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674 MOTION AND DIFFUSION IN THIN LIQUID FILMS
The shear stress exerted on the liquid film is given by
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The shear stress becomes zero at r = 0 and at r = R,
For small angles of the sector the sum of the series is small
compared to the first term on the right, and
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Under the action of the stress F a film of thickness h is set into
motion with a velocity v given by

Pliqpr=F- (132.10)

In practice, the thickness h and velocity v are measured with an
interferometer, The first is measured directly, while the second is
measured by the rate of displacement of the interference bands
during the blow-off process.

Thus, using equation (132,10), the liquid viscosity can be deter-
mined as a function of the shear stress from a single experiment. In
the case of normal liquids, this functionis a straight line that passes
through the origin, At the same time, the blow-off method can be
used to determine the thickness of a moving liquid layer. In other
words, interferometric measurements can be usedtodetermine that
distance from the solid surface at which the liquid particles can
undergo displacement relative to the wall,

According to experimental measurements, this distance doesnot
exceed 5-10~7 cm, This should be considered asthe most accurate
value for the minimum distance from a solid surface at which a
liquid retains its mobility.

The blow-off method and its modifications are widely used in the
study of hydrodynamic properties of liquids [4].

133. THICKNESS OF FILM REMAINING ON THE SURFACE
OF A SOLID WITHDRAWN FROM A QUIESCENT LIQUID

As a typical example of steady-state motion of a liquid film '}
where capillary forces play an important part, we examine a solid }
withdrawn from a quiescent liquid [5]. Athinfilm of liquid remains |
on the surface when the golid is withdrawn, The film thickness is of §
interest from many practical standpoints, for example, that of
coating of solids with a layer of a solute. When the solid object is
withdrawn from a solution at a constant speed, its surface remains |
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covered by a layer of solution which is of uniform thickness. As the
solvent evaporates, a thin layer of the solute remains on the solid
surface, It is interesting to determine the dependence of the thick-
ness of the layer on the withdrawal rate and the effect of the
physicochemical properties of the solution,

Another important example is the migration of petroleum in
earth strata, When such migration occurs in the presence of water
and gas, a portion of the petroleum is retained in the pores of the
strata, It is of interest to determine the factors that govern the
thickness of the petroleum layer retained on the pore surface of
petroliferous strata.

The thickness of a liquid film remaining on the surface of a
solid body is of great importance in accurate handling of chemical
solutions, The walls of vessels, when emptied, retain a layer of the
liquid solution which constitutes a source of error in accurate
measurement of liquid volumes, The presence of liquid on the
walls must be considered in the quantitative analysis of chemical
solutions, in the use of capillary viscometers for absolute measure-
ments of viscosity, and other cases where the ‘‘emptying error’’ is
one of the principal inaccuracies of the method.

At the same time, determination of the filmthickness can serve
as a method for measuring liquid viscosity.

In view of the great practical significance of this problem, much
published material has been devoted to it, In an official review from
the General Electric Company [6], a summary of the research in this
field was presented, Later, experimental and theoretical studies on
the determination of the thickness of a liquid layer were published
[7]. In theoretical studies by Jeffreys [8], the thickness of the ligquid
layer was determined from the balance between gravitational and
viscous stresses developed in the film, but without considering
capillary forces,

We show below that in the most important case met in practice,
that of slow withdrawal of a solid from a liquid, capillary forces
play a basic role and disregarding them leads to completely inac-
curate results, Equally erroneous were the computations by Couger
and Ward, presented in the review from the General Electric Company
mentioned above, In studying the flow of afilm the authors not only
disregarded capillary forces, but also employed the wrong boundary
conditions.

On the basis of certain simplifying assumptions we examine the
thickness of the liquid layer remaining on the surface of a solid
withdrawn from a liquid. We assume that the curvature of the solid
surface is very small compared tothe thickness of the film remain-
ing on the surface, In this manner we can consider the body as an
infinite plane andthe film as a closely adhering parallel liquid layer.
We also assume that the vessel containing the liquid is relatively
large, so that we may disregard the wall effect on the meniscus in
the vicinity of the solid. Welimit our analysis to the withdrawal of a
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plate at a constant, low velocity vy. The significance of the low
velocity is explained later.

Let us assume that the solid is being withdrawn vertically upward
[9]. The liquid far from the plate is at rest, and its surface is
horizontal. We take this surface as the plane y = 0, We direct the
y axis in a direction perpendiculartothe plate, and the x axis along
the plate.

The liquid that wets the surface of the solid forms a meniscus
in the vicinity of the plate., The shape of a meniscus near a moving
plate differs substantially from that of ameniscusnear a stationary
plate, the case examined in Section 65,

In the vicinity of a moving plate the liquid is entrained and set
into motion behind the plate. This motion isdue to the following: 1)
transfer of a certain momentum from the plate to the viscous liquid
(the liquid particles on the surface of the plate are fully entrained
by the latter); 2) the effect of gravity, whichcauses the liquid to flow
down the plate. In addition, capillary pressure acts at the surface
of the liquid, producing a meniscus near the plate.

It is evident that the thickness h of the liquid layer that remains
on the plate must be a function of the velocity of withdrawal v, of the
liquid viscosity u, of the product p g and of the surface tension g. It
varies, of course, with the height along the plate, and

h=h(x).

At asufficient height above the liquid surface, the thickness of the
entrained film is extremely small and the motion of the liquid is
almost rectilinear, On the other hand, farfromthe plate, the shape
of the meniscus remains virtually undistorted by the motion of the
plate.

Thus, the liquid surface may be subdivided intotwo regions, one
in which the liquid is directly entrained by the motion of the plate,
and another region where the meniscus is static, The liquid in the
first region moves almost parallel to the surface of the plate. In the
second region, the liquid is almost motionless. The quantitative
considerations given below define accurately the dimensions of these
two regions., A separate solution of the hydrodynamic equations must
be obtained for each region, and then a smooth matching of the two
solutions is required. We begin by analyzing the static meniscus
region,

The equation for the shape of a liquid surface with a static
meniscus was derived in Section 65. In the case of a plate, this
equation is

d?h
dx? pgx

(133.1)
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The integral of equation (133.1) that satisfies the condition
requiring the liquid surface far from the plate to be a horizontal
surface is

k.
d ]
Rl o

For a moving plate equation (133,2) is valid only far from the
plate, where the thickness of the liquid layer is large and its height
X is small,

At large x and small h, the entrainment of the liquid cannot be
disregarded. A low value of the film thickness in equation (133.2)
corresponds to a transition from the static to the entrainment
region. In this case, the liquid film is almost vertical and parallel
to the plane y = 0. When the derivative é—‘l,:—= 0, the film is in a
vertical position., Therefore, the transition to the entrainment

region occurs as % - 0. Equation (133.2) shows that gh;—' 0 as

1
x-/3| (E:?)/a . Also, equation (133,1) shows that
dth Pg Y
Thus, the solution of the equation for the static meniscus region

becomes also the solution for the entrainment region when the
following conditions are fulfilled simultaneously:

B0, (133.3)
LLEN) (133.4)

P VE({E)% (133.5)
&h _,ﬁ(g)’/’_ (133.6)

Conditions (133.3) to (133.6) must be satisfied by the function
h(x) at the boundary of the static meniscus region. The function h(x)
over the entire region can be obtained from a solution for the
entrainment region that can be matched with the solution of the
static surface equation at the boundary between the two regions,
These matching conditions are given by (133.3) to (133.6).

We now turn to the analysis of a liquid film on the plate in the
entrainment region,
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Here, the liquid motion can be considered tobe almost vertical.
In the entrainment region the vertical velocity component vy, which
is parallel to the plate, is very large compared to the horizontal
component vy, We examined this type of motionin Section 131,

In slow steady-state motion, the quadratic terms in equation
(131.11) may be omitted and, with the body force per unit denoted
by g, this equation can be rewritten as

d3h %,
%m‘*“’ a;'z +g=0. (133.7)

The boundary conditions here give the entrainment of the film by the
rising plate

v,=v, at y=0, (133.8)
and

pL%"yﬁ:O at  y=h(x). (133.9)

Integrating equation (133.7) with respect toy and considering condi-
tions (133.8) and (133.9), we obtain the velocity distribution across
the film

— pg | o ddh\(y?
v =v,— (£ =g ) (=) (133.10)
We introduce the so-called ‘‘liquid consumption rate’’ which repre-
gents the liquid flow in the film

R (@)
Q= f vz dy ==const, (133,11)

0
Substituting vy from (133.10) into (133.11), we get

Q=voh+(pg+s%)3i:. (133.12)

Equation (133.12) determines the film thickness h(x) interms of
the given quantities v, p, g,0andy. It is a third-order differential
equation, When integrated, three constants appear in the expression
for h. In addition, another unknown constant enters equation (133,12),
namely, the liquid flow Q, We therefore require four conditions to
determine all the constants,

These are the four boundary conditions that must be satisfied by
a solution of equation (133.12).

Before turning to a formulation of these conditions, we rewrite
(133.12) in dimensionless form,




MOTION AND DIFFUSION IN THIN LIQUID FILMS 679

We introduce a new dimensionless coordinate A, defined by

% o
3 \J5 v
=(5) o= (133.13)

and a dimensionless liquid film thickness
L= "—""Q‘ﬁ. (133.14)

Introducing A and L into (133.12), we get

BL_1—L | pgQ _
o T =0 (133.15)

Now, the boundary conditions that must be satisfied by a solution
of (133.15) can be formulated.

At a considerable height above the liquid surface the film must
have a constant limiting thickness, and its surface must be parallel
to the plate. The limiting thickness h, is

_9Q
ho = ?o— .

The limiting value of film thickness is obtained at a very high

value of x, We may assume with sufficient accuracy that

h—>hy a x-—>o00,
or ]
L1 a Ao oo, (133.16)
The condition for the verticality of the liquid surface is

2L50 as A co. (133.17)

Since the surface must be planar, its curvature is zero. This
gives

LLso s Aooo. (133.18)

The fourth condition is derived from the matching conditions of
the solution of equation (133.15) and the static meniscus equation
(133.1). To find the matching conditions we first simplify equation
(133.15) on the assumption that its last term is small and may be
omitted, This assumption is valid whenthe flow Q is proportional to

the plate velocity v, to a power n >%and v, is sufficiently small,
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The computations below show that sz‘?’a and thus the last term
is actually proportional to V&’a. For a sufficiently low v, it is
therefore small compared to unity. The other terms of equation
(133.15) are dimensionless and of the order of unity. We may there-
fore write

da’L 1—L
aL_ 12t (133.19)

Since no dimensional quantities enter equation (133.19), its
numerical solutionis considerably simplified. Moreover, an import-
ant conclusion regarding the fourth boundary condition can be
reached, Matching of the solutions of equations (133.1) and (133.19)
must occur within a range of film thicknesses that is very large
compared to the limiting thickness h; (the dimensionless thickness
L = 1), but at the same time, small compared to the film thickness in
the static meniscus region., As shown by(133.5) the region of small
meniscus thicknesses corresponds to a definite value of x and to a
constant but small value of the surface curvature(as a reminder —

2
with small curvature, the surface is given by gxg ). The matching

condition, therefore, requires a constant curvature of the liquid
surface in the matching region. More exactly, itis required that the
surface curvature found from the static solution as h = 0 be equal
to the curvature of the entrained film as h - . The matching con-
dition in dimensionless form is

del stat d2l entr
(lm )L+o=(7ﬂ‘)Lm’ (133.20)
d2L)\stat . . . .
where e L - is the dimensionless static meniscus curvature
421, \entr

for small film thicknesses, and 2L -0 is the same for the

entrained film in a zone of large film thicknesses. Since no dimen-
sional quantities enter equation (133.19), we have

(&L )e'm — (133.21)

ax L>»cw

where o is an unknown constant, Its value may be found from a
numerical solution of equation (133,19), Thus, owingtothe fact that
equation (133.12) could be transformed into adimensionless equation
(133.19), the matching condition can be greatly simplified by using

derientr . .
(—dv L-o from the simple relation (133.21),
der,) stat
The value of aNE, L =0 is computed easily from (133.6) and

from the definition of L and A given by (133.13) and (133.14), re-
spectively, A simple calculation gives )
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stat

CONSEOF O

The boundary condition (133.20) can now be rewritten as
s ofEw¥

V= VT e (133.29)
Numerical integration of (133.19) gives
a=0.63. (133.24)
Then the liquid flow through one linear centimeter of film breadth is
Q=0.93 ﬂ—. (133.25)
sYe(pg)2 )

The limiting thickness of the liquid layer entrained by the plate is
given by [5]

_9Q_ ()%
e
Equation (133.26) shows that the limiting thickness of the
entrained film is proportional to the withdrawal velocity of the solid
and to the liquid viscosity to the 2/3 power. The thickness is but a
weak function, however, of the liquid density and surface tension, The
very weak dependence of the thickness on surface tension indicates
that surface-active agents should have little effect.
The thickness of a pure water film (o = 72, y = 10=2, p = 1) en-
trained by the solid is, according to (133.26),

ko=~ 8. 10703,

¢133.26)

In deriving equation (133.26), or more exactly, in deriving
2
(133.19) from (133.15), we have neglectedeﬁas small compared

o Suvi
with unity.
Substitution of @ from (133.25) shows that this procedure is

valid, provided the following inequality holds
%€ 5 (133.27)

For pure water, this inequality gives vy < 7.10% cm/sec; for
glycerine we obtain vy, < 40 cm/sec, etc. -Although the above
solution is valid in principle only at low velocities, it is always valid
for withdrawal velocities encountered inpractice with low-viscosity
liquids.

For high velocities of withdrawal an expression for h; may be
derived by dimensional analysis: the thickness of the film remaining
on the solid at high withdrawal velocities cannot depend on the nature
of the static liquid meniscus. In other words, h, is no longer a
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function of surface tension and is determined exclusively by the
quantities g, p, 4 and vy. The only combination with the dimension
of length that may be constructed of these quantities is the expres-

sion (—“v" )1/3 .
g

Therefore, at v, > %, we have

4
—_ Ko
ho_A(Pg) , (133.,28)
where A is an undetermined constant, It was evaluated by B, V,
Deryagin [10] by integrating equation (133.15) and was found to be
equal to unity,

In the general case of an arbitrary withdrawal velocity of the
plate, we get

r=(E2Y*1(2), (133.29)

where the function £ (L‘;—°> takes the form
G R A (133.30)

722 )~ for PO, (133.31)
Equation (133.29) has been carefully verified in the experiments of
B. V, Deryagin and A, S, Titiyevskaya [11] over a wide range of
withdrawal velocities,
Figure 109 gives a comparison between the theoretical (solid and
broken curves) and measured (circles) values of film thickness.
It is evident that agreement between the theory and experimental
data is quite satisfactory. The differences between the computed and
the measured thicknesses lie within the range of the experimental
error.*
Equation (133.29) may be used to estimate the thickness of the
liquid film on a solid of any shape, provided its radius of curvature

- 1
is extremely large in comparison to the capillary constant (gg_) 2,

*The study by B, V, Deryagin and A, S, Titiyevskaya [11] men-
tions a discrepancy between the experimental values for h, and those
computed by L, D, Landau and the author. This is based on a
misunderstanding. The original article by Landau and Levich con-
tained a serious and obvious typographical error inthe substitution
of numerica.l values into equations (133.23) and (133.25); instead of

{-2-9_— 0.93, the text shows = 2,29,
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An important experimental verification of the above theory was
made by M., M. Kusakov [12]. If some object — a thread, for
example — is placed at acertaindistance (of the order of the capil-
lary constant) from the plate being withdrawn from the liquid, that
object has a significant effect on the film thickness. The object’s
‘‘shadow’’ is discovered in interferometric measurements of the
film thickness; within the ¢‘shadow?’’ the film thickness is less than
it is over the balance of the surface of the plate. Introducing the
object alters the meniscus, but apparently cannot directly affect
the film that remains on the solid, M. M. Kusakov’s study clearly
demonstrated the role of the meniscus. A change in the meniscus
affects the matching conditions, and this, inturn, is reflected in the
thickness of the film, Entrainment of liquid by a thin thread (R < h)

Igh,

ok o

7k

L

3L

z | — I i |
f 7 ol

Figure 109, Entrained film thickness
h, as a function of the dimensionless
group uv/o.

and liquid flow down the thread were theoretically examined by
B, V, Deryagin [9] and experimentally verified by V, S, Bondarenko
[13]. These studies established that capillary waves appear on the
liquid surface film, The importance of surface tension during flow
of the film at a large height above the meniscus has thus been
established. The development of such capillary waves with time
results in break-up of the cylindrical layer into a series of large
and small drops that succeed one another atregular intervals. The
shape of the drops depends in large measure on the contact angle.

134, WAVE MOTION IN THIN LIQUID LAYERS

As indicated above, the strictly laminar gravity flow down a plate
is superseded by a wave regime at Reynolds numbers in excess of






