
Chapter 1 Finite Difference for Fractional Flow Equation 
 
Reading assignment: Reservoir Simulation (Mattax and Dalton 1990), Chapter 
1, 2, 5, and Appendix B. 
 
Differential Equation 
 
 The one dimensional, two phase Buckley-Leverett displacement will be 
solved using the finite difference approximation.  The Buckley-Leverett solution 
will be used to evaluate the approximation errors of the finite difference method. 
 

 

∂
∂ φ

∂
∂

S
t

u f
x

x t j w

S x

f t

j T j

j

j

= − > > =

=

=

, , ,

,

,

0 0

0

0

b g
b g

I.C.

B.C.

o,

 

 

Let: S S S
S S
w wr

or wr

=
−

− −1
 

 x x
LD =  

 
t u

S S L
t

Q
S S V

D
T

or wr

or wr p

=
− −

=
− −

1

1

b g

b g

φ
 

Drop subscripts: 
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This equation could be expanded as 
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S
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but the finite difference approximation to this latter equation will not be 
conservative.  We will show later that in order for the equations to be 
conservative, the flux leaving one grid block must equal the flux entering the 
adjacent grid block. 
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Finite Difference Approximations 
 
 The time derivative is approximated with the following finite difference 
expressions. 
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Several different approximations 
can be used for the spatial 
derivative.  Figure 1.1 illustrates 
the "block centered" grid that is 
commonly used in reservoir 
simulation rather than the "point centered" grid commonly used in class room 
instruction.  The dependent variable is defined at the center of the grid block and 
the fluxes are evaluated across the faces separating the grid blocks.  The 
divergence of the flux in grid block i expressed in finite difference is the net efflux 
from the grid block.  The illustrations here are for equal grid spacing.  The 
concepts are the same for unequal grid spacing but the equations have more 
detail than needed here. 

 
  Fig. 1.1 Block centered grid 
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Central difference: 
 
But f is a function of S which is evaluated at xi-1, xi, xi+1, ..., thus the central 
difference approximation approximates the value at i+1/2 and i-1/2 with an 
average of the value on either side. 
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Even though the central difference approximation is a second order correct 
method, it suffers from problems such as sharpening a front more than it should 
and even causing over-shoot behind a shock front. 
 
1 Point Upstream weighting: 
 
 The one point upstream weighting scheme approximates the value of f at 
i+1/2 and i-1/2 with the value in the grid block on the upstream side, e.g. from a 
smaller value of x in this case. 
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This approximation is first order correct, i.e., O(∆x).  The truncation error from 
this approximation will result in "numerical dispersion" but it has none of the over-
shoot problems of the central difference approximation. 
 
2-Point Upstream Weighting 
 
 Rather than using the upstream value to approximate fi-1/2, the 2-point 
upstream method uses the two points upstream of i-1/2 to approximate the value 
of the flux at i-1/2. 
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Certain precautions apply to this method (Todd, O'Dell, Hirasaki 1972). 
 
Saturation Profiles with Different Weighting Methods 
 
 The saturation profiles from 
the central difference or "mid point 
weighting" and the upstream 
weighting are compared with the 
Buckley-Leverett profile for a mobility 
ratio of 0.455 in Fig. 1.2.  The 
saturation distribution of water along 
the system at 0.32 PV of water 
injection is shown.  The solid curve is 
the Buckley-Leverett solution and the 
symbols are the finite difference 
results. It is readily apparent that the 
use of mid point weighting is 
completely unacceptable for this 
case.  Aside from the overshoot in the 
predicted saturation profile, the 
predicted location of the front is 
grossly in error.  The single point and 
two point weighting are the upstream weighting methods mentioned above. 

 
Fig. 1.2 Comparison of mobility weighting 
schemes (Todd, O'Dell, Hirasaki 1972) 
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Explicit or Implicit Formulation 
 
 The accuracy of the finite difference approximation for the time derivative 
and the stability of the procedure is dependent on the time level at which the flux 
terms in the conservation equation is evaluated.  Three common time levels for 
evaluating the flux terms are shown on Figure 1.3.  The points in space where 
the dependent variables are evaluated are denoted by the index i for this one-
dimensional illustration.  It has been assumed that the spatial difference terms in 
the flux require the values at xi-1, xi, and xi+1 for the finite difference equation at 
xi.  The points in space and time at which the values of the dependent variable 
appear in the finite difference equation are shown as the solid disks and are 
connected by the solid lines. 
 
 The "forward difference" 
formulation evaluates the spatial 
differences for the flux terms at the 
old time level, tn using the known 
values of the dependent variable.  
Thus, the difference approximation 
in time moves the solution forward 
from tn to tn+1.  Since each finite 
difference equation has only one 
unknown (the value of the 
dependent variable at xi and tn+1) 
the formulation is said to be an 
"explicit" procedure. 
 
 The "backward difference" 
formulation evaluates the spatial 
differences for the flux terms on the 
new time level, tn+1, using the as 
yet unknown values of the 
dependent variable.  Thus, the 
difference approximation in time 
couples the finite difference equation 
backwards in time to the known 
value of the dependent variable at 
the old time level, tn.  Each finite 
difference equation has several 
(three in this illustration) unknown 
values of the dependent variable at 
the new time level.  Since the 
dependent variable at the new time 
level has to be computed by solving 
a system of equations, this formulation is said to be an "implicit" procedure. 

 
Fig. 1.3 Time difference schemes 
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 The "central difference" approximation evaluates the flux terms at both 
the old and new time levels and uses an average value.  It is central in 
the sense that the finite difference equation is centered between the old 
and new time levels.  This method is also often known as the Crank-Nicholson 
procedure. It is also implicit as each finite difference equation will contain several 
unknown dependent variables.  This method has a time truncation error that is 
second order correct.  Stability analysis for this method applied to the parabolic 
problems show it to be unconditionally stable but is conditionally oscillatory if the  
problem has derivative (Neumann) boundary conditions. 

 

 
 A combination of forward difference, backward difference, and/or central 
difference procedures may be used to solve the finite difference equations.  For 
example, the implicit pressure-explicit saturation (IMPES) procedure uses the 
backward difference (implicit) procedure for pressure and the forward difference 
(explicit) procedure for saturations.  On the other hand, the totality implicit 
simulator such as for well coning uses the backward difference (implicit) 
procedure for both pressure and saturations. 
 
Time Truncation Error 
 

The accuracy of the different procedures for approximating the time 
derivative can be estimated by evaluating the "truncation error" arising from 
approximating the derivative with a finite difference.  The term "truncation error" 
is sometimes defined as the global error between the solution of difference 
equation and the differential equation.  However, the error will be defined here as 
the local error between the derivative and the finite difference approximation as 
determined from a truncated Taylor's series. 
 
 The truncation error of the forward difference (FD) can be approximated 
by a truncated Taylor's series expansion about tn.  As an example let the 
saturation be the dependent variable. 
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Solving for the difference approximation, we have 
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Thus the error in approximating the derivative by a finite difference is 
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This term goes to zero in proportion to ∆t, so the error of this approximation is 
denoted as "of the first order in ∆t" or "of order ∆t." 
 
  e OFD = ∆b gt
 
 By using a truncated Taylor's series about tn+1 and 1/2(tn + tn+1), the error of 
the approximation with backward difference (BD) and central difference (CD) can 
be estimated.   
 
Backward Difference, BD 
 

 S S
t

S
t

t S
t

tn n

n

+

+

−
=
F
HG
I
KJ −1

1

2

22∆
∆∂

∂
∂
∂
b g  

 
e t S

t
t

O t

BD = −

=

∆

∆

2

2

2

∂
∂
b g

b g
 

 
Central Difference, CD 
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 The above equations imply that the truncation error of the forward and 
backward differences goes to zero in proportion to ∆t and the truncation error of 
the central difference goes to zero in proportion to the square of ∆t.  The 
magnitude of the truncation error for a given value of ∆t is a function of the 
second or third derivative of the dependent variable with time. 
 
 Although the central difference approximation appears to be the most 
accurate as ∆t becomes small, it is necessary to also consider stability and 
complexity of coding the procedure when deciding on a procedure for a particular 
application.  The forward difference is the simplest and the central difference is 
the most complex method to code.  However, the forward difference procedure 
has a stability limitation that limits the time step size and the central difference 
procedure has oscillations that may limit the time step size. 
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 Most standard "black oil" simulators are explicit in saturation and implicit in 
pressure (i.e., IMPES).  The severe time step size limitation associated with 
single well coning problems requires a formulation that is implicit in both the 
saturations and pressure (i.e., fully or semi-implicit). 
 
Spatial Truncation Errors 
 
 The truncation error for the one point upstream weighting is derived 
assuming the upstream direction is always towards lower values of x. 
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 The two point upstream weighting truncation error is derived assuming 
that the upstream direction is toward lower values of x. 
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Eliminate the second derivative term by multiplying the first equation by 4 and 
subtracting from the second equation. 
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This method is called 2 point upstream weighting because it uses two upstream 
points for an approximation to fi-1/2 and fi+1/2. 
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When implementing the 2-point upstream method, it is necessary to constrain the 
fractional flow such that it is positive and less than unity. 
 
 The central difference approximation is second order accuracy but has 
the overshoot problem mentioned earlier. 
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Numerical Dispersion 
 
 We will examine the effect of the truncation error of the explicit and implicit 
one point upstream weighting formulation by examining the expression for the 
truncation error of the entire finite difference equation.  We will first examine the 
explicit formulation with one point upstream weighting.  Substitute the finite 
difference expressions for the time and spatial differentials into the differential 
equation.  Subscripts will be used for the spatial index and superscripts will be 
used for the time index. 
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 We will simplify the analysis by assuming that the fractional flow 
expression is a linear function of saturation, i.e.  
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The differential equation is now expressed in terms of derivatives of S only. 
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Substituting into the previous equation we have, 
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Where the coefficient D is 
 

 D f x f t= −
' '

2
∆ ∆b g 

 
We now see that the finite difference equation is equivalent to the convective-
diffusion equation with the diffusion coefficient a function of ∆x and ∆t.  We 
know that the solution of this equation with D=0 and constant f' is an indifferent, 
step wave.  The effect of the truncation error is to cause an apparent dispersion 
of the displacement front.  With the explicit formulation the spatial and time  
truncation errors tend to cancel each other since they have opposite signs.  

However, if  ∆
∆

t
x f
>

1
'
, then the value of D will be negative.  The solution to the 

diffusion equation with negative diffusion equation is unstable.  We also will see 
that a stability analysis of the finite difference equation shows that the scheme is 
unstable if D is negative. 
 
 An equivalent analysis of the implicit formulation with one point 
upstream weighting show the coefficient to be of the following form. 
 

 D f x f t= +
' '

2
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The spatial and time truncation errors are additive for the implicit formulation.  
Thus the coefficient will never become negative.  Also the implicit formulation is 
unconditionally stable. 
 
 The methods with second order spatial approximations have truncations 
errors that can not be represented as a dispersion term (i.e., coefficient of 
second spatial derivative).  The second order spatial approximation methods 
have the truncation error term that corresponds to the third order spatial 
derivative in the Taylor series expansion.   
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Recovery Efficiency 
 
 The oil recovery efficiency can be calculated in two ways, either as a 
change in the average saturation in the system or as a cumulative production.  
The former is calculated by a numerical integration in space and the latter by a 
numerical integration in time.  If the method is conservative (and no mistake in 
coding), the two methods for calculating the recovery efficiency will agree within 
round-off errors. 
 
Assignment 1-1  Finite difference solution to the Buckley Leverett equation. 
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Solve for (1) saturation profile at t=0.5, (2) effluent history of f, (3) recovery 
efficiency up to t=2.0.  Compare with the method of characteristics (MOC) 
solution.  Let NX= 1.0/∆x=100 and ∆t/∆x=0.1. 
 
 If you do not have the method of characteristics solution from assignment 
12 of CENG 571, you may copy it from owlnet. Look in the CENG671 course 
website. 
 
Assignment 1-2  Truncation Error 
 
 Evaluate effect of the global truncation error by using NX=5, 10, 20, 40, 
80.  Compare history of f and ER with the MOC solution.  Show the convergence 
of f and ER to the MOC solution by plotting the absolute value of the difference 
for 0<t<2 with ∆x on a log-log plot. Determine the rate of convergence from the 
slope. 
 
Assignment 1-3  Two Point Upstream Weighting 
 
 Do the same as assignment 2 except with the two point upstream 
weighting method. 
 
Note to assignments: Comparing the recovery efficiency of the numerical 
methods with the MOC will not demonstrate the rate of convergence.  The 
difference of the recovery efficiencies at tD=1 is equal to the integral of the 
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algebraic difference between the numerical and MOC effluent fractional flow 
from tD=0 to 1.  The integral of the algebraic difference is not a norm.  The 
integral of the absolute difference is a norm, the 1-norm.  Attached are plots 
showing the convergence of numerical solution using the 1-norm from tD=0 to 2.  
These show convergence that is of the same order as the local truncation error. 
 
Stability 
 
 The stability of the equation will be analyzed for the linear equation 
assuming that f' is constant. 
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The explicit (forward difference), one point upstream weighting formulation for 
this equation is as follows. 
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Written in matrix notation, 
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,ect. 

Let s be a solution to the same difference equation, IC, and BC but with no 
round-off errors.  Then the difference, e = S -s, has zero IC and BC. 
 
 e In n+ = +1 αb g  
 
A round-off error at t=to is equivalent to a nonzero initial condition for e at t=to, 
i.e., e=eo.  We wish to find out how such a error will propagate in time, i.e., will it 
grow in magnitude, will it oscillate?  The matrix equation will be expressed in 
terms of its Euclidean norm.  We need a few definitions and theorems (Varga 
1962). 
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 Definition 1.1.  Let x be a (column) vector of Vn(C), the n-dimensional 
vector space over the field of complex numbers C of column vectors x. Then, 
 

 x x x≡ =
F
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KJ=

∑* /
/

b g1 2 2

1

1 2

xi
i

n

 

 
is the Euclidean norm (or length) of x. 
 
 Definition 1.2.  Let A=(ai,j) be a n×n complex matrix with eigenvalues λi, 
1≤ ≤i n.  Then 
 
 ρ λA iib g ≡ ≤max , 1 n≤  
 
is the spectral radius of the matrix A. 
 
 Definition 1.3. If A=(ai,j) is an n×n complex matrix, then 
 

 A
A

= ≠sup ,
x

x
x 0  

 
is the spectral norm of the matrix A. 
Corollary. For an arbitary n×n complex matrix, A,  
 
 A A≥ ρ b g 
 
 Theorem 1.2 
 
 A Ax x≤ ⋅  
 
Definition 1.4. Let A be an n×n complex matrix.  Then, A is convergent (to zero) 
if the sequence of matrices A, A2, A3, ... converges to the null matrix 0, and is 
divergent otherwise. 
 
Theorem 1.4. If A is an n×n complex matrix, then A is convergent if and only if  
ρ(A)<1. 
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Theorem 1.5. Gerschgorin theorem Let A=(aij) be an arbitrary n×n complex 
matrix, and let 
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Then, all the eigenvalues λ of A lie in the union of the disks 
 
 z a i ni i i− ≤ ≤ ≤, ,Λ 1  
 
 The Gerschgorin theorem can be restated as follows. 
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Continuing with the matrix equation for e, 
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Starting from eo,  
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For the errors to not grow, the spectral radius of (I+α) must be less than unity.  
For this matrix we have 
 

 
ai i

i

, = −

=

1 α
αΛ

 

The bounds on the eigenvalues are 
 
 1 2 1− ≤ ≤α λ  
 
To keep the spectral radius less than unity, the lower limit must be greater than  
-1.0. 
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Think about what this stability condition means.  The method of characteristics 
states that the wave velocity is equal to f'uT/φ.  The numerical solution can 
advance only one grid block per time step with the explicit formulation i.e., the 
maximum velocity of a wave with the explicit formulation is ∆ ∆x t/ .  If this ratio is 
less than the correct wave velocity, f'uT/φ., the numerical procedure will retard the 
wave front. 
 
Assignment 1-4  Stability of the Explicit Finite Difference Procedure. 
 

  
k k S

k k S
r r

o n

r r
o n

1 1

2 2

1

21

=

= −b g
 

  

n n

M
S x
f t

1 2 1
0
10
0 0

0 1

= =
=
=

=
=

.

.
( , )
( , ) .

α
0

0
 
What is the value of f' for this case?  What is the exact solution?  Solve for (1) 
saturation profile at t=0.5 and 1.0, (2) effluent history of f, and (3) recovery 
efficiency up to t=2.0.  Compare with the method of characteristics (MOC) 
solution.  Let NX= 1.0/∆x=100 and ∆t/∆x=0.1, 1.0, 1.01 1.02.  Explain the results 
with respect to the truncation error and stability analysis.  Does the deviation 
from the exact solution grow with time? 
 
Assignment 1-5  Stability with M=10. 
 
 Do same as assignment 4 except let M=10.0, profiles at t= 0.05 and 0.10, 
and ∆t/∆x = 0.1, 0.5, and 1.0. 
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