
Chapter 8  1-D, Multiphase - Multicomponent 
Displacement 
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Definitions 
 
i component index 
j phase index 
m number of phases 
n number of components 
Sj  saturation of phase j 
fj fractional flow of phase j 
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cij concentration of component i in phase j 
Ci overall concentration of component i 
Fi overall fractional flow of component i 
C={C1, C2, ..., Cn}t composition 

0
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i

C
dC

dx v
dt =
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 concentration velocity of component i 

0
C
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dt =
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 composition velocity  

v u φ=   mean interstitial velocity 
 
Assumptions: 
 
1. One dimensional 
2. No capillary pressure or dispersion, i.e. first order partial derivatives 
3. Properties depend only on composition, i.e., are independent of pressure. 
4. Homogeneous system, i.e., properties do not depend explicitly on position. 
5. Ideal volume of mixing, i.e. no volume change on mixing 
6. Phase composition are locally at equilibrium. 
 
Overall Concentration and Fractional Flow 
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Differential Conservation Equations 
 

 0, 1, 2, , 1i iC Fv i
t x

n∂ ∂
∂ ∂

+ = = … −  

 
Concepts 
 
 Composition.  The complete set of concentrations of all components in all 
phases and of all phase saturations constitutes a composition.  (Granted the 
premise of local phase equilibrium, a composition is fully characterized by the 
complete set of overall concentrations of all components.)   
 
  1 2{ , , , }t

nC C C=C …
 
 Profiles and history.  A graph showing a dependent variable as a function 
of distance at a fixed time is called a profile.  A graph showing a dependent 
variable as a function of time at fixed location is called a history. 
 
 Waves.  A wave is a composition variation, usually propagated in the 
direction of flow.  (Under certain conditions a wave may have zero propagation 
velocity and thus remain in place.) 
 
 Sharpening Behavior of Waves.  At any moment in time, a wave, or a part 
of a wave may be “sharp” or it may be “diffuse”. 
 
 With respect to their behavior on propagation, waves can be grouped into 
three categories.  A “self-sharpening wave”, if initially diffuse, sharpens as it 
travels and eventually becomes a shock (discontinuity).  A “spreading wave” 
spreads or becomes more diffuse as it propagates.  An “indifferent wave” neither 
sharpens nor spreads on propagation.  A wave can also be sharpening in one 
part and spreading in another.  (These definitions apply in the absence of 
dispersion or capillary pressure.) 
 
 Velocities.  It is important to distinguish between “particle velocity” and 
“wave velocity”.  The former describes the rate of travel of matter; the latter, the 
rate of advance of physical variables. 
 
 The phase velocity of a fluid phase (an average particle velocity) is the 
average velocity of a volume element of that phase.  The concentration velocity 
of a component and the composition velocity (both wave velocities) are the 
velocities at which a given concentration or composition advances.  (The 
composition velocity can defined only for coherent waves, because only in these 
waves do composition advance unchanged.) 
 
 Composition Space.  The composition space is a coordinate system with 
the overall concentrations, Ci,  of all components as coordinates.  A composition 
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thus corresponds to a point in the composition space.  A wave corresponds to a 
curve between two points which represents the compositions on its upstream and 
downstream sides. 
 
 Composition Paths.  The composition space will be seen to contain curves 
in discrete directions, representing composition variations which meet the 
coherence condition (see below).  These curves are called composition paths or 
paths for short.  The grid of mutually intersecting paths is uniquely determined 
from the partial differential equations and equilibrium phase properties.  The 
paths are independent of initial and boundary conditions. 
 
 Composition Routes.  The composition route, or route for short, is a curve 
in the composition space corresponding to the sequence of compositions in a 
system with specified initial and boundary conditions.  A distinction can be made 
between history routes (for fixed location) and profile routes (at fixed time).  By 
convention, routes are symbolized by arrows pointing in the direction of flow, i.e. 
from B.C. to I.C.  In a system that is coherent everywhere in space and time, the 
route follows a sequence of paths, switching from one to another at their 
intersections.  In general, routes may at least temporally contain noncoherent 
segments that do not follow any paths. 
 
 Coherence.  Coherence is a short-hand expression for what in the present 
context could be called the condition for propagational stability of a composition 
wave.  A wave in a multicomponent system is in general a composite of waves of 
all the overall concentrations.  For the multicomponent wave to be “coherent” 
upon propagation, the waves of all the concentrations must stay together, i.e., 
they must have the same velocity.  The “coherence condition” is the condition 
that all concentration waves at any given point in space and time have the same 
wave velocity.  We will see that this condition is satisfied for only a finite number 
of directions in the composition space.  These directions are the directions of the 
composition paths. 
 
Concentration Velocities in Multicomponent Systems 
 
 The concentration velocity is defined as the velocity at which a given value 
of concentration propagates through the system. 
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The concentration velocity can be determined from the expression for the total 
differential and the conservation equation for component I. 
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These quantities represent changes 
in Fi and Ci along a profile, i.e, dt=0.  
The concentration velocity can now 
be expressed in terms of these 
changes. 

Ci
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FiFi
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 In general, not all of the vCi are 
equal to each other.  In such a case, 
the trajectories of dCi=0 will be 
crossing each other in a distance-time 
diagram.  If the trajectories are crossing each other, then the composition (set of 
all concentrations) does not remain constant along the trajectories.  e.g., We see 
that along a trajectory of C1 constant, C1=C1

o, the value of C2 changes from 
C2

o+δC2 , to C2
o , to C2

o-δC2 .  If C2 is changing along the trajectory of constant C1 
and the concentration velocity is a function of both C1  and C2 , then the trajectory 
may not be straight because the slope (equal to the concentration velocity) may 
be changing. 
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 On the other hand, suppose that 
the concentration velocities are equal 
to each other, i.e., vC1 = vC2 = ... = vCn-1.  
This implies that  
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concentrations remain constant on the trajectory.  Thus the composition remains 
constant along the trajectory. 
 
 This condition that the concentrations velocities are equal is called the 
coherence condition: vC1 = vC2 = ... = vCn  = vC.  This is not a general condition, 
but it is satisfied over much of the distance-time domain in problems in which the 
initial and boundary conditions make only discrete changes or make continuous 
changes only a finite interval.  We will first study the properties of waves that 
satisfy the coherence conditions.  Then we will show when waves are coherent 
and when they are non-coherent. 
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Since equation is homogeneous, factor out δx. 
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Divide by –v and use . 
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 The solution to this system of equations is an eigenvalue problem with 
eigenvalues, λ and the eigenvectors, δC.  A solution to the eigenvalue problem 
satisfies the condition that 

1 2C Cv v v= = =" , i.e., the coherence condition. 
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 There are as many solutions, δC as 
there are distinct eigenvalues.  The set of 
solutions can be identitied by the relative 
values of the eigenvalues, i.e., the relative 
values of vC.  Set 1 corresponds to the 
smallest (slowest) value of vC and set n-1 
carresponds to the largest (fastest) value of 
vC.  δC is a direction vector in the composition 
space.  Thus the solutions, δC define as many 
directions as the number of distinct 
eigenvalues. 
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C2
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waves

Fast 
waves

C1

C2
Slow 
waves

Fast 
waves

 
 
 
 Examine the properties of the composition variation, {δCk}=(δC1 , δC2 ,..., 
δCn-1), along the profile (i.e., along a wave) that satisfies the coherence condition, 
i.e., vC1 = vC2.=…= vC. 
 

1. Along a trajectory of dCi=0, all of the other concentrations are also 
constant, i.e., the composition remains constant along a trajectory. 
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Thus the trajectory of dCi = 0, i = 1, 2, …, n-1 all concide. 
 

2. The trajectory is a staright line.  We have assumed that Fi is a function of 
only the composition, i.e., independent of x and t.  Thus the Jacobian 
matrix, [ ]/i kF C∂ ∂

dx

is a function of only composition.  Thus the eigenvalues 
is a function only of composition.  Since along a trajectory, the 
composition is constant, the eigenvalues, the velocity vC, and the slope of 
the trajectory, ( ) 0

/
dC

dt
=

 must all be constant. 

 8 -7


