
current flow.

Make variables dimensionless or normalized:
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Determine the expression for the dimensionless pressure by specifying a
characteristic pressure that eliminates the parameters from the inflow boundary
condition.
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The capillary pressure dimensionless number is a ratio of capillary to viscous
forces in a sample of finite length.  It is also identified as an "end-effect" number
to quantify the effect of the outflow end boundary condition (Mohanty and Miller,
1991).  Notice that it is inversely proportional to the flux and system length.  The
dimensionless capillary pressure is expressed as the product of the capillary
pressure dimensionless number and the J function.

Let  D iDpΦ = .  Everything will now be dimensionless.  Drop the subscript,
D.  The differential equations and boundary conditions are now as follows.
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There are two dependent variables, a saturation and a potential, and two
conservation equations.  If we are to solve the system with an IMPES
formulation, we need to reformulate the equations.  The two conservation
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equations are added together and the accumulation terms cancel out.  The result
is an elliptic equation for the potential.  This combined with the conservation
equation for the invading phase defines the equations to be solved by the IMPES
formulation.
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IMPES Finite Difference Formulation

The conservation equations are expressed in finite difference assuming
equal grid spacing.  The divergence operator is expressed as a central difference
between the fluxes at i+1/2 and i-1/2, i.e., at the bounding "faces" of the grid
blocks.  The saturations are not known at fractional grid locations so the value is
approximated by the upstream value.  A central difference for the gradient
operator at these fractional grid locations results in evaluation of the potential
and capillary pressures at the grid block locations.  A forward difference is used
for the time differential.
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The IMPES stencil is as follows.  The potential is calculated at the n+1 th
time level while using the relative permeabilities and capillary pressures at the n
th time level.  Next the saturations are updated using the new potentials but
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relative permeabilities and capillary
pressures at the n th time level.  The
resulting finite difference equation is as
follows.
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Fig. 4.1  IMPES finite difference
stencil
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Initial and Boundary Conditions

Initial Condition:  0
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Matrix Inversion

The procedure is implicit in the potential and a system of equations must
be solved.  A direct LU inversion can be made on the tridiagonal matrix.
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Stability of IMPES Procedure

We derived earlier the stability condition for explicit calculation of the
Buckley-Leverett equation.  Here we will examine the additional stability
condition imposed by including capillary pressure with the IMPES formulation.
The dimensionless differential equations are as follows.
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Since the divergence in the first equation is zero, the quantity in the bracket must
be independent of x and the boundary condition requires that it be equal to unity.
The potential gradient can be determined from this equation and the expression
can be substituted into the second equation to eliminate the potential gradient.
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You may recognize that in the absence of the capillary pressure, this equation is
the Buckley-Leverett equation.  This equation may have a different sign for the
capillary pressure term compared to some other writers but remember that we
are defining the capillary pressure to be negative for imbibition processes and
positive for drainage processes.  We are currently interested only in the stability
due to the explicit evaluation of the capillary pressure.  Retaining only the term
with the second spatial derivative gives the following.
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This equation can be expressed in finite difference as follows.
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We can determine the stability condition by applying the Gerschgorin theorem.
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Assignment 4.1  IMPES formulation of Buckley Leverett problem
Solve the problem of Assignment 1.1 using the IMPES formulation.  Verify your
code by comparing the fractional flow and recovery with the fractional flow
formulation for NX=10.  Verify that material balance is exactly satisfied.  Include
your code with the assignment.

The tridiagonal inversion and capillary pressure routines are in the file,
impes.sub on owlnet userid gjh, directory class.

Assignment 4.2  Stability of IMPES formulation with drainage capillary
pressure
Do the problem of Assignment 4.1 but with injection of oil into 100% water
saturated system, 1 21.0, 0.17, 0.29

cPN C C= = + =  (i.e., Berea drainage).  Let

NX = 10, 20, 40, 80.  First try with 0.1t
x

∆ =
∆

; what happens?  Next try with

2 0.5t
x

∆ =
∆

.  Why the difference?  Plot profile at t=2.0 and compare with MOC

solution.  Plot fractional flow recovery efficiency and compare with MOC up to
t=5.

Assignment 4.3 Imbibition capillary pressure
Do the problem of Assignment 4.1 but with 1 21.0, 0.17, 0.29

cPN C C= = − =  and

SIC=0.2.  Let NX = 10, 20, 40, 80 and 2 0.5t
x

∆ =
∆

.  Plot profile at t=0.5.  Plot

fractional flow and recovery efficiency to t=2.  Define recover efficiency as
fraction of movable pore volume in this case.

Assignment 4.4 Counter-current imbibition
Modify code to allow flow reversal of the invading phase, i.e. allow inflow

of the invading fluid from the outflow end and determine upstream direction for
the invading phase relative permeability.  Let: M=2.0, n=1.5, 

cPN =100., C1=-

0.17, C2=0.29, SIC=0.2, NX=20, 2 0.005t
x

∆ =
∆

.  Plot profiles every 0.005 to

t=0.04.  Plot recovery efficiency to t=0.04.  Plot recovery efficiency as function of
the square root of (

cPN ×time).  What is the reason for the two linear regions?

Reading Assignment  Chapters 5 and 6 in Reservoir Simulation
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Simulation of Centrifuge Displacement with Semi-Implicit
Formulation

Centrifuge displacement is usually conducted under conditions where the
capillary pressure is significant and the sample length is short.  The stability
limitation of the IMPES formulation may be very severe for centrifuge
displacement experiments.  Thus the equations will be formulated with a semi-
implicit formulation.  To be fully implicit, a nonlinear system of equations will
need to be solved for the dependent variables at the new time level.  The semi-
implicit formulation approximates the nonlinear terms by the value at the old time
level plus the differential of the term multiplied by the change of the dependent
variable over the time step.
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The saturation change over the time step, DS, is a dependent variable that is
solved simultaneously with the pressure.  In the one dimensional case, the
coefficient matrix is block tridiagonal.

In centrifuge displacement, the rock sample is immersed in the invading
phase and the sample is supported such that the zero capillary pressure
boundary condition at the outflow end is satisfied.  Instead of a gravitational field,
the buoyancy is due to a centrifugal field that is a function of both time and
position.  It is a function of time because it takes a finite amount of time for the
centrifuge to reach the set point rotational speed.  Also, the speed is changed in
multi-speed experiments.  It is a function of position because different parts of
the sample will be at a different distance from the axis of the centrifuge.
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The initial condition does not have to be uniform but will be given as a uniform
value here.  However, the invading phase does not have to be immobile at the
initial condition.  In the case of imbibition displacement, the initial condition is
determined by the capillary pressure and average saturation attained during the
prior drainage experiment.  The condition of zero flux of the displaced phase at
the inflow end assumes that outflow of the displaced phase due to counter-
current imbibition will not occur because this would result in a layer of displaced
phase shielding the inflow phase from the invading phase.  The outflow
boundary condition of zero capillary pressure assumes that the displaced phase
does not wet the end piece of the core holder.  No restriction is placed on inflow
of the invading phase from the outflow end.  This can occur during imbibition
experiments.  The pressure boundary condition assumes that the invading phase
is in hydrostatic equilibrium outside the core.

A natural change of variables is to replace the phase pressures with the
flow potential of the invading phase and the capillary pressure.
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The flow potential has a convenient boundary condition of zero at both ends, and
it is needed to determine the upstream direction for the invading phase.  The
variables are made dimensionless or normalized as follows:
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After dropping the subscript D, the dimensionless equations expressing the
conservation of mass and momentum during the displacement are as follows.
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The boundary conditions are homogeneous and thus do not change on being
made dimensionless.  The saturation initial condition is equal to unity.  In the
following derivations, the product ( ) ( )2 t R xω  is assumed to be unity only for
clarity of the equations.  It is easy to include any specified function for this
product to represent a changing centrifugal field.
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Finite Difference Approximation

The differential equations are approximated with a finite difference
approximation that uses upstream weighting of the mobility, is implicit in the
potential and semi-implicit in the saturation.  A semi-implicit rather than a fully
implicit, Newtonian iteration method is used.  The semi-implicit method is one
iteration of the Newtonian iteration formulation.  Since the accumulation term is
linear in the dependent variable, (i.e., saturation) iterations are not required for
the method to conserve matter.  It is not desirable to be fully implicit in the in the
mobility terms when it is not needed for stability because the implicit in saturation
formulation has the spatial and temporal discretization errors being additive,
while the explicit formulation has the errors partially canceling.  Thus only a
fraction of the implicit contribution to mobility is used as needed for stability.  It is
necessary to solve the potential and saturation simultaneously for the case of
large mobility ratio (M=106) and drainage capillary pressure curves with a narrow
pore size distribution (a=0.1 in the Thomeer model).  This is accomplished by
solving the system of equations with a block tridiagonal algorithm.

The finite difference equations (before being modified for boundary
conditions) are as follows.
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The quantity, DS is the saturation change over the time step.  It is
subscript at a fractional grid location for the implicit contribution to the relative
permeabilities.  The appropriate grid location is the upstream location
corresponding to the location where the relative permeability is evaluated.  The
upstream location must be determined for the invading and displaced phases by
examining the sign of the respective potential differences between the grid
blocks.  (With the boundary conditions stated here the upstream direction for the
displaced phase is from the inflow to the outflow end.  However, this may not be
the case for a different set of boundary conditions.)  When flow reversals are
occurring, the time level at which the direction of the potential gradient is
determined may be important.  One approach is to iterate twice on the potential
equation (tridiagonal matrix) without including the implicit saturation contributions
to determine the upstream direction for each phase.  The current upstream
relative permeability is used in each iteration.  The entire system is then solved
by inverting the block tridiagonal matrix.  The potential, Φ* for the implicit
saturation terms is the potential determined after these two iterations.


