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Chapter 3  Rock Properties

Rock properties are the measurable
properties of rocks that are a measure of its
ability to store and transport fluids, ionic
species, and heat.  Rock properties also
include other measurable properties that aid in
exploration or development of a reservoir.

Grain Size Distribution
Sieve Analysis

An easily measurable property of
unconsolidated sand is the grain size
distribution.  The classical method for
measuring grain size distribution is to use a set
of sieve trays of graded mesh size as illustrated
in Fig. 3.1.

The results of a sieve analysis are
tabulated to show the mass fraction of each
screen increment as a function of the mesh
size of the increment.  Since the
particles on any one screen are
passed by the screen immediately
ahead of it, two numbers are
needed to specify the size range of
an increment, one for the screen
through which the fraction passes
and the other on which it is
retained.  Thus, the notation 14/20
means "through 14 mesh and on
20 mesh."

A typical sieve analysis is
shown in Table 3.1.  The first two
columns give the mesh size and
the width of the opening in the
screen.  The third column is the
measured mass fraction retained
on the designated screen.  The
fourth column is the average
particle diameter retained in the corresponding mass fraction.  The fifth column is
the cumulative mass fraction coarser than the designated screen opening.
Notice that the particle diameters differ by 2  or a ϕ increment of 0.5.

Fig. 3.1 Sieve analysis for
measuring grain size distribution
(Bjorlykke 1989)

Table 3.1 Sieve analysis (McCabe, Smith, and
Harriott, 1993)
Mesh Screen

opening

di, mm

ϕ Mass
fraction
retained
xi

Avg.
particle
diameter

id

Cum.
mass
fraction

i
i

x�

4 4.699 -2.23
6 3.327 -1.73 4.013
8 2.362 -1.24 2.845
10 1.651 -0.72 2.007
14 1.168 -0.22 1.409
20 0.833 +0.26 1.001
28 0.589 +0.76 0.711
35 0.417 +1.26 0.503
48 0.295 +1.76 0.356
65 0.208 +2.27 0.252
100 0.147 +2.77 0.178
150 0.104 +3.27 0.126
200 0.074 +3.76 0.089
Pan 0 0.037



3-2

The classification of the sand into
sand, silt, clay, or subdivision into coarse
sand, medium sand, fine sand, ect. was
shown in Fig. 2.5. Another scale that is
sometimes. used rather than grain diameter in
mm is the phi scale or the negative of the
logarithm base 2 of the diameter in mm.  Fig.
3.2 shows the correspondence between the
two scales. This scale subdivides the different
sand grain sizes between -1 to +4. The base
2 is because the  Tyler mesh sizes sorts grain
sizes by factors of 2 (see Fig. 2.5). Also, it is
convenient to use a logarithmic scale because
the distributions are usually approximately a
log normal distribution.

Histogram
The simplest way to present the grain

size distribution from a sieve analysis is to
plot the weight retained on each tray as a
histogram as in Fig. 3.3.  A histogram shows
what percentage by weight of the grains fall
within a particular size range.  This type of
presentation gives a good visual impression
of the distribution of grains in the various size
categories. In particular, it is easy to see how
well sorted the sediments are, and whether the distribution of grain sizes are
symmetrical, or perhaps bimodal, i.e. with two maxima.

Cumulative Distribution

The cumulative grain size distribution in Fig. 3.4 shows what percent (by
weight) of a sample is larger than a particular grain size.  The steeper the curve,
the better the sorting.  The advantage of this type of display is that it allows easy
fitting of discrete data and interpolation to read off particular values of the
distribution. The grain size is plotted on logarithmic scale because the logarithm
of the grain sizes often come close to being a normal or Gaussian distribution.  A
distribution of the logarithm of particle sizes may include many small particles but
no negative size particles; which would be possible with a Gaussian distribution
of particle sizes.  A number of quantitative parameters can be determined from a
cumulative distribution.  These include the median, mean, skewness, and
kurtosis.  Formulas to calculate these quantities will be give later.

Fig. 3.2 Grain size classification of
clastic sediments (Bjorlykke 1989)

Fig 3.3 Histogram of grain size
distribution (Bjorlykke 1989)
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Phi Plot

We mentioned earlier than grain size
distributions approximate a log-normal
distribution.  Thus a better approach to
fitting data to a continuous distribution
would be to plot the logarithm of the grain
diameter from the sieve analysis on
probability paper.  A normal distribution will
plot as a straight line on probability paper.
The transformed grain diameter is the phi
variable or  ϕ = -log2 d.  Fig. 3.5 illustrates
the grain size distribution on probability
paper. Note that this transforms the larger
grain sizes to the left and the distribution is
given as percent larger than ϕ.  Later we will
examine log normal distributions using the
natural logarithm.

Fig. 3.4 Cumulative grain size distribution; percent by weight greater than a given
diameter on a logarithm scale (Jorden and Campbell, 1984)

Fig. 3.5 A phi plot on probability paper
(Bjorlykke 1989)
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Grain Size distribution Parameters

The parameters of a millimeter plot or a phi plot can be determined from
the following formulas (after Folk and Ward 1957 and Jorden and
Campbell,1984.).  ϕx is a grain size expressed in phi(ϕ) units  such that x% of the
sample is larger than this grain size.  (Note: There are also other formulas to
calculate the same quantity. Also, the definition of sorting does not appear to be
consistent.  Note: The mean with the ϕ scale is the geometric mean grain
diameter.)
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If the sample has a wide spread
(tail) towards the fine grain sizes
(larger phi values) and a relatively
sharp delimitation at the large
grain-size end, we say that
the sample has positive skewness.
Fig. 3.6 shows the range of sorting
and skewness of deposits from
different environments. Turbidite
deposits have poor sorting because
both coarse and fine materials get
carried together in the under water
mud slides.  Eolian deposits have positive skewness (toward fines) because
there is a upper limit to the size of grains carried by the wind but no lower limit.
Beach sand has negative skewness (toward larger sizes) because wave action
can transport large pebbles but the constant action of the moving water removes
the fine particles.

Fig. 3.6 Skewness and sorting for some depositional
environments (Bjorlykke 1989)
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Application of Grain Size Distributions

The grain size distribution
can be used to estimate porosity
and permeability if no other data is
available.  Fig. 3.7 illustrates such
a correlation.  This figure shows
that the porosity is independent of
grains size but is a function of
sorting.  Permeability is very much
a function of the grain size but it
also is a function of sorting. Since
there is correlation of sorting and
porosity, this figure implies that the
permeability is a function of grain
size and porosity.  We will develop
a model later to show this
correlation.  If the grains were
geometrically similar (i.e., same
sphericity and roundness), then the
curves for sorting should be
vertical and the curves for the
different grain sizes should have
the same shape.

Quantitative measures of the
grain size and sorting for the above
figure are listed below (Beard and
Weyl, 1973).

Size Median Dia., mm
coarse upper 1.000-0.710

lower 0.710-0.500
medium upper 0.500-0.350

lower 0.350-0.250
fine upper 0.250-0.177

lower 0.177-0.125
very fine upper 0.125-0.088

lower 0.088-0.044

Fig. 3.8 illustrates different sorting for
one value of median grain size.  The article did not say how sorting was defined
here.

Fig 3.7 Porosity and permeability estimated from
grain size distribution [Selley 1985 (Beard and
Weyl 1973) and (Naggtegaal 1978)]

Sorting So
extremely well sorted 1.0-1.1
very well sorted 1.1-1.2
well sorted 1.2-1.4
moderately sorted 1.4-2.0
poorly sorted 2.0-2.7
very poorly sorted 2.7-5.7
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Fig. 3.8 Illustration of sorting viewed with dark field illumination
microscopy that has been transformed to a binary (black or
white) bitmap (Beard and Weyl, 1973)
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Distribution Functions

The grain size distribution discussed above is the first of several random
variables that will be encountered in this class.  Other random variables that will
be quantified are the pore size distribution, permeability distribution, and
diffusion and dispersion processes.  The grain size, pore size and permeability
distributions are often approximated by a log normal distribution.  In these cases
the data can be fit to a log normal distribution and the properties of the
distribution be expressed as simple functions with a few parameters.  Also,
thinking about random variables gives a foundation for the macroscopic variables
such as capillary pressure curves, relative permeability curves, and fluid
breakthrough curves.

Let x be a random variable from a large population such that it can be
treated as a continuous variable.  The histogram of x can then be expressed by
a probability density function p{x}.  The probability that an observation taken
at random from a population with a density function p{x} lies between xa and xb is
as follows.

Pr{ } { }b

a

x

a b x
x x x p x dx< < = �

It follow that :

Pr{ } Pr{ }

{ }b
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x

x x x x

p x dx
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= �

The cumulative distribution function P{x} is the probability that an observation
from the population will be less than xb.
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The relation between the probability density function and the cumulative
probability density function is illustrated in Fig. 3.9.

Some parameters of the distribution:

X is a population of which x is a particular realization
p{x} is the probability density function of x
P{x} is the cumulative distribution function;  p{x} = dP{x}/dx
mode: value of x at the maximum of p{x}
median: value of x where P{x}= 0.5

mean: expected value of x:  ( ) { }E x x xp x dx
∞

−∞

= = �
Variance: expected value of the square of the deviation of x from the 

mean:  ( ) ( )2 { }V x x x p x dx
∞

−∞

= −�

standard deviation: square root of the variance,  ( )V xσ =

Fig. 3.9 Cumulative distribution function and probability density
function (Brownlee, 1960)
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Assignment No. 3.1 Properties of the Log-normal Distribution

Some random variables are well approximated by a log-normal
distribution, i.e. the logarithm of the variable approximates a normal or Gaussian
distribution.  It is convenient to do analysis in terms of the standardized normal
distribution which has a mean equal to zero and a variance equal to unity.

x  is a random variable from a population X with a log-normal distribution.
y = ln x;  is a random variable from a population Y with a normal 
distribution.
u = (y - µ)/σ,  is a random variable with a standardized normal distribution.
Standardized normal distribution:  p{u} = φ(u),  P{u} = Φ(u).

( )
2

21
2

u
u eφ

π
−=

( )
2

21
2

1 1 erf2 2

u t
u e dt

u

π
−

−∞

Φ =

� �� �= +� �� �
	 
� �

�

P{x} = P{x[y(u)]};  P{y} = P{y(u)}
Hint:  p{x} ≠ p{y} ≠ p{u}

1. Derive formulas for: p{y}, P{y}, p{x}, P{x}

2. Express the mode, median, mean, and variance of U, Y, and X in terms of µ
and σ.  Present the results as a table.
    Hint: Transform to functions of u before integrating.

3. What is the relation between the magnitudes of xmode, xmedian, and xmean?

4. Plot p{u} and P{u}.

5. Plot p{y} and P{y} for  µ = 1.0; σ = 0.1, 1.0, 2.0

6. Plot curves for  µ = 1.0; σ = 0.1, 1.0, 2.0
Variable: p{x}, P{x}
Scale: x, log10x, (i.e., semilog)
This is a total of 4 plots with three graphs per plot.
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Pore Shape

The quantity of direct interest in
the flow through porous media is not the
properties of the matrix (e.g. grain size
distribution) but rather the properties of
the pores (e.g. pore size distribution).
When we observe a porous medium,
what we see is the matrix such as the
beadpacks in Fig. 3.10. What we are
interested in is the corresponding pore
space as in Fig. 3.11.

It may be hard to visualize here
but the cross sectional dimensions of
the pore space will in general not be
uniform as one moves through the pore
space.  In particular, there may be
narrow passages called pore throats
separated by wide passages called pore
bodies.  Fig. 3.12 attempts to
distinguish between a throat and body.

Fig. 3.10 Packs of spherical beads
(Collins 1961)

Fig 3.11 Pore space of spherical bead pack
(Collins 1961)

Fig. 3.12  SEM microphotograph of bore body and pore throat (Jordon 1984)
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Fig. 3.14 Thin section of a consolidated sandstone.
The light areas are the sand grains. (Selly 1985)

Fig. 3.13 Cast of pore space in
sandstone (Collins 1961)

The pore space in rocks are
much more complex than that of
spherical bead packs.  For example,
Fig. 3.13 is a Wood's metal pore case
of a consolidated sandstone.
Important parameters of the pore
space that relate to the trapping of
fluids include the coordination number
of the pores (i.e., the number of pore
throats  that branch out from a pore
body) and the aspect ratio (i.e., ratio of
pore body diameter to the pore throat
diameter).

A common method for
viewing the structure of the
pore space is with thin
sections.  Here the rock is
impregnated with dyed
epoxy resin and sample is
ground to a very thin slice.
Fig. 3.14 is an example.
Thin sections are routinely
made for petrographic
analysis.  Minerals are
identified from its
morphology, staining with
dyes, opaqueness, and
appearance under crossed
polarized filters. Grain size
distribution and porosity
can be determined by
image analysis.  Current
research is attempting to
estimate pore size
distribution and
permeability by image
analysis.
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Pore Size Distribution

Mercury porosimetry or mercury/air capillary pressure curves are commonly used
to measure the distribution of pore throat sizes.  A clean rock sample that may be
irregular in shape (e.g., drill cutting) is placed in a high pressure vessel and is
evacuated.  Mercury is introduced into the vessel with small increments of pressure.
The volume of mercury that goes into the vessel is precisely measured.  The first
volume of mercury fills the void space in the vessel.  This will determine the bulk
volume of the sample.  Some mercury volume will then enter with increasing pressure
to fill the surface roughness of the sample.  The first volume of mercury to enter the
rock will be at a pressure called the capillary entry pressure or displacement
pressure.  This is the pressure required for the mercury to enter the largest pores in the
rock.  The relation between the mercury pressure and the pore size that it will enter is
illustrated by the following equation.

( )/2 cosHg air
Hg

pore

P
r

σ θ−
=

where
PHg  is the mercury pressure
σ is the mercury surface tension
θ is the mercury/quartz/air contact angle (≅  140°)
r is the pore throat radius

This equation treats a pore throat as having an equivalent pore radius.  The mercury
pressure is increased in small increments and the volume of mercury that enters is
recorded.  As the mercury pressure is increased, mercury enters pores that are
accessible via smaller pore throats.  The curve of mercury pressure versus mercury
volume is called the mercury/air capillary pressure.  The mercury volume may be
normalized by the bulk sample volume to be expressed as a saturation.  Usually, 1-SHg
is plotted on the abscissa to represent the saturation of the wetting phase (, i.e. so the
curve will have the same shape as when plotted as a function of the water saturation
from a capillary diaphram or centrifuge measurement).  These measurements are
automated and are done on a routine basis.

Additional information can be determined about the pore structure by a
sequence of mercury intrusion and withdrawal steps.  Fig. 3.15 illustrates the pores that
are filled with mercury during mercury intrusion to increasingly higher pressures and the
disconnected drops of mercury that remain after the pressure is reduced to zero.  The
capillary pressure curves during these scanning loops may appear as in Fig. 3.16.  This
figure shows the hysteresis in saturation that occurs because of trapping of the
nonwetting phase (mercury) in the pore bodies that are entered by mercury.  This
trapping would not have occured if the pore network was a bundle of parallel capillary
tubes.  This trapping is dependent on the pore body/pore throat aspect ratio.  The
trapping characteristics can be expressed as a curve of initial nonwetting phase
saturation versus the residual nonwetting phase saturation as illustrated in Fig. 3.17.
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Fig. 3.15 Sequence of mercury injection and withdrawal.
 (Stegemeier, 1977)

Fig. 3.16 Mercury intrusion-withdrawal curves
(Stegemeier, 1977)
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Fig. 3.17 Initial-residual saturation curves
(Stegemeier, 1977)
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Thomeer Model of the Capillary Pressure Curve

The mercury capillary pressure curve after correction for the entry pressure and
the volumes normalized by the bulk sample volume may appear as in Fig. 3.18.  The
data is more useful if it can be reduced to a smaller set of parameters that characterize
the rock.  A model that is commonly (within Shell) used to parameterize capillary
pressure data is the three parameter Thomeer model.

( )
( )

( )Logc c d
b P G P P

b P

V
e

V
∞

−=

where
 (Vb)P∞ is the fractional bulk volume occupied by mercury extrapolated to infinite
mercury pressure, i.e.,  the total interconnected volume accessible to mercury.
Pd  is the extrapolated mercury displacement pressure in psi, indicating the
pressure required to enter the largest pore throat.
G is the pore geometric factor, reflecting the distribution of pore throats and
their associated volumes.  Note:  G is defined with respect to Log10.  If loge is used,
then the parameter is  a = 2.303 G.

The convenient aspect of the Thomeer model is that it is a hyperbolic function on
a log-log plot, Fig. 3.19.  The parameters, Pd and (Vb)P∞, are estimated as the
asympotes of a hyperboa passing through the data.  The parameter G is adjusted to
best fit the data.
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Notice that (Vb)P∞ is close to the porosity, φ, for the highest permeability sample
in Fig. 3.18 but is significantly less for the lower permeability samples.  The Thomeer
model does not recognize a bimodal pore size distribution and the discrepency may be
due to the pore space between the clay particles.  Bimodal pore size distributions occur
when: (1) clays or other microporosity minerals are present, (2) in vuggy carbonates,
(3) fractured rocks.  Notice that the displacement pressure differs by an order of
magnitude but there is little change in the pore geometrical parameter.

Fig. 3.20 illustrates capillary pressure curves of rocks with similar grain size and
sorting but different types of dispersed clays.  The "discrete particle" kaolinite acts as if
they are another sand grain and has little effect on the permeability and the capillary
pressure curve.  The "pore lining" chlorite reduces the pore throat radius and thus
increases the capillary pressure and reduces the permeability.  The "pore bridging"
chlorite spans the pore throats and thus greatly increases the capillary pressure and
reduces the permeability.  Notice that these clays have little effect on the porosity so
this difference in permeability could not have been correlated with porosity.

Fig. 3.18  Mercury/air capillarypressure curves
(Jorden and Campbell, 1984)

Fig. 3.19  Log-log plot for fitting mercury/air
capillary pressure data with Thomeer model
(Jorden and Campbell 1984)
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Fig. 3.20 Capillary pressure curves of samples
with different pore structure (Jorden and
Campbell 1984)
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Assignment 3.2  Fitting Data with Thomeer Capillary Pressure Model

Estimate the Thomeer parameters for a Berea sandstone rock sample which has
the mercury capillary pressure curve illustrated in Fig. 3.21.  The saturation is
expressed as water or wetting phase saturation rather than mercury saturation.  The
data and interpretation code is in owlnet and can be copied as cp ~gjh/class/ thomd.dat
and thom.m. The output of the program appears as in Fig. 3.22 (for a poor set of
parameters).

Fig. 3.21  Mercury/air capillary pressure
data for Berea sandstone
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Fig. 3.22 Example output of thom.m
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Fit of Capillary Pressure Data with Lognormal Distribution

While the Thomeer model is
adequate for most rocks, there are cases
where it does not adequately fit the capillary
pressure data.  Fig. 3.23 is an example of
an Indiana limestone where the Thomeer
model does not give a good fit.  The
lognormal distribution model works well in
this case.

The traditional approach to fitting
data to a Gaussian distribution has been to
use probability paper.  This is no longer
necessary with computers and software to
calculate the inverse error function and
graph the results.  In the following, suppose
you are given sample measurements from a
population that is approximated by the
Gaussian distribution, P{y}, and you wish to
find the mode, median, and mean (µ) and
the standard deviation (σ) of the distribution.
A Gaussian or normal distribution can be
expressed as

( )
( )

{ } { }

1 1 erf2 2

P y P u y

u

u

=

= Φ

� �� �= + � �� �	 
� �

where

( )u y µ σ= −

For the case of the distribution being the capillary pressure curve, P{y}
corresponds to the cumulative fraction of the pore space occupied by mercury, or
1.0 -Sw, if converted to wetting phase saturation.  The variable y corresponds to
the natural logarithm of the capillary pressure.

The parameters of the distribution, µ and σ, are to be estimated.  The expression
for the standard normal distribution can be inverted to express u as a function of
P{y}.

Fig 3.23  Mercury capillary pressure (points)
and fit with Thomeer model (curve)
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[ ]2 erfinv 2 { } 1u P y= −

The function erfinv is the inverse error function which is available in MATLAB.
The variable y is a linear function of u.

y uµ σ= +
This equation can be expressed in terms of the measured variables, Sw and Pc.

( )ln c wP u Sµ σ= +

This is a linear equation with slope σ and intercept µ. These parameters can be
determined by linear regression.

The lognormal distribution as described here has the capillary pressure
ranging from zero to infinity.  Zero capillary pressure corresponds to a pore with
an infinite radius of curvature.  The model can be modified for finite pore sizes by
including another parameter, Pd, the displacement or capillary entry pressure
which is the capillary pressure below which the nonwetting phase will not enter
the rock.  The function that follows a lognormal distribution is then Pc - Pd for
positive values.  Also, the lognormal distribution as described here has the
nonwetting saturation ranging from 0 to 1.0.  The distribution can be easily
modified to be lognormal for nonwetting saturations between 0 and S∞.
Estimation of the parameters, Pd and S∞ require either nonlinear regression or
trial and error.  Thus they will be neglected for now.

Assignment 3.3  Fit of capillary pressure data with lognormal model

Fit the data shown in Fig 3.23 with the lognormal distribution model.  What
are the estimated values for µ and σ?  The data and code for fitting the data are
available on owlnet as ~gjh/class/lime.dat lnorm1.m lnorm2.m gaussd.m
gaussf.m cumpd.m.  Use the programs gaussd.m and gaussf.m to get familiar
with fitting a Gaussian distribution.  The program lnorm1.m converts the Sw vs. Pc
data to a Gaussian distribution and lnorm2.m will plot the data and fitted
distribution after the parameters are estimated with gaussf.m.  The program
lnorm1.m asks for Nonwetting Sinf.  Use the program thom.m if you believe that
it may have a value other than 1.0.  Examine the fit of the data.  Edit out data
that you believe is dominated by noise.  When fitting data in this manner, errors
in P{y} near 0 and 1.0 may denominate the linear regression.
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Pore Size from Capillary Pressure

The equation for the
capillary pressure in a smooth
capillary has the cosine of the
contact angle in the expression.
In the case of mercury on
smooth quartz, the contact
angle is 140°, measured through
mercury.  However, the pore
walls in rocks is seldom smooth.
Fig. 3.24 illustrates the apparent
advancing and receding contact
angles of fluids on rough
surfaces.  In mercury intrusion
porosimetry, mercury is the
nonwetting phase and air
(vacuum) is the analog of a
draining wetting phase.  The
contact angle measured through
the wetting phase is then 180° -
140° = 40°.  Fig. 3.24 the
effective cos θ for a 40° contact
angle is 1.0.  Thus the factor for
for cos θ is not needed for
interpreting mercury-air capillary pressure in terms of the pore radius.  However,
not everyone is in agreement on this point.

The expression for the capillary pressure in a smooth capillary tube is for
a spherical surface in which twice the mean curvature is as follows.

2cP Hσ=

If the mercury-air interface was confined between parallel plates, then one of the
radii of curvature can be equal to infinity if the surface is translationally invariant.
The mean curvature in this is as follows.

Fig. 3.24 Influence of surface roughness on
effective cosine of contact angle. (Swanson
1985)
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Microporosity and bimodal pore size distributions

The Thomeer and lognormal distributions are adequate for many systems
but will fail to describe systems with a bimodal pore size distribution.  Examples
of bimodal distributions are (1) vuggy limestone consisting of the large pores
(easily seen by the unaided eye) in the vugs and the matrix pores, (2)
sandstones in which some particles are (micro) porous such as clay or chert
particles, and (3) fractured rocks.  Figure 3.25 and 3.26 are mercury porosimeter
capillary pressure curve and incremental volume curve for a pore system with a
trimodal character.  The figures have been inverted so that the axis are in the
same direction as the usual capillary pressure curves.  The capillary pressure
has been converted to capillary radii using the equation for the mercury capillary
pressure in a straight capillary.

The capillary pressure curve appears to have several steps.  When the data is
expressed as incremental mercury volume, several peaks appear.  (This is not a
probability density curve)  The peaks have been interpreted as the primary or
intergranular pore system, kaolinite micropososity, and chert microporosity.  The
intergranular pore network which contributes the rock’s permeability shows a
peak in pore diameter at 42 µm.  Kaolinite pore interconnections peak at about 3
µm, whereas the chert pores are much smaller, peaking at about 0.1 µm.  The
dip in pore diameter at 5.96 µm is associated with the instrument’s pressure
transition from low range to high range and is only an artifact.

Fig. 3.26 Pore size distribution from
incremental volume of mercury
injection (Swanson 1985)

Fig. 3.25 Mercury capillary pressure
curve expressed as pore radii
(Swanson 1985)
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Scanning electron microscopy (SEM ) photographs of the kaolinite and
chert particles are shown in Fig. 3.27 and 28.  The pores in the kaolinite are far
more plate-like than cylindrical.  For a pore with large dimensions much larger
than the small dimension, the calculated narrow dimension should be about half
that computed for a cylindrical pore.  From Fig. 3.26, the transition to mercury
intrusion into the kaolinite begins at about 4.8 µm (one half of 9.7 µm).  Intrusion
continues over a broad size range to 1.5 µm (one half of 3 µm.) at the peak.
This range of crystal spacing is comparable to the visual range observed in the
SEM.  The same comparison can be made for the porous chert.

The example illustrated above
show the importance of recognizing when
there is more than one distribution of pore
sizes.  Fig. 3.29 is the mercury capillary
pressure curve for a sandstone containing
abundant chlorite.  The micropore
system is arbitrarily defined as pores with
entry pressures greater than that found at
the inflection point in the first steeply
rising region of the capillary pressure
curve.  The macropores are those
entered by mercury below this pressure.
The latter contribute to hydrocarbon oil
storage volume (oil saturation) and
permeability.

Fig. 3.28 SEM of micropores in
chert.  Note 10 µm scale.
(Swanson 1985)

Fig. 3.27 SEM of micropores in
kaolinite. Note 10 µm scale.
(Swanson 1985)

Fig. 3.29 Definition of microporosity
from capillary pressure (Swanson
1985)
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These examples of multipore systems show that the Thomeer and
lognormal pore distribution models are not adequate for these systems.
However, these models may be applied to the micro and macro porosity with a
fraction distributing the porosity between the micro and macro porosity.  Fig. 3.30
is an illustration of the bimodal lognormal model used to fit centrifuge capillary
pressure measurements.

Model 6 - Lognormal - eight parameter

AC(1,6)  Entry value for first lognormal
AC(2,6)  Additional J value to reach second

          lognormal
AC(3,6)  Additional J function to first peak
AC(4,6)  Proportional to width of first peak
AC(5,6)  Additional J function to second peak
AC(6,6)  Proportional to width of second peak
AC(7,6)  Denotes dominance of first peak

( )
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= −
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Fig. 3.30 Bimodal log normal distribution

Parameter Value
S(Pc=0) 0.9
S(Pc→∞) 0.1
AC(1,6) 0.1
AC(2,6) 10.0
AC(3,6) 1.0
AC(4,6) 1.0
AC(5,6) 30.0
AC(6,6) 1.0
AC(7,6) 0.5
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where
J(S) is the Leverett J function
σ is the interfacial tension, dyne/cm or mJ/m2.
k is the permeability, md
φ is the porosity, fraction
S is the reduced saturation
Sj is the saturation of phase j
Sji is the initial saturation of phase j
Sj∞ is the residual saturation or S(Pc→∞) of
phase j

( ) ( )0.2166
c

kJ S P Sφσ
=

( )
( )

j j

ji j

S S
S

S S
∞

∞

−
=

−
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Surface Area

The specific surface area is a dominant parameter in models for
permeability and in the transport of a species that can adsorb on the mineral
surfaces.  The specific surface area is usually expressed as square meters of
surface per gram of solid.  Here we will factor out the grain density and express
the specific surface area as square meters per cubic centimeter of solid.  (Later
we will express the specific surface as a ratio of pore surface/pore volume.)  The
solid will be modeled as an oblate spheroid.  This is a solid of revolution of an
ellipse about its minor axis.  The minor radius is b and the major radius is a.

The ratio, Sb/V, is  given
by the following formula.
(Mensuration formulas)

23 3 1 1log
2 4 1e

S b
V

ε ε
ε ε

� �− +� � � �= + � �� � � �−� � � �� �

where the eccentricity is

2 2a b
a

ε −=

The group, (Sb/V), will have
consistent units if S is in square
meters, V is in cubic centimeters,
and b is in microns.  Figure 3.32
plots the specific surface as a
function of the minor radius, b.  The grain density (2.65 gm/cm3 for quartz) has
been factored out and the specific surface area is expressed as per unit cm3

rather than gram.  A upper coarse sand grain has a radius of about 103 microns

Fig. 3.31 Parameters of an ellipse (CRC Standard Mathematical
Tables, 1987)

Fig 3.32 Surface to volume ratio of oblate spheroid
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(one millimeter) and it has a surface area of about 10-3 m2 /cm3.  A silt or clay
particle with a minor radius of about 1.0 micron has a surface area of about 1.0
m2/cm3.  A smectite sheet with a thickness of about 10-3 micron (1.0 nm) will
have a surface area of about 103 m2/cm3.  (Note: Is something is wrong here?
The sphere appears to have a greater specific area than an oblate spheroid.  A
sphere should be a body of minimum area for a given volume.  Answer:  For the
same volume, an oblate spheroid will have its surface to volume ratio increasing
in proportion to the 2/3 power of the aspect ratio. The specific surface is plotted
as a function of the radius of the minor axis.  The major axis is greater than the
minor axis ratio by the aspect ratio.)

When evaluating adsorption, the
specific surface area of sand grains
usually is not of much interest compared
to the clays contained in the rock.  For
example the following table illustrates
the range of specific areas that can be
expected from clays (Corey 1990)

In addition to the importance of the surface/volume ratio to adsorption on
porous media, the ratio of surface area to pore volume will be shown later to be
an important parameter in models of permeability and NMR relaxation of fluids in
the pore space.  The expression for the specific surface shows the surface to
pore volume ratio to be inversely proportional to the length of the minor axis, b,
for a given eccentricity.  The constant of proportionality is 3 for a sphere and is
equal to 3/2 for a thin disk.  (Note:  I think it should be 2 for a thin disk.)

Porosity

Porosity is the fraction (or percent) of the rock bulk volume occupied by
pore space.  The porosity may be divided into macro porosity and micro
porosity in rocks that have a bimodal pore size distribution.  Some examples
include: (1) sandstones with a significant amount of clays,  (2) sandstones with
microporous chert grains,  i.e., interparticle and intraparticle porosity, (3)
carbonate rocks with vuggy porosity (caverns are an extreme case) and matrix
porosity,  (4) carbonate rocks with moldic porosity and matrix porosity,  (5)
carbonate rocks with interparticle porosity and intercrystalline porosity,  (6)
fracture porosity and matrix porosity.  The total porosity can also be divided into
effective porosity and ineffective porosity.  Ineffective pores are pores with no
openings or zero coordination number.  Effective porosity can be divided into
Cul-de-sac or dead-end pores with a coordination number of one and catenary
pores with coordination number of two or more.  These types of porosity are
illustrated in Fig. 3.33.

Clay type Area, m2/gram
kaolinite 45
illite 175
montmorillonite 800
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Sandstones

The rules for the factors
governing the magnitude of the porosity
is different for clastic (sandstone) and
carbonate rocks.  The following
relationships between porosity and
textural properties apply for sandstones
(Jorden and Campbell 1984).  Also see
Fig. 3.7.
1. Porosity is independent of grain size
for the same sorting.
2. Porosity decreases as sorting
becomes poorer.  See Fig. 3.7 and 3.34.
3. Porosity increases as grain sphericity
(shape) decreases and as grain
angularity (roundness) decreases.  The
general, though not universal, tendency
is for diagenesis to reduce original
porosity of clastic rocks.

The alteration of porosity through
diagenesis is illustrated in Fig. 3.35.
The porosity of the original sediment
may originally be 40%-50%.  In regions
of rapid sedimentation such as in a river
delta, compaction is the primary
diagenetic alteration mechanism.
Subsidence may accompany the
compaction.  Dissolution of some
minerals and precipitation can result in
consolidation of the rock and reduction
of porosity by the process of cementation.

Fig. 3.33  The three basic types of porosity. (Selley 1985)

Fig. 3.34  Effect of sorting on porosity
(Bear 1972)
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Carbonate rocks

At deposition, carbonate sediments are highly to very highly
porous.  Some sediments have porosity ranging from 0.40 to 0.78 at deposition.
The following relationships between  porosity and textural properties apply to
carbonates (Jorden  and Campbell 1984).
1. Porosity is not correlated strongly with either median  grain size or sorting.
2. Porosity is controlled largely by the amount of fines present -i.e., the larger the
precent fines, the larger the porosity.
3. Diagenesis of carbonate rocks can result in porosity that is either significantly
less or greater than original porosity.

Fig. 3.35 Diagenetic pathways of sandstones (Selley,
1985)
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Permeability

The mobility, denoted by λ, is a transport coefficient of the porous medium
for the volumetric flux of a fluid just as electrical conductivity and thermal
conductivity are transport coefficients for the flow of electrical current and heat,
respectively.  This transport coefficient was divided by Darcy into two factors (λ =
k/µ), the permeability, k, which is a property of the porous medium and the
viscosity, µ, which is a property of the fluid.  The permeability was originally
conceived as a constant of a particular medium.  However, in reality the
permeability is generally not spatially uniform, i.e.,  porous media are usually
heterogeneous, depends on direction, i.e., is not isotropic, depends on the current
stress conditions and past stress history, is a function of the electrolyte
composition of the fluids, and depends on the amount and distribution of the fluid
phases, i.e., depends on relativity permeability.  It is because of this highly
variable nature of permeability that we need to know the factors that govern the
value of permeability.  We will describe two models of the permeability.  They are
both based on a bundle of capillary tubes model.  However, one is based on a
packed bed of spherical particles and the other is based on a pore size
distribution model.

Packed Bed of Spherical Particles

 One model for relating the flow resistance of porous media to the
dimensions of the pores or particles is the Blake-Kozeny model (Bird, Stewart,
and Lightfoot 1960).  This model represents the pore network of the porous
medium as a bundle of capillary tubes with an average or equivalent radius, R,
and an average length, L', that is somewhat longer than the system length.  The
effective radius is related to a particle diameter, Dp, by applying the hydraulic
radius concept and assuming that the porous medium is a bed of uniform
particles.  The resulting expression is then compared with Darcy's law to
determine an expression for the permeability of the medium in terms of the
particle diameter and porosity.

Darcy's law is an empirical relationship between the flux and the driving
force for laminar, single phase flow through porous media.

/u q A
P
L

k P
L

λ

µ

=
∆= −

∆= −

where

P p g zρ= −
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The constant of proportionality between the flux and the driving force, commonly
known as the mobility, λ, is directly proportional to the permeability, k, which is a
property of the porous medium, and inversely proportional to the viscosity, µ,
which is a property of the fluid.

The porous medium is modeled as a bundle of capillary tubes with a length
L', that is greater than the system length, L, due to the tortuosity of the pore
network.  ( )2'/L Lτ =   It has been empirically determined that this tortuosity factor
can be approximated by the factor 25/12.

( )2'/ 25 12L Lτ = =

The average velocity in a capillary tube is given by the Hagen-Poiseuille law.

( )2

8 '
o LR P P

v
Lµ
−

< >=

The average velocity in the bundle of tubes is greater than the average velocity in
the pore space of the medium because of the greater length traversed in the
tortuous capillary.  Alternatively, it can be argued that the fluid it the porous
medium must also traverse a greater length but the transverse components of
velocity cancel in averaging over the porous medium and thus the average
velocity in the pores of the medium is less than the average velocity in a tortuous
capillary.

( )/ 'pore capillary
v v L L=

The average velocity of the fluid in the pores (v, the interstitial velocity) is
related to the flux (u, superficial velocity, filtration velocity, or Darcy velocity)
by the porosity of the porous medium   (φ, pore volume/bulk volume).  If the
porous medium is random, then the fraction of the cross-sectional area open to
pores is equal to the porosity.  Thus the flux is
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By comparing the above equation with Darcy's law we have,

23
50
50
3

Rk

kR

φ

φ

=

=

The above equation is an expression for the equivalent pore radius of the porous
medium assuming a bundle of capillary tubes model with a tortuosity of 25/12.

The wetted surface of a porous medium can be related to the permeability
and porosity by introducing the concept of the hydraulic radius.  For flow in a
capillary, the hydraulic radius is related to the radius as follows.

2

2

2

h
RR
R

R

π
π

=

=

In porous media, the hydraulic radius can be determined as follows:

( ) ( )
( ) ( )

cross section available for flow
wetted primeter

volume available for flow
total wetted surface

volume of voids volume of bed
wetted surface volume of bed

hR

a
φ

=

=

=
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Note: The specific surface area in this equation is per bulk volume rather than
grain volume as discussed earlier.  We can eliminate the hydraulic radius
between the last two equations to express the equivalent pore radius in terms of
porosity and specific area.

2R
a
φ=

Substituting into the equation we derived earlier for the flux through a bundle of
capillary tubes, we have

( )3

2

6
25

o LP P
u

a L
φ

µ
−

=

Comparing this equation with Darcy's law, we have
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This equation relates the wetted area of the porous medium to the permeability
and porosity.

If we assume the porous medium to be a packed bed of uniform spheres,
the particle diameter, Dp, can be related to the permeability and porosity.  The
specific area (per unit bulk volume) for a spherical bead pack with a porosity φ is

( )

2

3 (1 )
1 6

6 1

p

p

p

D
a

D

D

π
φ

π

φ

= −

= −

This specific area is the surface area per unit volume of bed.  The surface area
per unit volume of solid can be determined by dividing by the matrix volume/bed
volume.  This is the same as the ratio of the area and volume of a sphere.

6
1 p

a
Dφ

=
−

By eliminating the specific area between the last two equations, we have an
equation for the permeability as a function of the particle diameter.
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Symbols and conversion to consistent (SI) units (The SI Metric System of Units
and SPE Metric Standard, SPE, 1984)

Quantity Symbol SI units Customary
units

multiply
customary units by

specific area (/ bulk vol) a m2/m3 m2/cm3 1.0       E+06
area A m2 ft2 9.2903 E-02
particle diameter Dp m mm 1.0       E-03

µm 1.0       E-06
permeability k m2 µm2 1.0       E-12

darcy 9.8692 E-13
md 9.8692 E-16

length L m ft 3.048   E-01
pressure p Pa kPa 1.0       E+03

psi 6.8947 E+03
flow rate q m3/s cm3/s 1.0       E-06
radius R m
superficial velocity u m/s ft/D 3.5278 E-06
interstitial velocity v m/s
volume V m3 ft3 2.8317 E-02

bbl 1.5899 E-01
viscosity µ Pa⋅s cp 1.0       E-03
porosity φ
surface or interfacial tension σ N/m mN/m 1.0       E-03

σ N/m dyne/cm 1.0       E-03

The following table lists the permeability and porosity of some sand packs
as a function of grain size and sorting.

Permeability (darcies) of artificially mixed and wet-packed sand [Jorden and
Campbell 1984 (Beard and Weyl 1973)]

Size
Coarse Medium Fine Very Fine

Sorting Upper Lower Upper Lower Upper Lower Upper Lower
Extremely well sorted 475. 238. 119. 59. 30. 15. 7.4 3.7
Very well sorted 458. 239. 115. 57. 29. 14. 7.2 3.6
Well sorted 302. 151. 76. 38. 19. 9.4 4.7 2.4
Moderately sorted 110. 55. 28. 14. 7. 3.5



3-       35

Poorly sorted 45. 23. 12. 6.
Very poorly sorted 14. 7. 3.5

Porosity of artificially mixed and wet-packed sand [Jorden and Campbell 1984
(Beard and Weyl 1973)]

Size
Coarse Medium Fine Very Fine

Sorting Upper Lower Upper Lower Upper Lower Upper Lower
Extremely well sorted 0.431 0.428 0.417 0.413 0.413 0.435 0.423 0.430
Very well sorted 0.408 0.415 0.402 0.402 0.398 0.408 0.412 0.418
Well sorted 0.380 0.384 0.381 0.388 0.391 0.397 0.402 0.398
Moderately sorted 0.324 0.333 0.342 0.349 0.339 0.343 0.356 0.331
Poorly sorted 0.271 0.298 0.315 0.313 0.304 0.310 0.305 0.342
Very poorly sorted 0.286 0.252 0.258 0.234 0.285 0.290 0.301 0.326

Assignment 3.4  Calculation of Permeability as a Function of Grain Size

Calculate and plot the permeability (darcy) as a function grain size (mm) and
porosity for grain size in the range (10-4 mm to 10 mm) and porosity of (0.2, 0.3.
0.4, 0.5).  Also plot the measured values for the extremely well sorted sand packs
listed above.  Post the average value of the sand pack porosity.  Use Fig. 2.5 to
determine the grain size.  For a porosity of 0.4 tabulate the approximate grain size
(in descriptive scale, mm, and µm) that will result in a permeability of 100 darcy, 1
darcy, and 1 md.
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Estimation of Permeability from Pore Size Distribution

Rapid methods to estimate rock permeability has always been a high
priority in the petroleum industry.  Mercury porosimetry for measuring capillary
pressure and calculation of permeability therefrom was introduced by Bob
Purcell of Shell Oil Co. in 1949.  The method treats the porous medium as a
bundle of capillary tubes with the pore size distribution quantified by the mercury-
air capillary pressure curve.  The tortuosity is an empirical factor that brings the
calculation into correspondence with measured permeability.

The average velocity in a capillary tube of radius Ri is described by the
Hagen-Poiseuille law.

2

8
i

i

R Pv
Lµ

∆=

The capillary radius can be determined for the relation of the capillary pressure
to an equivalent pore radius.

( ) ( )
2 cos 2 cos,c ii

i c i

P R
R P

σ θ σ θ= =

Thus the average velocity in a capillary tube can be expressed in terms of the
capillary pressure at which that capillary is being entered be a nonwetting fluid.
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Let S(Pc) denote the fraction of the pore space that is occupied by the wetting
phase when the capillary pressure is equal to Pc.  Then dS is the incremental
fraction of the pore space corresponding to Pc and Pc-dPc.  The interstitial
velocity is the integral over all pores.
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The superficial velocity (q/A) is then as follows.
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This equation can be compared with Darcy’s law.
k Pu

Lµ
∆=
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By comparing the last two equation, an expression can be derived for the
permeability.

( )
( )

2
1

20

cos
2 c

dSk
P S

σ θ φ
= �

Tortuosity has not yet been considered to this point.  Purcell introduced a factor,
called the “lithology factor” to bring the calculated permeability into
correspondence with the measured air permeability.  We will use the tortuosity
factor here to parallel the nomenclature for the packed bed.
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Purcell observed that τ
ranged from 2.8 for 1500 md
sandstone to 12 for 1 md
sandstone.  This may be compared
with the value of 25/12 ≈ 2 for a
packed bed of spheres.

Thomeer (1960) refined the
method by introducing a model for
fitting the measured capillary
pressure data.

Mercury capillary pressure
curves can be measured from drill
cuttings when cored samples are
not available.  Swanson (1981)
observed that the low pressure
portion of the capillary pressure
curve was often different between
measurements with small samples
(e.g. drill cuttings) and larger core
samples. This difference is thought
to be due to the sample surface
roughness and/or the accessibility
of pores to the external surfaces.
The low pressure portion
corresponds the larger pores which
contribute the most to permeability.  Thus he suggested using a point on the
capillary pressure curve that is independent of sample size.  This point is the
point of tangency of the curve of Pc versus mercury volume as a percent of bulk

Fig. 3.36 Comparison of capillary pressure
measured on plugs and cuttings (Swanson,
1981)
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sample volume with the 45° line on a log-log scale.  This method as well as the
departure of the cuttings data is shown in Fig. 3.36.  Using this method, the
correlation for both clean sands and
carbonates is as follows.

2.005

355 b
w

c A

Sk
P

� �
= � �

� �

This correlation is compared with
measurements in Fig. 3.37.  In the
event Thomeer parameters are
known this equation can be
expressed as follows.

2.005

2 / 2.303355 10 G P
w

d

BVk
P

− ∞
� �� �
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� �

where
BVP∞ Thomeer percent bulk volume occupied by mercury at infinite mercury 

pressure (approximated by porosity)
G Thomeer pore geometrical factor
kw brine permeability
Pc mercury capillary pressure, psi
Pd Thomeer mercury/air extrapolated displacement pressure, psi
Sb mercury saturation in percent of bulk volume (approximated by the 

product of porosity and mercury saturation)
( )/b c A
S P correlating parameter taken at the point A (tangent to 45° line) of 

capillary pressure curve

Note that the exponent for this correlation agrees with the value predicted from
Purcell’s theoretical model using Poiseuille’s equation.  Ma, Jiang, and Morrow
(1991) give a recent review of estimating the permeability from capillary pressure
data.

Fig. 3.37  Correlation of brine permeability
with capillary pressure data (Swanson, 1981)
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Estimation of Permeability from Grain Size Distribution

We saw earlier (Beard and Weyl, 1973) that the parameters from the
grain size distribution (grain size and sorting) has been used to correlate the
porosity and permeability of clay-free unconsolidated sands.  Now that we have
a model (Kozeny) for the permeability, we are in a position do develop a
correlation for predicting permeability from the grain size distribution.

Sorting.  Sorting is usually expressed as qualitatively ranging from
extremely well sorted to very poorly sorted.  The earlier section on Grain Size
Distribution listed the range of the sorting coefficient, So, that corresponds to the
qualitative measure of sorting.  Here we will use the arithmetic mean of the range
to correspond to the qualitative measure of sorting.  Now we will express the
sorting in terms of the standard deviation, σ, of the distribution of the logarithm of
the grain size.  The sorting coefficient is defined as follows.

( )1/ 2
25 75/oS d d=

Assume that the grain size can be described by a log normal distribution.  The
grain size is then expressed as follows.

[ ]

[ ]
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2 erfinv 1 2 { }

y d

y P y

y P y

µ σ

µ σ

=

= + −

= + −
where

µ is the median of the distribution (log mean or geometric mean grain
diameter)

σ is the standard deviation of the log normal distribution

The choice of the two expressions depends on whether the cumulative
probability corresponds to less than grain size d or greater than grain size d.  The
sorting coefficient is now expressed in terms of the logarithm of the grain
diameter at the 25 and 75 percentile..

25 75exp
2o

y yS −� �= � �
� �

( ) ( )25 75 2 erfinv 0.5 erfinv 0.5y y σ � �− = − −� �

( )exp 0.6744oS σ=
log
0.6744

oSσ =
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The transformation from the qualitative sorting, to the sorting coefficient
(Beard and Weyl, 1973), and to the standard deviation of the log normal
distribution is summarized in following table.

Sorting So σ
Extremely well sorted 1.05 0.072
Very well sorted 1.15 0.207
Well sorted 1.3 0.389
Moderately sorted 1.7 0.787
Poorly sorted 2.35 1.267
Very poorly sorted 4.2 2.128

Correlation of porosity with sorting. The porosity data of Beard and
Weyl was correlated with the standard deviation (of the logarithm grain size
distribution), Fig. 3.38.

The regression of porosity with standard deviation excluding the Very poorly
sorted data gives the following linear relationship.

0.428 0.0998φ σ= −

Correlation of Porosity with Sorting
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Fig. 3.38 Correlation of porosity with sorting (R2 =0.93,
excluding very poorly sorted data)
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Tortuosity.  The Blake-Kozeny model determined a value of 25/12 for the
tortuosity of a bed of uniform spherical particles.  We will let the tortuosity, τ, be a
function of the sorting.  The Carman-Kozeny model is as follows.

( )

( )

3 2

2

3 2
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τ φ
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The tortuosity required to fit the Carman-
Kozeny equation to the measured permeability
of Beard and Weyl was calculated from the above equation.  The grain size was
estimated by transforming from the qualitative grain size to diameter in mm.  The
calculated tortuosity and the regression excluding the coarse sand data are
illustrated in Fig. 3.39.

Note that the tortuosity extrapolates to 2.5 for zero standard deviation, a value
very close to the 25/12 determined by Blake for a spherical bead back.  The
linear regression, excluding the coarse sand data, give the following result.

2.46 7.72τ σ= +

Grain size Dp
Upper coarse 1.30
Lower coarse 0.70
Upper medium 0.40
Lower medium 0.30
Upper fine 0.20
Lower fine 0.13
Upper very fine 0.10
Lower very fine 0.07

Tortuosity Required to Fit Permeability Model 
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Fig. 3.39  Tortuosity required to fit Kozeny model for
permeability (R2=0.93, excluding coarse sand data)
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Since both the porosity
and tortuosity are a function of
the sorting, one would expect a
cross-correlation between
tortuosity and porosity.  The
cross-correlation of the linear
correlations for porosity and
tortuosity and of the porosity
and tortuosity of the individual
sands are shown in Fig. 3.40.
The equation for the cross-
correlation of the porosity and
tortuosity correlations with
sorting is as follows.

35.6 77.3τ φ= −

Permeability predicted from porosity, grain diameter, and sorting.
The permeability predicted from the Carman-Kozeny model using the correlation
for tortuosity given above is compared with the measured permeability of Beard
and Weyl in Fig. 3.41.  The predicted values for the upper coarse sand were
much larger than the measured values and some are off the figure (i.e., >1000
darcy).
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Fig. 3.40 Cross-correlation of porosity and
tortuosity (upper coarse sand data omitted)
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Fig. 3.41 Permeability predicted from porosity, grain
size, and sorting (R2=0.87)
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If one has no other measurement other than the grain size distribution,
then a measured porosity will not be available to use in the Kozeny model.  In
this case we can use the correlation of porosity with sorting derived above.  The
permeability correlated from the grain size and sorting is shown in Fig. 3.42.
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Fig. 3.42 Permeability predicted from the Kozeny
model using only grain diameter and sorting
(R2=0.90)
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Independent test of correlation.  The comparisons between
measurement and prediction above are biased because the correlations were
derived from the measurements.  The correlations were used to predict the
permeability distribution of an aquifer at Hill Air Force Base in Utah.
Permeabilities were measured on selected samples to test the correlations.  The
comparison is shown in Fig. 3.43.  The comparison is good for the high
permeability samples but the deviation increases for the lower permeability
samples.  It was discovered that some of the samples containing clays had
clumps of sand grains that were interpreted as a large sand grain.  Thus the
predicted permeability was too high for these samples.  A clay sample was
analyzed to have a median grain diameter of 1.11 mm.  When the error was
pointed out to the service company, they further pulverized the sample and
reported a median grain diameter of 0.18 mm, apparently the result of only
smaller clay aggregates.  Thus sieve analysis of clay containing sediments will
not be accurate without adequate pulverization of the aggregates.

Assignment 3.5  Estimation of permeability and porosity from sieve
analysis.
Estimate the permeability and porosity of sample SB9-71 from the sieve analysis
data the file in ~gjh/class/sb9-71.txt.  Cut and paste the grain diameter (in mm)
and cumulative weight fraction data into a file with the sample name and an
extension of dat.  Process the data to estimate the median grain diameter and
standard deviation with the MATLAB file, ~gjh/class/sieve2.m.  Show a plot of
the fit of the lognormal distribution to the data.  The measured values of
permeability and porosity are 48.3 darcy and 0.395, respectively.

Other correlations.  There is a frequent need to estimate permeability
from grain size distribution.  A survey of the literature has not been made here.
Recently Panda and Lake (1994) estimated permeability from the grain size
distribution. Unfortunately, they used the parameters of the distribution of grain
diameter rather than the logarithm of the grain diameter.  Their analysis is much
more complex and they have to use a parameter for the skewness.  A
distribution that is a normal distribution (not skewed) in the logarithm of the grain
size has skewed distribution of the grain size.  Ostermeier (1995) recently
developed a correlation using parameters of the grain size distribution (not the
logarithm of grain size).
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Effect of Stress on Porosity and Permeability

We discussed earlier how the porosity decreased with depth of burial.
One of the factors in depth of burial is the increased stress that tends to compact
the formation.  The mechanisms discussed earlier were operating on a
geological time scale (i.e., millions of years).  Here we will consider mechanisms
that operate on two time scales: (1) the producting life of a reservoir, and (2) the
time scale of laboratory experiments.

The stress that is relavent to compaction of rock is the effective stress
which is equal to the difference between the overburden stress or confining
stress and the fluid pressure.The overburden stress is equal to the weight per
unit area of overburden. The overburden may consist of e.g. 70% quartz with a
density of 2.65 g/cm3  and 30% brine of density somewhat over 1.0 g/cm3. The
confining stress can be hydrostatic (isotropic or equal in all three directions),
triaxial (controlled stress in two or three directions), or uniaxial (stress applied in
one direction and the sample confined in the other two directions).

The following is the result of a recent investigation on the effect of stress
on the deep water Gulf of Mexico (GOM) turbidite formations (Ostermeier, 1993).
Compaction is of serious concern for these reservoirs because the formations
are unconsolidated or poorly consolidated, are highly geopressured (i.e.,  fluid
pressure is greater than the hydrostatic water pressure for that depth), and water
injection to maintain reservoir pressure may not be economically feasible for
these reservoirs that are in sea depths greater than 1,000 feet.  Compaction will
impact several aspects of field operations.  Seafloor subsidence may cause
flooding in coastal areas or lowering of offshore platforms as in the case of the
Ekofisk field.  A compacting sand several tens of feet thick can impose damaging
stress on production casing.  Compaction can help maintain pressure during
depletion by reduction of pore volume.  However, compaction due to the low
pressure around production wells can reduce the permeability and thus the
production rate.
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Fig. 3.44 illustrates the change
of pore volume of a laboratory sample
as a function of time for stress that is
increased in steps.  The pore volume
decreases with increase in stress but it
does not happen instantanously, i.e.,
there is creep or relaxation taking
place.  Fig. 3.45 shows the
characteristic time for creep relaxation
assuming a elastic-viscous model.
The characteristic time is small
compared to field depletion times but
is significant compared to the time of
laboratory experiments.  Laboratory
experiments should wait long enough
at each stress to reach near
equilibrium conditions.

Fig. 3.46 shows the pore
volume compressibility as a function
of the effective stress.  Prospect A,
which exhibits significant creep,
shows a rapid increase in
compressibility to rather large values
with a subsequent hardening at
higher applied stresses.  Prospect D,
which shows essentiall no creep has
a low compressibility which actually
decreases slightly with increasing
stress.  The creep and large
compressibility observed for
Prospects A and B arise from
compressive and shear deformation
of the load bearing softer grains.  As
applied stress increases, ductile
grain yeild strength is exceeded and
pore volume compressibility
increases.  With further increases in
applied stress, the compressibility
peaks at a relatively high value and
begins to diminish as more of the
load is taken up by the hard
component.  This hardening results
from the gradual deformation or
squeezing of the ductile material
between hard grains and into

Fig. 3.44  Pore volume reduction in response
to applied stress (Ostermeier 1993)

Fig 3.45 Creep rexalation time, τ, versus
effective stress (Ostermeier 1993)

Fig 3.46  Pore volume compressibility versus
effective stress (Ostermeier 1993)
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intergranular areas.  The Prospect D sample shows no softening.  Though this
sample contains ductile materials, this material is not load bearing at initial in situ
conditions nor does it become so.  Prospect D had deeper burial and greater in
situ stress history compared to Prospect A and the ductile material apparently is
no longer load bearing.

The cumulative effect of the
pore compressibility is shown in
Fig. 3.47.  This shows that up to
8% reduction in pore volume can
occur with a 4,000 psi increase in
effective stress if the mineral type
and distribution and the stress
history are right.

The permeability can
decrease in correspondance with
the reduction in porosity as shown
in Fig. 3.48.  The permeability in
prospect A decreased to less than
one third of its initial value.  The
permeability correlates with the
reduction in porosity as shown in Fig 3.49.

Fig. 3.47  Volume strain versus effective
stress (Ostermeier 1993)

Fig. 3.48  Porosity and permeability versus
time in response to applied effective stress
(Ostermeier 1993)

Fig 3.49  Oil permeability at Swi versus
porosity (Ostermeier 1993)
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Electrical Properties of Fluid Saturated Rock

The common method of determining the
presence and saturation of hydrocarbon in a
well is electrical logging for the formation
electrical resistance. This is usually done
before a well is cased but an observation well
can be cased with a fiberglass casing. The
basic principle of resistivity logging is that brine
will conduct electricity but oil and most
minerals are insulators. The amount of
minerals present (i.e., 1 - porosity) is
independently estimated by means such as
acoustic logging. We will see that the electrical
conductivity of fluid saturated rock is a function
of porosity and tortuosity similar to
permeability but differs from permeability in
that it is not a function of the pore size.

Fig. 3.50 illustrates the major
considerations in the conduction of an
electrical current through fluid saturated rock.
As electrical charges move through a
homogeneous, isotropic, conductive medium
possessing neither inductive or capacitive
reactance, the electrical potential difference,
V(volts), and the conductance, c(siemens),
determine the intensity of charge movement
per unit time, / (amperes). That is,

I cV=

The extrinsic conductance, c, of the medium is
related, in turn, to its intrinsic conductivity, C,
and its dimensions through the expression

C Ac
L

=

where C is the medium's conductivity
(siemens/meter), A is its area (m2), and L its
length (m). These expressions can be
combined as Fig. 3.50 Jorden and Campbell, 1986



3 - 48

C AI V
L

I VC
A L
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to relate current, potential difference, and conductivity for a homogeneous, isotropic,
conductive medium. Note the parallel between this equation for the flux of electrical
current as a function of a electrical potential gradient with the conductivity as the
transport coefficient and Darcy's law which expresses volumetric flux as a function of
the pressure gradient with the permeability divided by viscosity as the transport
coefficient.

Pore Structure

The flow of electrical current through reservoir or aquifer rock is not through a
homogeneous medium. The electrical current is through a composite medium
consisting of a conducting brine phase, an insulating hydrocarbon or air phase, mineral
phases that generally are insulating, and a brine saturated clay that may be more highly
conductive that the brine alone. We will first consider the effect of porosity and pore
structure on the electrical conductivity of a 100% brine saturated medium in the
absence of clays.

Refer to a block of the composite medium with a cross sectional area of A and a
length of L as illustrated in Fig. 3.50. The conductance, co, of the 100% brine saturated
medium will be expressed in terms of its conductivity, Co.

o
o

C Ac
L

=

The conductance of the medium is equal to the contribution of the conductivity of the
brine in the pore spaces of the medium. The length of the conductive paths through the
medium will be greater than L and it will be denoted as Le. The effective cross sectional
area for conduction is also reduced by the presence of the insulating solid. I believe the
effective cross sectional area should be Aφ but those who adhere strictly to the bundle
of capillary models claim that the effective cross sectional area should be A¢(L/Le). I will
use the latter convention to be consistent with the literature. The contribution of the
brine to the conductance can be expressed as follows.

( )/w e
o

e

C A L L
c

L
φ

=

where Cw is the conductivity of the brine (measured at appropriate temperature with a
brine of the same electrolyte composition) and Le is the effective length due to the
tortuosity of the pores. If we assume that the brine is the only contributor to the
conductance, we can equate the last two equations and solve for Co.
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where τe is the tortuosity (or the
square of the tortuosity).  This equation can
also be expressed in terms of the resistivity
which is the reciprocal of the conductivity.

o R wR F R=

where the ratio τe/φ has been combined into a
single parameter, FR, called the formation
resistivity factor.

e
RF τ

φ
=

This factor is the proportionality constant
between the formation resistivity at 100% water saturation and the brine resistivity. It is
a function of porosity and other features of the pore structure. Fig. 3.51 plots some
measured formation resistivity factors as a function of the porosity. It appears to
correlate with the inverse second power of the porosity. This implies that τe is
approximately inversely proportional to the porosity. A tortuosity of 2.0 for a sand pack
having a porosity of 0.4 is close to the tortuosity of 25/12 that we used for the Blake-
Kozeny model of permeability. However, this correlation implies that the tortuosity will
be equal to 10 for a rock with a porosity of 0.10. A literal interpretation of tortuosity
means that the effective pore length is √10 times the medium length for a porosity of
0.10. This interpretation appears questionable. Owen (1952) modeled the porous
medium as consisting of pore throats and pore bodies as illustrated in Fig. 3.52. The
constriction factor, Fc, is the ratio of the size of the pore body to the pore throat, i.e.,
the aspect ratio of the porous medium. The pore throat and pore body are in series and
a value of Fc greater than unity will result in a contribution of resistances in series to the
formation factor. Fig. 3.53 plots the calculated formation factor as a function of the
constriction factor, porosity, and tortuosity. These calculations shows that the effect of
resistances in series are very significant when the aspect ratio is large.

Fig. 3.51 Dependence of the formation
 resistivity - factor on porosity
(Jorden and Campbell 1986)
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These calculations also may offer means for estimating the aspect ratio from
measurements of the formation factor. We will see later that the aspect ratio is an
important factor in the trapping of a nonwetting phase. If we were to compare Fig. 3.51
with 3.53 while assuming a tortuosity of unity, the constriction factor will increase with
decreasing porosity as follows.

Porosity FR R eFφ τ= Constriction factor
0.30 7 2 2
0.20 30 6 4
0.10 80 8 5
0.05 400 20 >6

This table shows that resistance in series becomes more important as the porosity
decreases and this accounts for the large formation factors at low porosity.

Fig 3.52 Model of porous medium
containing pore bodies and pore throats
of different sizes, [Jorden and Campbell
1986 (Owen 1952)] Fig 3.53 Relationship between

formation resistivity factor and
constriction factor for model in Fig.
3.52 [Jorden and Campbell 1986
(Owen 1952)]
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Permeability Model Revisited

We determined here a tortuosity based on the electrical resistance of a brine
saturated rock.  Earlier we determined a tortuosity based of the hydraulic resistance to
flow.  We will now compare the equations and typical values for the two models of
tortuosity.

( )

3 2

2

, electrical

, hydraulic
72 1

e R

p

F

D

k

τ φ

φ
τ

φ

=

=
−

Fig. 3.54 shows the hydraulic tortuosity to be much larger than the electrical
tortuosity.  Thus one should be cautioned to not assume that they are equal.  Both
models were based on a bundle of capillary tubes.  The constrictions in the pores may
have a greater effect on hydraulic resistance than it does on electrical resistance.  This
may be expected since hydraulic flow depends on the fourth power of pore throat
diameter while electrical current depends on the second power of the pore throat
diameter.

Comparison of Hydraulic and Electrical Tortuosity
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Fig. 3.54 Comparison of the tortuosity determined from permeability of
unconsolidated sand with the tortuosity determined from electrical
resistivity
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Archie Model

The formation resistivity factor as a function of porosity in Fig. 3.51 showed that
the formation resistivity factor is approximated by a power law dependence on porosity.
Fit of experimental data is facilitated by the Archie model (commonly referred to as
Archie's law for brine saturated rock)

m
RF φ −=

where m is the lithologic exponent. It often has a value near 2.0. However, Fig. 3.55
shows that vuggy rocks can have formation resistivity factors that do not have a power
law behavior with an intercept of unity at unit porosity. Thus a modified Archie model
which may better fit data over a limited interval is

m
R RF K φ −=

where KR is the formation resistivity factor coefficient.

Fig. 3.55 Relationship between formation resistivity factor and porosity for
 some model pore systems [Jorden and Campbell, 1986 (Towle, 1962)]
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Effect of Clays

The model of the conductivity developed
so far has the formation conductivity
proportional to the brine conductivity with the
constant of proportionality equal to the
reciprocal of the formation resistivity factor.

1
o w

R

C C
F

=

in the absence of clays.

Figure 3.56 shows that the rock sample
with a low cation exchange capacity per unit
pore volume, Qv ,(proportional to clay content)
indicated by triangles does appear to have a
conductivity that is proportional to the brine
conductivity, i.e., has a zero intercept. However,
as the value Of Qv increases, the intercept
increases. The intercept is given as a function of
Qv below. Thus, some correction of Archie's law
is needed for the case of rocks having a
significant amount of clays.

Qv Co@Cw=0
0.093 0.00
0.185 0.02
0.453 0.06
0.857 0.12
1.54 0.19

So far we have treated the brine as the
only conductive material and assumed that it had
homogeneous properties given by Cw. If we were
to take a microscopic look into the brine filled
pore space, we will find that the composition of
the brine is different next to the clay surfaces. As
a result of the electrical charges on the surfaces
of the clays, we may see an ionic concentration profile as in Fig. 3.57. The negative
charge on the clay surfaces is balanced by a net excess of cations (positive) and
deficiency of anions (negative). This is called an electrical double layer because the
layer of charge on the surface is balanced by the layer of charge in the solution in the
vicinity of the surface. Usually the excess of cations is much greater than the deficiency
of anions. If the electrolyte concentration in the brine is low, the ionic concentration in
the double layer may be much greater than in the bulk solution. Since the conductivity is

Fig. 3.56 Effect of clay content and
water conductivity on electrical
conductivity of 100% water-saturated
rock (Jorden and Campbell, 1896)

Fig. 3.57 The electrical charge
distribution near clay surfaces
(Jorden and Campbell, 1986)
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approximately proportional to the ionic concentration, the double layer will be much
more conductive than an equal volume of bulk solution. Thus the electrical double will
act as a conductor in parallel with the bulk solution if the clays form a connected path
through the medium. When conductors are in parallel their total conductance is equal to
the sum of the individual conductance. Waxman and Smits introduced a model in 1968
that takes into account contribution due to the conductance of the clays.

( )*

1
o v w

R

C BQ C
F

= +

where
B = the equivalent ionic conductance of the
cations in the electrical double layer,
cm3/meq⋅Ω⋅m
Qv = the cation exchange capacity per unit
pore volume, meq/cm3,
FR* = shaly sand formation resistivity factor

This equation for the conductivity of
shaly sands takes into account the nonzero
intercept observed in the shaly sands shown in
Fig. 3.56. The cation exchange capacity
per unit weight of disaggregated rock, CEC (meq/g), is measured by standard analytical
methods. The fact that it is a surface effect can be seen from the linear correlation of
the specific CEC with the specific area of some common clays in Fig. 3.58.

Assignment 3.6 Cation Exchange Capacity Calculate the area (nm2) per charge on
clay surfaces from the data on Fig. 3.58.  An equivalent is an amount of material
corresponding to Avogadro number (6.0238x1023) of positive and negative charges.

Hydrocarbon Saturation

So far we have discussed the conductivity or resistivity of 100% brine saturated
rock. The presence of a nonconductive hydrocarbon occupying a portion of the pore
space  will result in a decrease in the conductivity. To estimate the hydrocarbon
saturation we need to determine how much the rock conductivity is reduced by the
presence of the hydrocarbon. Archie found that for clay-free rock the reduction of the
rock conductivity due to the presence of hydrocarbon could be described with a power-
law model similar to the dependence of the formation resistivity factor on porosity
(Archie's law for partially brine saturated rock).

Fig. 3.58 Relationship between specific
surface area and specific CEC for
standard clays [Jorden and Campbell
1986 (Clavier et al. 1984)]
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t R oR I R=

and

1
t o

R

C C
I

=

where Rt and Ct are the resistivity and
conductivity, respectively, of the
partially water saturated rock and IR is
the hydrocarbon resistivity index.
When the hydrocarbon resistivity index
follows the power model, it can be
described as

n
R wI S −=

where n is the saturation exponent.
Fig. 3.59 shows the hydrocarbon
resistivity index as a function of water
saturation (called I - Sw plot) for rocks
with different wettability. The data with
preferentially water-wet and neutral
wettability conditions do have a power
law behavior with a saturation
exponent about 2.0 for neutral wettability and less than 2.0 for preferentially water-wet.
The samples that are preferentially oil wet deviate significantly from the power law
behavior with an exponent of 2.0. When the rock is water-wet the water remains
connected as the water saturation reduces and the reduction in conductivity is due to
increased tortuosity and resistances in series similar to the models for the formation
resistivity factor. However, when the rock is preferentially oil-wet, the water becomes
disconnected as the water saturation decreases and the disconnected water
contributes nothing to the conductivity. Thus the resistivity increases much more rapidly
as water becomes disconnected.

Earlier we saw that in the presence of a significant amount of clays, the
formation resistivity factor given by the Archie model had to be modified as in the
Waxman-Smit model. When hydrocarbon is present in shaly sands the Archie model is
modified by the Waxman-Thomas model.

* ** 1

1 1 1
t v wn n

R w

C BQ C
F S S− −

� �
= +� �� �

� �

Fig. 3.59 Effect of wettability on hydrocarbon
resistivity index of carbonates [Jorden and
Campbell 1986 (Sweeney and Jennings 1960)]
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Electric Logging

Electrical logging for formation evaluation is the recording of one or more
electrical properties in a well by lowering a logging tool into the well on a wire line. The
usual measurements are the spontaneous potential (SP) and resistivity (or conductivity)
logging. Fig. 3.60 is an example of an electrical log in a sandstone formation. The
resistivity tools with different electrode spacing measures resistivity averaged over
different volumes the formation. Notice that the tools with wider spacing has higher
resistivity as there is less flushing by the drilling mud filtrate deeper into the formation.

i. . . The bed is very thick and reasonably homogeneous, although the slightly dissymmetrical
shapes of the SP and normal resistivity curves, and also several ripples in the curves, indicate the
presence of shale streaks, mostly in the lower part.

Since the formation is known to be reasonably porous, and the connate water to be highly
mineralized. the high resistivity obtained with the long normal and the lateral can be interpreted as
significant of high oil saturation.

. .. No maximum is noticed with the lateral near the lower boundary of the bed, which is due to the
progressive increase of shaly material downwardly ..

The bed can be considered as infinitely thick with respect to the spacing of the long normal (e =
70'). On the other hand, according to the lithologic characteristics of the bed, the value of R,/R,,, should
be taken at least equal to 20, and the penetration of mud filtrate is certainly rather deep . . ."

Fig. 3.60  Example conventional electrode log - consolidated
sandstone (Jorden and Campbell, 1986)
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