
Chapter 4 Volumetric Flux 
 
 We have so far talked about Darcy's law as if it was one of the 
fundamental laws of nature.  Here we will first describe the original experiment by 
Darcy in 1856.  We will then generalize to cases where the flow is in more than 
one dimension. Finally we will identify common cases when the displacement 
does not follow Darcy's law. 
 
Darcy's Experiment (Bear 1972) 
 
 In 1856, Henry Darcy investigated the flow 
of water in vertical homogeneous sand filters in 
connection with the fountains of the city of Dijon, 
France.  Fig. 4.1 shows the experimental set-up 
he employed.  From his experiments, Darcy 
concluded that the rate of flow (volume per unit 
time) q is (a) proportional to the constant cross-
sectional area A, (b) proportional to (h1 - h2), and 
inversely proportional to the length L.  When 
combined, these conclusions give the famous 
Darcy formula: 
 
 ( )1 2q KA h h L= −  
 
where K is the hydraulic conductivity.  The 
pressure drop across the pack was measured by the height of the water levels in 
the manometer tubes.  This difference in water levels is known as the hydraulic 
or piezometric head across the pack and is expressed in units of length rather 
than units of pressure.  It is a measure of the departure from hydrostatic 
conditions across the pack. 

 
Fig. 4.1 Darcy's experiment 
(Bear 1972) 

 
Flow Potential 
 
 The hydraulic head was convenient when pressures were measured by 
manometers or standpipes and only one fluid is flowing.  It is more useful for 
multidimensional, multiphase fluid flow to define a flow potential for each phase.  
(Note:  There are several ways to define a potential.  The potential used here is 
in units of pressure rather than elevation.) 
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where ρ is the density of the fluid, g is the acceleration of gravity and D is depth 
with respect to some datum such as the mean sea level.  The relation between 
the hydraulic head and the flow potential (for constant density) is 
 

 h constant
gρ

Φ
= +  

 
Substituting this expression for the hydraulic head into Darcy's equation: 
 

 ( )1 2

w

q K
A g Lρ

Φ −Φ
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The version of Darcy's law which can be applied to multiphase flow is derived by 
replacing the hydraulic conductivity, fluid density and acceleration of gravity by 
the mobility, λ.  The mobility can be factored into ratio of a property of the 
medium and a property of the fluid, the ratio of permeability, k, divided by 
viscosity, μ. 
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Also, the flow rate per unit area is denoted as the flux, u, and the potential 
difference can be expressed as a gradient. 
 

 k du
dxμ
Φ

= −  

 
Permeability Tensor 
 
 In three dimensions, the flux and the potential gradient are vectors and the 
permeability is a second order tensor. 
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where in Cartesian coordinates, 
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It will be stated without proof that the tensor is symmetric, and there exists at 
least three orthogonal coordinate directions which will transform the permeability 
tensor into a diagonal matrix.  However, if the coordinates are not aligned with 
these three directions, the permeability tensor will have off diagonal terms.  If the 
medium is isotropic, the permeability tensor is diagonal with equal valued 
coefficients on the diagonal. In this case the permeability can be expressed as a 
scalar and an identity matrix.  More often the permeability is isotropic in the 
direction of the bedding plane but anisotropic perpendicular to the bedding plane.  
In this case, if two coordinates are in the plane of the bedding, the permeability 
tensor is diagonal with the coefficients in the plane of the bedding having equal 
values and denoted as horizontal permeability, kh, and the coefficient in the 
direction perpendicular to the bedding denoted as vertical permeability, kv.  In 
this case the permeability tensor will look as follows: 
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Marine deposits usually have the bedding plane parallel to the sand strata.  
However, cross-bedded deposits have bedding planes that are not parallel to the 
sand strata and non zero off diagonal terms will exist. 
 
Permeability Micro-Heterogeneity 
 
 Natural sediments are not homogeneous even on a micro-scale of 
millimeters.  Inspection of a consolidated sandstone rock sample shows 
laminations that parallel the bedding plane of the sediment.  These 
heterogeneities are of too small scale to describe individually in a reservoir 
simulation.  It is necessary to average the reservoir properties over the 
dimensions of a simulation grid block.  These small scale heterogeneities in 
permeability can be described as in parallel or perpendicular to the direction of 
flow. 
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Fig.  4.2  Layering parallel and perpendicular (in series) to the direction of flow. 

Composite permeability for layers in parallel 
 
When the flow is parallel to the bedding, all layers have a common pressure drop 
and length.  The flow rate and cross sectional area is the sum of the individual 
layers. 
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If we express the composite permeability of this system in parallel as an average 
permeability, we have 
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This average is called an arithmetic average.  This average is dominated by the 
higher permeability layers. 
 
Composite Permeability for Layers in Series 
 
Now consider the system in series.  Each layer has a common flux, u, and cross 
sectional area, A.  However, each layer has a distinct length, n and permeability, 
kn.  The pressure drop over the length of the composite system is the sum of the 
pressure drops over the individual layers.  Also, the length of the composite 
system is the sum of the individual layer thicknesses. 
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This average is sometimes called a harmonic average.  This average is 
dominated by the lower permeability layers. 
 
Permeability Anisotropy 
 
 We mentioned earlier that the permeability may be greater parallel to the 
bedding than perpendicular to the bedding.  The permeability tensor will still be 
diagonal if one coordinate direction is aligned with the perpendicular direction to 
the bedding.  However, if a formation is cross-bedded it may not be possible to 
align the coordinates with the bedding because now the bedding planes will no 
longer be parallel with the reservoir boundaries.  In such a case the permeability 
tensor will have off diagonal terms and the flux vector will not be collinear with 
the potential gradient.  The off diagonal terms of the permeability tensor can be 
calculated from the definition of a second order Cartesian tensor.  Let us 
consider the transformation of the coordinate frame by an arbitrary rigid rotation.  
Fig. 4.3 shows the original frame O123 in which the coordinates of a point P are 
x1, x2, x3 and the new frame O123 in which they are x1, x2, x3.  Let lij be the 
cosine of the angle between Oi and Oj, i,j=1,2,3.  Thus l1j, l2j, l3j are the 
directional cosines in the old system, i.e., they are the projection of Oj on O123.  
By definition (Aris 1962) of a Cartesian vector, the new coordinate xj  is the 
length of the projection of OP on the axis Oj, i.e., 
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Fig. 4.3  Rotation of a Cartesian 
coordinate system from xi to x j. 

 
 1 1 2 2 3 3j j j jx l x l x l x= + +  
 
The definition (Aris 1962) of a second order 
Cartesian tensor is an entity having nine 
components Aij, i,j=1,2,3, in the Cartesian 
coordinates O123 which on rotation of the 
coordinates to O123 become 
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 Lets consider a simpler case of 
anisotropy in two dimensions.  
Suppose that as illustrated in Fig. 4.4, 
the coordinate directions of x1 and x2 
coincide with  the principal direction of 
the permeability tensor so that 
A12=A21=0.  Now suppose that the 
coordinate system is rotated to x1, x2  
by a rotation about the x3 axis.  The 
directional cosines of this rotation is 
given by the following matrix. 
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Fig. 4.4  Rotation of the x1, x2 coordinates 
about X3 by and angle θ. 

 
This rotation will transform an anisotropic, diagonal tensor in the x1, x2 
coordinate system to a tensor with off diagonal terms in the x1, x2 coordinate 
system.  The off diagonal terms can be negative. 
 
 Another way to view the effect of anisotropy is to compare the directions of 
the potential gradient and flux vectors.  Suppose that the coordinates x1, x2 are 
aligned with the principal directions of the permeability tensor and potential 
gradient divided by viscosity is given as a unit vector inclined at an angle θ from 
the x1 axis.  The components of the flux are then: 
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The direction of the flux uθ  can be compared with the direction of the potential 
gradient to determine the departure from collinearity. 
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Assignment 4.1  Anisotropic Tensor 
 
 Suppose a system is layered with 1/10 of the thickness having a 
permeability of 1 md and 9/10 of the thickness having a permeability of 10 md.   
(a) What is the average permeability parallel and perpendicular to the bedding? 
(b) Suppose the original coordinate system has x1 parallel to the direction of 
bedding and x2 perpendicular to the direction of bedding.  Let x1, x2 be another 
coordinate system rotated an angle θ from x1, x2.  Derive expressions for kij in 
terms of k11, k22, and θ. 
(c) Plot components of kij for 0≤θ≤π/2. 
(d) Suppose the potential gradient is given by the unit vector in the direction θ 
from x1.  Calculate and plot the direction α-π of the (negative) flux for 0≤θ≤π/2. 
Also, plot the unit slope line which would result if the potential gradient and flux 
were collinear. 
 
Darcy's Law from Momentum Balance 
 
 So far we have generalized Darcy's law from observations made in the 
19th century.  Another approach that has been made is to derive Darcy's law 
from first principals.  Here we will use the latter approach just in enough detail to 
see what we are neglecting in Darcy's Law.  The equation of motion or 
momentum balance of a continuum fluid is (Bird, Stewart, and Lightfoot 1960) 
 

 ( ) [ ] [ ] p
t

∂ ρ ρ τ
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The left hand side terms are the rate of increase of momentum per unit volume 
plus the rate of momentum gain by convection per unit volume.  These are the 
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inertial terms that are neglected in Darcy's law.  The inertial terms become 
important in flowing systems with high velocity, high permeability, and/or low 
viscosity.  We will neglect inertial terms for the moment but return to it later.  The 
term in brackets is the rate of momentum gain by viscous transfer per unit  
volume.  Since the shear stress τ is a tensor, the divergence of the shear stress 
is a vector.  The momentum balance given above apply only in the pore spaces 
of the porous medium and the pore walls are boundaries for the domain  of  the 
equation.  To derive a momentum balance that will apply for a volume of the 
porous medium that is large compared to the size of individual pores, we must 
integrate the equation over the volume and divide by the volume to express the 
momentum balance in terms of average quantities.  The volume average of the 
pressure gradient and buoyancy terms  will recover the same expression.  The 
average of the viscous transfer term can be expressed as follows (Aris 1962). 
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The integral is over a volume of the pore space enclosed by L3 that has internal 
surfaces or pore walls denoted by Sφ  and the external surfaces denoted by Sext.  
We saw earlier that the ratio of the pore wall surface to the pore volume is 
inversely proportional to the grain diameter.  The ratio of the external surface to 
the pore volume is inversely proportional to L.  Thus as L becomes large 
compared to dp, the second integral can be neglected.  The dot product of the 
stress with the pore walls can be approximated as follows; 
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Thus the momentum balance neglecting inertial terms can be expressed as 
follows: 
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We have derived a relationship which states that the average velocity in the pore 
space is proportional to a potential gradient consisting of a pressure and gravity 
term and the coefficient is proportional to the square of a characteristic pore or 
grain dimension and is inversely proportional to the fluid viscosity. 
 
Non-Darcy Flow 
 
 Darcy's law applies in most cases but cases where it does not apply 
should be recognized.  Alternative models have been developed in most cases 
where Darcy's law does not apply. 
 
High Reynolds Number Flow 
 
 We derived the Blake-Kozeny equation while neglecting inertial terms.  
Fig. 4.5 is a plot of friction factor versus Reynolds number for a packed bed (Bird, 
Stewart, and Lightfoot 1962).  Go is the mass flux, ρvo.  This figure shows that 
the Blake-Kozeny model which obeys Darcy's law will apply for Reynolds number 
less than 10 but inertial effects must be included for higher Reynolds numbers.  
The Ergun equation combines the low Reynolds number Blake-Kozeny model 
with the high Reynolds number Burke-Plummer model.  The result works for both 
regimes. 

 
Fig. 4.5 Friction factor versus Reynolds number for flow in packed bed (Bird, 
Stewart, and Lightfoot 1960) 
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Low Pressure Gas 
 
 At low pressures the mean free path of the gas molecules in the pores 
may be less than the pore diameter.  This will give the appearance of "slip flow" 
and the permeability will be dependent of the absolute pressure.  This effect is 
called the Klinkenberg effect and the pressure independent permeability is 
estimated by extrapolating to infinite pressure.  A model for the pressure 
dependent permeability is as follows. 
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Compressible gas 
 
 Another factor at low gas pressures is the large compressibility which will 
result in the flux changing in even a one dimensional system.  This is not a 
problem with the differential form of Darcy's law but with finite difference 
approximation or when using the integrated form of Darcy's law, an average 
density must be used.  This can be avoided by using the pressure squared as the 
dependent variable if the pressure is low enough for the ideal gas law to be 
obeyed.  
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If the gas does not obey the ideal gas law or the viscosity changes with pressure, 
the real gas pseudo pressure can be used. 
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Complex Fluids 
 
 Darcy's law departs from a linear relation between the potential gradient 
and the flux when the viscosity or the relative permeability depends on the flux or 
pressure gradient.  Examples are polymer solutions and foams. 
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