
Chapter 7  Two Phase, One Dimensional, Displacement 
 
 The case of one dimensional, two immiscible, incompressible phase 
displacement with zero capillary pressure will be studied by specializing the 
fractional flow equations derived earlier to just two phases.  In addition we 
assume the system has a finite length, uniform initial conditions, and constant 
boundary conditions.  We will be calculating the following: (1) trajectories of 
constant saturation in the distance-time domain, (2) saturation profile at a given 
time, (3) fractional flow history at the outflow end, and (4) recovery efficiency as a 
function of time. 
 
 A two phase system can be described by only one saturation and one 
fractional flow expression because the saturations and fractional flows must add 
to unity.  Thus the only independent equation for this system can be given by the 
following. 
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α is positive for the x axis rotated in the counter clockwise direction from the 
horizon. 
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 We may identify phase 1 with water and phase 2 with oil.  The initial 
condition will be taken to be at the residual (immobile) water saturation.  Initial 
condition of mobile water saturation will cause no difficulty.  The boundary 
conditions are a specified total flux and fractional flow of water equal to unity.  
The total flux can be any arbitrary function of time if the gravity term in the 
fractional flow equation is zero.  If the gravity term is nonzero we assume that the 
total flux is constant.  In the following we will be assuming that the fractional flow 
depends only on the saturation(s) and is independent of position and time; thus 
we do not want the fractional flow to be a function of time except through the 
saturation.  Also, we will later relax the assumption of constant boundary 
conditions and show how a step change in the boundary condition will set up a 
new set of waves which may overtake slower waves from the original boundary 
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conditions and cause "interference".  A step change in the initial conditions could 
be treated in a similar way.  No downstream boundary condition can be specified 
for this first order differential equation.  However, we will assume that the system 
has a length L so that we can define a characteristic volume. 
 
Dimensionless and Normalized Variables 
 
 The dimensionless distance will be normalized with respect to the 
system length. 
 
 , 0D Dx x L x= ≤ 1≤  
 
 The saturations will be limited by the residual value of each phase.  A 
normalized saturation S (without subscript) is defined. 
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 The relative permeabilities will also be normalized with respect to their end 
point values. 
 
 A dimensionless time is defined as a number of movable pore volumes 
of throughput. 
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 The end point mobility ratio, M (invading/displaced) is defined as 
follows. 
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A mobility ratio greater than unity is called unfavorable because the invading fluid 
will tend to bypass the displaced fluid.  It is called favorable if less than unity and 
called unit mobility ratio when equal to unity. 
 
 A dimensionless gravity number, NG is defined. 
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The differential equation and fractional flow expression with these dimensionless 
or normalized variables are as follows. 
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 In the following, we will work with dimensionless and normalized variables.  
The subscript D in tD and xD and the subscript 1 in f1 will be dropped.  The 
relative permeabilities will be normalized with respect to the end point values. 
 
Assignment 7.1  Fractional Flow Curves 
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Plot: (1) f versus S, and (2) df/dS versus S 
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Trajectories in Distance - Time (x,t) Space 
 
 The Buckley-Leverett theory calculates the velocity that different 
saturation values propagate through the permeable medium.  Since the fractional 
flow is a function of saturation, the conservation equation will be expressed in 
terms of derivatives of saturation. 
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The differential, df/dS is easily calculated since there is only one independent 
saturation.  If there were three or more phases this differential would be a 
Jacobian matrix.  The locus of constant saturation will be sought by taking the 
total differential of S(x,t). 
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This equation expresses the velocity that 
a particular value of saturation propagates through the system, i.e., the saturation 
velocity, vS is equal to the slope of the fractional flow curve.  It is also the slope 
of a trajectory of constant saturation (i.e., dS=0) in the (x,t) space.  Since we are 
assuming constant initial and boundary conditions, changes in saturation 
originate at (x,t)=(0,0).  From there the changes in saturation, called waves, 
propagate in trajectories of constant saturation.  We assume that df/dS is a 
function of saturation and independent of time or distance.  This assumption will 
result in the trajectories from the origin being straight lines if the initial and 
boundary conditions are constant.  The trajectories can easily be calculated from 
the equation of a straight line. 
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Definition of Waves 
 
 Wave:  A composition change that propagates through the system. 
 
 Spreading wave:  A 
wave in which neighboring 
composition (or saturation) 
values become more distant 
upon propagation. 
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Indifferent waves: A wave 
in which neighboring 
composition (or saturation) 
values maintain the same 
relative position upon 
propagation.   
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Step Wave: An indifferent wave 
in which the compositions change 
discontinuously. 
 
 
 
 
 
Self Sharpening Waves: A wave 
in which neighboring 
compositions (saturations) 
become closer together upon 
propagation. 
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Shock Wave:  A wave of 
composition (saturation) 
discontinuity that results from a self sharpening wave. 

a

b

S S

x x

t1 t2>t1 a

b

aa

bb

SS

xx

t1 t2>t1

 
 

 7 - 5



 

aa

bb

S

x

t1 t2
a

b

t3t3t3

 
 
Rule:  Waves originating from the same point (e.g., constant initial and boundary 
conditions) must have nondecreasing velocities in the direction of flow.  This is 
another way of saying that when several waves originate at the same time, the 
slower waves can not be ahead of the faster waves.  If slower waves from 
compositions close to the initial conditions originate ahead of faster waves, a 
shock will form as the faster waves overtake the slower waves.  This is 
equivalent to the statement that a sharpening wave can not originate from a 
point; it will immediately form a shock. 

Spreading Wave

Sharpening Wave

Shock Wave

Wave does
not exist
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Mass Balance Across Shock 
 
 We saw that sharpening wave 
must result in a shock but that does not 
tell us the velocity of a shock nor the 
composition (saturation) change across 
the shock.  To determine these we 
must consider a mass balance across 
a shock.  This is sometimes called an 
integral mass balance as opposed to 
the differential mass balance derived 
earlier for continuous composition 
(saturation) changes. 
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Δf/ΔS is the cord slope of the f versus S curve 
between S1 and S2. 
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shock
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 The conservation equation for the 
shock shows the velocity to be equal to the 
cord slope between S1 and S2 but does not in 
itself determine S1 and S2. To determine S1 
and S2, we must apply the rule that the waves 
must have non-decreasing velocity in the 
direction of flow.  The following figure is a 
solution that is not admissible.  This solution is 
not admissible because the velocity of the 
saturation values (slope) between the IC and 
S1 are less than that of the shock and the 
velocity of the shock (cord slope) is less than 
that of the saturation values immediately 
behind the shock. 
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This solution is admissible in that the velocity 
in nondecreasing in going from the BC to the 
IC.  However, it in not unique.  Several 
values of S2 will give admissible solutions.  
Suppose that the value shown here is a 
solution.  Also suppose that dispersion 
across the shock causes the presence of 
other values of S between S1 and S2.  
There are some values of S that will have a 
velocity (slope) greater than that of the 
shock shown here.  These values of S will 
overtake S2 and the shock will go the these 
values of S.  This will continue until there is 
no value of S that has a velocity greater than 
that of the shock to that point.  At this point 
the velocity of the saturation value and that 
of the shock are equal.  On the graphic 
construction , the cord will be tangent to the 
curve at this point.  This is the unique 
solution in the presence of a small amount 
of dispersion.. 
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  Composition (Saturation) Profile  The 
composition (saturation) profile is the 
composition distribution existing in the system 
at a given time. 

 
 
 
Composition or Flux History:  The 
composition or flux appearing at a given  point 
in the system, e.g., x=1. 
 
Summary of Equations 
 
 The dimensionless velocity that a 
saturation value propagates is given by the 
following equation. 
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With uniform initial and boundary conditions, the origin of all changes in 
saturation is at x=0 and t=0.  If f(S) depends only on S and not on x or t, then the 
trajectories of constant saturation are straight line determined by integration of 
the above equation from the origin. 
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These equations give the trajectory for a given value of S or for the shock.  By 
evaluating these equations for a given value of time these equations give the 
saturation profile. 
 
 The saturation history can be determined by solving the equations for t 
with a specified value of x, e.g. x=1. 
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The breakthrough time, tBT, is the time at which  the fastest  wave reaches 
x=1.0.  The flux history (fractional flow history) can be determined by calculating 
the fractional flow that corresponds to the saturation history. 
 

x

t

x=1.0

t=to

I.C.

B.C.

Summary of Diagrams 
 
 The relationship between the 
diagrams can be illustrated in a 
diagram for the trajectories.  The 
profile is a plot of the saturation at t=to.  
The history at x=1.0 is the saturation 
or fractional flow at x=1.  In this 
illustration, the shock wave is the 
fastest wave.  Ahead of the shock is a 
region of constant state that is the 
same as the initial conditions. 
 
 
 
Assignment 7.2  Calculation of 
Trajectories, Profile, and History 
 
 Use the fractional flow curves of the last assignment, the initial condition, 
S=0, and the boundary condition, f=1.0, to calculate (1) the trajectories of the 
waves that will exist in this system, (2) the saturation profiles at t=0.5, and (3) the 
fractional flow history at  x=1.0. 
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Average Saturation and Recovery Efficiency 
 
 If the saturation profile is monotonic, then the average saturation in the 
system (i.e., 0<x<1) can be determined by integration by parts.  This contribution 
to the Buckley-Leverett theory is credited the Welge (1952). 
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Recall that x was expressed as a function of S in the expression for the 
saturation profile. 
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Recall that the history at x=1 is given by t[S(x=1)].   
 

 ( )
( ) ( )

( )

1 0
1 ,

1
BT

f x f x
S S x t tdf S x

dS

⎡ ⎤= − =⎣ ⎦= = − >
⎡ ⎤=⎣ ⎦

 

 
Example:  Let I.C.: S=0; B.C.: f=1.  Then 
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The average saturation is then 
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where S above is S evaluated at x=1. 
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 The recovery efficiency is usually defined as the fraction of the original 
oil in place that has been recovered.  Here we will define a normalized recovery 
efficiency , ER, that is normalized with respect to the original water flood movable 
oil in place.  Since we have assumed incompressible fluids, the normalized 
recovery efficiency is equal to the normalized average water saturation. 
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With this definition, the normalized recovery efficiency has the following limiting 
values. 
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Graphical Determination of ER 
 
The ER can be graphically determined from 
the fractional flow plot. The preceding 
equation can be rearranged as follows.  
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The left side of the equation is the slope of the fractional flow curve at S.  Recall 
that RE S≡ .  The right side of the equation is the expression for the cord slope 
from f(S) on the curve to f=1.0 and RS S E= = .  For a given value of S, ER  can 
be determined by making the slope and cord 
slope equal, i.e., tangent to the curve.  The 
time is equal to the reciprocal of the slope.  
The recovery efficiency at breakthrough can 
be constructed as the intercept at f=1 of the 
line that intercepts the initial condition and is 
tangent to the fractional flow curve. 
 
 
 
Assignment 7.3 Recovery Efficiency 
 
 Calculate the recovery efficiency as a function of time for the problem 
given in the last two assignments. 

f
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SBT

1.0
ER,BT

I.C.

 
Assignment 7.4  Displacement with shock and spreading waves 
 
 Do the problem of assignments 7.1 - 7.3 but with M=2.0 and n1=n2=1.5.  
Plot the tangent line from the initial condition to the fractional flow curve when 
plotting the fractional flow curve.  When plotting df/dS plot also plot f SΔ Δ  from 
S=0 to S of the shock.  Hint:  To find the tangent point use the function fzero to 
find the zero point of  f/S - df/dS.  If you are using a spreadsheet, graphical 
determination of the shock is OK. 
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Effect of Gravity on Displacement 
 
 Gravity or buoyancy always has a effect on multiphase flow in porous 
media if the fluids have different densities.  Gravity is omnipresent and will have 
a greater effect if the displacement is viewed in two or three dimensions.  
However, we will limit ourselves to one dimensional displacement because of the 
ease that the effect of gravity can be quantitatively evaluated in one dimension.  
In one dimension we will not see the "gravity tongue" that results from gravity 
under or over - ride.  The fractional flow formulation assumes that the saturation 
is uniform perpendicular (transverse) to the direction of flow.  Even with uniform 
transverse saturation distribution, the fractional flow analysis clearly illustrates 
the effect of gravity assisting or retarding the displacement.  Simple gravity 
drainage is a case where the only driving force for displacement is the buoyancy. 
 
Displacement of oil by water in a dipping formation 
 

oil +
water

dip angle
 

 
The expression for the fractional flow of water (phase 1); using the notation that α 
is measured counter-clockwise from the horizontal is as follows. 
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If we use the power-law or Corey model of the relative permeability, the 
expression for the fractional flow is as follows. 
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The gravity number is defined as 
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However, we will abbreviate our notation to include sin α . 
 
 sing gN Nα α=  
 
 Positive values of gNα  will decrease the value of fw, i.e., upward 
displacement of oil by water will decrease the fractional flow of water for a given 
saturation, i.e., the displacement is stabilized by gravity. 
 
 Negative values of gNα  will increase the value of fw, i.e., downward 
displacement of oil by water will increase the fractional flow of water for a given 
saturation. 
 
 Values of fw less than zero or greater than unity can exist for some values 
of S and gNα .  The flow of water and oil are counter-current under these 
conditions. 
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Assignment 7.5 Effect of gravity on displacement. 
 
 Do the same as assignments 7.1-7.3 except that M=2.0 and  

gNα = -1.0, 0, +1.0. 
 
Inter-relation between mobility ratio and gravity number on displacement 
 
 We have examined individually the effect of mobility ratio and gravity on 
displacement of oil by water.  We can derive an analytical expression to show the 
combined effect of mobility ratio and gravity if we assume that n1 = n2 = 1.0 
(Hirasaki 1975).  The derivative of the fractional flow for this case is as follows. 
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If ( ) 2 20 1and 0df dS S d f dS= ≥ ≤ , then the wave is a spreading or indifferent 
wave and the fastest wave is that for S=0+ε.  The breakthrough time and thus the 
recovery at breakthrough can be determined from the slope at S=0.   
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The relationship that results in piston-like displacement, i.e., ER,BT = 1.0 is  
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M
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This relationship says that piston-like displacement will always result (with n=1 
and one dimensional) if gNα >1, regardless of the mobility ratio.  Also, piston-like 
displacement will result (with n=1 and one dimensional) with negative values of 

gNα  if the mobility ratio is favorable enough.  If you were to calculate the fractional 
flow curves with an equality in the above relationship, the curves will all have unit 
slope. 
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Gravity Drainage 
 
 We will now consider the case of 
displacement by the action of only the 
buoyancy, i.e., the invading phase is in 
hydrostatic equilibrium pressure at either 
end of the system.  We will further simplify 
the problem by assuming that the invading 
fluid has zero viscosity.  This implies that 
the pressure of the invading fluid is the 
hydrostatic pressure even inside the 
system.  The capillary pressure will be 
neglected for the present analysis.  We will 
show later that the capillary pressure often 
can not be neglected for short systems. 
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Drop the subscript on the dimensionless variables. 
 

 0
1

dS
n

dx S t
dt S x

nS

∂ ∂
∂ ∂=

−

⎛ ⎞ = −⎜ ⎟
⎝ ⎠

=

 

 
Assume uniform initial and boundary conditions. Then, 
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The profile is monotonic for n>1.  
Thus there will not be a shock.  
The initial condition is S=1.  The 
breakthrough time is the time for 
the wave at S=1-ε to reach x=1. 
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 The recovery is found by calculating the average saturation. 
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Prior to breakthrough the profile includes all saturations to S=1 and a region  of 
constant state at S=1.  The location of the fastest wave at S=1 is 
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After breakthrough the profile is integrated to x=1. 
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The normalized recovery efficiency is denoted by ER. 
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The recovery efficiency at breakthrough is ER,BT. 
 
 , 1 , 1R BTE n n= ≥  
 
 This model can be used to predict the production by gravity drainage with 
air or gas as the invading fluid and the liquid retained by the hydrostatic 
saturation profile is negligible.  This model has been used to estimate the relative 
permeability in centrifuge displacement (Hagoort 1980).  To estimate the residual 
saturation it is necessary to normalize the recovery efficiency with respect to the 
pore volume rather than the movable pore volume since the latter is the quantity 
to be estimated. 
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 The production as a function of dimensionless time is plotted above.  In 
the case of n=1, the displacement is piston-like.  The linear plots shows the 
production to become very slow after a dimensionless time of 10.  However, the 
semilog plot shows that production continues but with a decreasing rate as the 
exponent becomes larger.  Notice that in all cases the production is at a constant 
rate until breakthrough.  The flux prior to breakthrough corresponds to the flux of 
oil at the initial relative permeability under the action of the buoyancy force. 
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The oil flux is equal to the total flux since the gas only enters to replace the oil 
that is produced.  Substituting the above equation into the definition of the gravity 
number gives the value of the gravity number prior to breakthrough. 
 
 1,g BTN t= + < t  
 
This result is in agreement with the condition derived earlier to achieve piston-like 
displacement with n=1 and infinite mobility ratio. 
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Interference of Waves 
 
 Up to now we have been solving problems with constant initial conditions 
and boundary conditions.  This resulted in the trajectories all being straight lines 
originating from the origin of the (x,t) space.  Now consider the case in which 
there is a step change in the boundary condition at time t1.   
 
 The first figure shows the f vs S curve, distance-time diagram, and 
saturation profile for two phase displacement in which the initial and boundary 
conditions are constant.  The trajectories of constant saturation are straight that 
originate at (x,t)=(0,0).  The arrows in the f versus S curve point in the direction of 
flow.  Note that the slopes are nondecreasing in the direction of flow. 
 
 At time t=t1 the boundary condition is changed to the same condition as 
the initial condition. The arrows show the new waves at time t=t1 from the new 
BC to the old BC and then the same waves from the old BC to the IC.  There is a 
spreading wave from the new BC up to a saturation S=S1 and then a shock in 
going from S1 to the old BC.  We will call this shock the back shock to distinguish 
it from the front shock.  The velocity of this back shock is greater that of the wave 
at the saturation of the old BC (which is zero velocity here).  Thus the back shock 
will over take the slower waves and the saturation of the old BC will no longer 
exist.  At some later time t=t2, The back shock will jump to some saturation that 
is less than that of old BC and the saturation behind the shock will be a different 
value, S2.  Notice that the slope of the back shock is now steeper.  The distance-
time diagram shows the change in the velocity of the back shock as a trajectory 
with changing slope.  The velocity and the saturation behind the back shock 
continually changes and the back shock continues to encounter different 
saturations ahead of it.  Numerically the back shock can be calculated as a 
succession of short straight line segments in which the slope and saturation 
behind the shock is recalculated when the back shock encounters the trajectory 
of the next increment in saturation ahead of the back shock.  The saturation 
profile shows the back shock "eating" into the original waves.  New values of 
saturation behind the back shock are being created that have a velocity equal to 
the back shock velocity at the time the saturation value appears.  Thus the 
trajectory of S=S2 is tangent to the trajectory of the back shock  at t=t2.  This will 
continue until the back shock over takes the front shock. 
 
 After the back shock over takes the front shock, there will only one shock 
and the saturation ahead of the shock will be the IC.  The saturation behind the 
shock will be the saturation that existed behind the back shock.  This shock will 
have velocities that is slower than that of the saturations behind the shock.  Thus 
the saturation behind the shock will continue to change as well as the velocity of 
the shock.  Again, the trajectory of the shock can be numerically calculated as a 
succession of straight line segments. 
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 An example of when two immiscible phases are injected as slugs is the 
water-alternating-gas process for mobility control for the miscible gas or CO2 
EOR process.  The slugs of water reduce the gas saturation and thus the gas 
relative permeability.  This reduces the effective mobility of the gas and improves 
the sweep efficiency compared to continuous injection of gas.  The shape of the 
relative permeability (e.g. the exponent n) is an important parameter for this 
process.  Wettability is also an important factor in this process.  Water-wet 
conditions are not favorable for this process compared to mixed wet conditions 
because (1) the gas/water relative permeability ratio is larger for a given 
saturation compared to a mixed wet case, and (2) in water-wet conditions, the oil 
is trapped as isolated drops that may not be contacted by the gas while in mixed-
wet cases, the oil is connected by thin films through which gas can diffuse. 
 
Assignment 7.6:  Interference of waves 
 
 For the oil-water displacement problem, let: Ng=0, n=1, and M=0.5, or 2.0.  
Let the first boundary condition be water injection followed by the second BC of 
oil injection at t=0.1.  Plot the fractional flow with shock constructions, distance 
time diagram and saturation profiles for t=0.1, 0.2, 0.4, and 0.8. 
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