
Chapter 9  Multidimensional Laminar Flow 
 
Reading assignment: Chapter 4 in BSL, Transport Phenomena 
 
Lubrication and Film Flow 
 We already had two examples of flow in gaps that could be a thin film; 
Couette flow, and the steady, draining film.  Here we will see that when the 
dimension of the gap or film thickness is small compared to other dimensions of 
the system, the Navier-Stokes equations simplify relatively and simple, classical 
solutions are possible.  In Chapter 6, we saw that when the dimension of the gap 
or film in the x3 direction is small and the Reynolds number is small, the 
equations of motion reduce to the following. 
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In the above equations, the subscript, 12, denote components in the plane of the 
gap or film.  When the thickness is small enough, one wall of the gap or film can 
be treated as a plane even if it is curved with a radius of curvature that is large 
compared to the thickness. 
 
 Lubrication flow with slider bearings.  (Ockendon and Ockendon, 1995) 
Bearings function preventing contact between two moving surfaces by the flow of 
the lubrication fluid between the surfaces.  The generic example of lubrication 
flow is illustrated with the slider bearing. 
 

 
 A two-dimensional bearing is shown in which the plane of y = 0 moves 
with constant velocity U in the x-direction and the top of the bearing (the slider) is 
fixed.  The variables are nondimensionalised with respect to U, the length L of 
the bearing, and a characteristic gap-width, ho, so that the position of the slider is 
given in the dimensionless variables.  Again, referring back to Chapter 6, the 
dimensionless variables for this problem may be the following. 
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Henceforth, the variables will be dimensionless with the * dropped.  The 
boundary conditions are as follows. 
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The pressure can not suddenly equal the ambient pressure as assumed here 
because entrance and exit effects, but these will be neglected here.  In reality, 
there may be a high pressure at the entrance of the bearing as a result of the 
liquid being scraped from the surface.  The low pressure at the exit of the bearing 
may result in gas flowing in to equalize the pressure or cavitation may occur. 

The dimensionless equations of motion and continuity equation are now 
as follows. 
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 Integration of the equation of motion over the gap-thickness gives the 
velocity profile for a particular value of x. 
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Notice that this profile is a combination of a profile due to forced flow (pressure 
gradient) and that due to induced flow (movement of wall).  The velocity may 
pass through zero somewhere in the profile if the two contributions are in 
opposite directions.  This is illustrated in the following figure. 
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 Integration of the continuity equation over the thickness gives, 

 
Velocity profile in slider bearing (Middleman, 1998) 
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The latter integral can be expressed as follows. 
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 Substituting the velocity profile into the above integral gives us the 
Reynolds equation for lubrication flow. 
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 Integration of this equation gives, 
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A second integration gives, 
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where the constant of integration has to satisfy the boundary conditions, 
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 The role of the lubrication layer is to maintain a separation of the two 
surfaces in the presence of a load such that asperities (roughness) on the 
surfaces do not make contact.  The load on the bearing is equal to the integral of 
the normal stress over the bearing surface.  If the change in gap-thickness is 
small compared to the length, as assumed here, the normal stress is 
approximately equal to the pressure.  If the gap-thickness is monotone 
decreasing, the pressure will be greater than ambient pressure inside the 
bearing.  However, if the gap-thickness in monotone increasing, the pressure will 
be less than ambient in the bearing and it will have no load bearing capacity.  If 
the gap-thickness is not monotone, then the pressure may be greater than 
ambient in some places and less than ambient in other places.  If the bearing is 
designed to be load bearing, then a long section of decreasing gap-thickness and 
a short section of increasing thickness is desired.  If the bearing is designed to be 
a scraper as piston rings then both sections of changing thickness will be short 
as to limit the amount of liquid passing through the gap.  Gas entering the low-
pressure region at the exit of the bearing surface prevents bearing surface 
contact from negative pressures. 

 
Pressure profile is slider bearing (Middleman, 1998).  

( )/ , / , tan /L o o o LH H L H H H Lκ θ= Λ = = −  

 The analysis for the slider bearing can also be used to design an 
apparatus for depositing a uniform coating of a liquid on a substrate. 
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 Squeeze films.  When two objects approach each other in a fluid their 
relative velocity is slowed as the resistance increases for the fluid leaving the 
gap.  Here the relative velocity of the surface is in the normal direction rather 
than in the parallel direction as in the case of the slider bearing.  This type of flow 
is important in the coalescence of emulsion droplets or foam bubbles.  In the 
case of coalescence, hydrodynamics govern the dynamics of the approach of the 
surfaces to each other until the thinning is accelerated or retarded by surface 
forces (i.e., disjoining pressure). 

 
Coating flow (Middleman, 1998) 

 We will derive the classical Reynolds drainage of a liquid between two 
parallel disks of radius R approaching each other.  The configuration of the 
system is shown below. 

The system is symmetrical about its axis and the mid-plane.  The thickness, h, is 
one-half of the distance between the disks and the velocity of each disk, U, is 
one-half of the approach velocity of the two disks.  This nomenclature may be 
awkward but with this nomenclature, the solution also applies to the thinning of a 
liquid film between a solid surface and a gas bubble having zero shear stress at 
the interface.  The velocity of approach of the disks may not be constant but 
rather the force pressing the disks together may be constant.  Because of the 
symmetry, we will analyze the upper half-space with cylindrical polar coordinates.  
The system is axisymmetrical so the independent variables are r, z, t.  The 
equations of motion and continuity equation in cylindrical polar coordinates are 

 
 
 
 
 
 
 
 
 
 
 
Schematic of film drainage between parallel disks 

U(t) 

h 
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The boundary conditions are  
 

 

0, 0

0,

0, 0

0, ( ), ( )

r
z

r z

P r
r

P r R
vv z
z

v v U t z h

∂
= =

∂
= =
∂

= = =
∂

= = − = t

 

 
The partial differential equations do not have an explicit dependence on time as 
time only enters thorough the boundary conditions.  Thus the variables will be 
made dimensionless with respect to the time dependent boundary conditions for 
the purpose of solving the PDE. 
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The dimensionless equations and boundary conditions with the * dropped are 
now 
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 Integration of vr with respect to z in the equation of motion and applying 
the boundary conditions results in the velocity profile across the film thickness. 
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Integration of the continuity equation over the film thickness gives, 
 

 

( )

( )

1

0

1 1

00

1

0

10

1

1 1

z
r

r z

r

vr v dz
r r z

r v dz v
r r
d r v dz

r dr

∂ ∂⎛ ⎞= +⎜ ⎟∂ ∂⎝ ⎠
∂

= +
∂

⎡ ⎤= −⎢ ⎥⎣ ⎦

∫

∫

∫

 

 
The velocity profile across the thickness is substituted into the above equation 
and the integration preformed. 
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Integration and application of the boundary conditions give 
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 The pressure and radius can now be converted to dimensional variables 
so we can see the dependence of the parameters. 
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The pressure distribution has a maximum at the center of the disk and decreases 
to zero at the outer radius of the disk.  The pressure integrated over the area of 
the disk gives the force required to bring the disks together, each disk with a 
velocity U, when each disk is a distance h from the midplane.   
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This expression can be turned around to express the velocity of each disk 
approaching each other when a force F is applied. 
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This result is the classical Reynolds (1886) velocity for the thinning of two parallel 
disks. 
 
 If the applied force is constant, the above equation can be integrated to 
determine the time it takes to thin down from some initial thickness, hi.   
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It the initial thickness is large but unknown, then it can be assumed to be infinity 
with only a small error in the time to thin down to a small thickness.  An explicit 
expression for the time to thin from infinite thickness to a thickness h is  
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From this expression, we see that it will take an infinite time to thin to zero 
thickness.  In reality, as the film becomes very thin, surface forces (disjoining 
pressure) will become important in accelerating or retarding the rate of thinning.  
If the surfaces are solid surfaces, contact will be made at high points (roughness) 
and the contact stresses may limit the thinning. 
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Transient Drainage of a Vertical Film 
 Earlier we treated the steady film flow along an inclined plane.  Here we 
will consider the transient drainage of a film that has zero flux at the upstream 
boundary.  This corresponds to the transient behavior immediately after the flow 
if liquid is shut off in the problem of the steady flow along an incline plane.  We 
will treat the wall as if it was vertical.  If it is inclined from the vertical, the 
acceleration of gravity in the solution will need to be multiplied by the cosine of 
the angle from the vertical.  It is assumed that the film is thin enough for the 
Reynolds number to be negligible and there are no ripples.  Also, it is assumed 
that the thickness is large enough that surface forces (disjoining pressure) are 
negligible.  The fluid in the film is assumed to be incompressible and Newtonian 
and the surrounding fluid is assumed to have zero density and viscosity.  The 
surface tension and surface viscosity are neglected.  The initial thickness of the 
film is assumed to be a constant value, hi.  Let z be the coordinate in the 
direction of the film flow and x the direction perpendicular to the wall.  The 
equations of motion and continuity equation for thin films, discussed in Chapter 6 
have several terms that can be neglected.  The resulting equations and boundary 
conditions follows. 
 

 

2

2

,

0

0
0 , 0

0 ( , )

0

( ,0) 0
0 0, 0

0 0

( , )
0

x z

i

v u v v
P
x

tP v
zz x
x h z t

u v z h
x z

h z h t
v z t
u v x

dx h hu v
dt t z x h z t

v
x

μ

τ μ

= =

∂ ⎫= − ⎪∂ ⎪
⎪
⎪ >∂ ∂ ⎪= − +

>∂ ∂ ⎬
⎪ < <⎪

∂ ∂ ⎪+ = ⎪∂ ∂
⎪
⎭

= =

= = >
= = =

∂ ∂ ⎫= = + ⎪⎪∂ ∂ =⎬∂ ⎪= − =
⎪∂ ⎭

 

z

x

h

no slip

zero
stress

 
 The first equation states that there is zero potential gradient over the 
thickness of the film.  Because the surrounding fluid has zero density and the 
surface tension is neglected, the pressure in the film is equal to that of the 
surrounding fluid.  Thus, 
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 The velocity profile across the thickness of the film can be determined by 
integrating the second equation. 
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The flux or flow rate per unit width of the film can be determined by integrating 
the velocity profile over the thickness of the film. 
 

 
3

0 3
h g hv dx ρ

μ
=∫  

 
 The continuity equation can be integrated over the thickness of the film. 
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The derivative can be taken outside of the integral with the addition of another 
term that cancels the term in the previous equation. 
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Thus the differential equation for the film thickness is  
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 This is a first order, hyperbolic partial differential equation with constant 
initial and boundary conditions.  Time and distance can be combined into a single 
similarity variable.  The trajectories of constant values of the dependent variable 
can be calculated from the PDE. 
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 Since the origin of all changes in thickness occur at the origin, the 
equation can be integrated as straight-line trajectories for each value of thickness 
between zero and the initial condition. 
 

 

2

0
2

2

2

, 0

( , ) ,

( , ) ,

i

i
dh

i

h

i

i
i

z g h h h
t

g hz
t

g hz zh z t
g t t

g hzh z t h
t

ρ
μ

ρ
μ

ρμ
ρ μ

ρ
μ

=

⎛ ⎞ = < <⎜ ⎟
⎝ ⎠

⎛ ⎞ =⎜ ⎟
⎝ ⎠

= <

= >

 

 
 This is the classical solution for transient film drainage.  Thick films initially 
drain very rapidly but the rate of drainage slows as the film thins.   
 Notice that where the thickness has thinned below the initial thickness, the 
thickness is independent of the value of the initial thickness.  Also, notice that the 
solution does not have a characteristic time, length, or thickness.  This suggests 
that the thickness, time and distance are self-similar.  In fact these variables can 
be combined into a single variable. 
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 The thickness normalized with respect to the initial thickness can be 
expressed as a function of a single similarity variable or if a system length is 
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specified, it can be expressed as a function of the dimensionless distance and 
time. 
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 One may be interested in the volume of liquid that remains on a vertical 
wall of length L after the film is everywhere less than the initial thickness.  This 
can be determined by integrating the film thickness profile over the length of the 
wall. 
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This expression shows that the amount of liquid remaining on a vertical wall is 
inversely proportional to the square root of time.  This solution is valid only after 
the film has everywhere thinned below the initial thickness. 
 
Assignment 9.1 Transient drainage of vertical film.   

a) Combine the independent variables and parameters as a dimensionless 
similarity variable.  Plot the normalized thickness as a function of the 
similarity variable. 

b) Suppose the length of the system is L.  Plot the profiles of the normalized 
thickness as a function of dimensionless distance for different values of 
dimensionless time, (t=eps:1:20). 
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Laminar Boundary Layer  
 
 The flow of an ideal fluid (inviscid and incompressible) in two dimensions 
can be calculated for many configurations through the use of potential flow and 
complex variables.  At a solid boundary, the ideal fluid has zero flux (the normal 
component of velocity is equal to that of the solid) but the tangential velocity may 
not be equal to that of the solid.  Real fluids have a finite viscosity and (with only 
a few exceptions) the tangential component of velocity is equal to that of the 
solid, i.e., the boundary condition of no-slip.  In many cases, the "external flow" 
sufficiently far from a solid body can be modeled as that of an ideal fluid and the 
effect of finite viscosity effects the flow only near the surface of the body (and 
downstream of the body).  These situations can be treated by application of the 
boundary layer theory. 
 The underlying assumption in the 
boundary layer theory is that there is a very 
thin layer near the body where the gradient 
of the tangential velocity is very large due 
to the action of viscosity and the no-slip 
boundary condition.  Elsewhere the effect 
of viscosity is assumed to be unimportant 
and can be modeled as inviscid or potential 
flow. 
 The continuity equation and 
equations of motion were specialized in 
Chapter 6 with the assumption that the boundary layer thickness, δ, is small 
compared to the characteristic dimension of the body, L, i.e., δ/L<<1.   The 
equations (known as Prandtl's boundary layer equations) and boundary 
conditions are recalled here. 

 
Boundary layer flow along a wall 
(Schlichting, 1960) 
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The remaining terms in the equation of motion and continuity equation are of 
similar magnitude if  
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The assumption that the boundary layer thickness is small compared to the 
characteristic length of the body requires that the Reynolds number be large 
compared to unity if the terms in the equation of motion are to be of similar 
magnitude.  If L is to represent the distance, x, from the leading edge of the 
boundary layer, the above relation describes the thickness of the boundary layer 
as a function of distance from the leading edge. 
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 Another quantity that is of 
interest in boundary layer theory is 
the local drag coefficient due to the 
wall shear stress (some definitions 
differ by a factor of 2).  The mean 
drag coefficient is the average value of this quantity over the surface of the body. 

 
Flow past flat plate at zero incidence 
(Schlichting, 1960) 
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Laminar flow along flat plate 
 
 The classical system for the study of laminar boundary layers is the flow of 
a fluid in uniform translation past a flat plate.  The free stream velocity is constant 
and the pressure gradient is zero.  The classical solution to this problem is the 
doctoral thesis of H. Blasius (1908).  The equation of continuity is satisfied 
exactly by expressing the velocity as the curl of the stream function.  Since the 
system does not have a characteristic length, a similarity transformation makes it 
possible to combine the two independent variables (x,y) into a single 

independent variable, Uy
x

η
ν

∞= .  The equations reduce to a quasilinear third 

order ordinary differential equation for the dimensionless stream function.  The 
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solution is given as a series solution.  Its derivation is tedious and will not be 
discussed here.  The reader is referred to Schlichting (1960) for details. 
 An alternative approach is to keep the velocity components as the 
dependent variables and approximately satisfy the continuity equation by 
expressing the transverse velocity component in the equation of motion as 
follows. 
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This is the approach taken in BSL.  They express the solution as a cubic 
polynomial in η. 
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Analogy with wall suddenly set in motion 
 
 The previously mentioned solutions may be accurate solutions to the 
boundary layer equations but do not offer much physical insight.  Here we will 
derive the solution to the boundary layer flow by using the flow due to a wall 
suddenly set in motion discussed in Chapter 8.   Since the wall extends to infinity, 
there is no dependence on x and the equations of motion, initial condition, and 
boundary condition are as follows. 
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The solution derived by a similarity transform in Chapter 7 is, 
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The coordinates can be transformed such that the plate is stationary and the fluid 
is initially in uniform translation past the plate.  The initial condition, boundary 
conditions, and solution are then as follows. 
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This exact solution describes the diffusion of momentum from the uniformly 
translating fluid to the stationary plate. It describes growth of the boundary layer 

as a function of the similarity variable, 
4
y

t
η

ν
= . There is no convection of 

momentum because there is no dependence on x and the transverse component 
of velocity is zero. 
 Suppose now that the plate is not doubly infinite but only exists along the 
positive x axis and the flow is in the positive x direction..  Since there is now 
dependence on the x coordinate, boundary conditions depend on x and the 
convective terms in the equations of motion no longer vanish.  Now consider the 
steady state flow past this semi-infinite plate.  Assume that the flow is 
undisturbed until x=0.  The differential equations are the boundary layer 
equations with zero velocity gradients.  The equations and boundary conditions 
are as follows. 
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 Recall that the convection terms are the convective derivative of the x 
component of momentum.  Thus the equation of motion can be expressed as 
follows. 
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This equation can be used to describe the diffusion of momentum along a 
streamline which originated at x=0 at t=0.  If the transverse velocity is zero, each 
streamline would be at a constant value of y.  With steady flow, there is a one-to-
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one mapping between x and t along each streamline.  However, this mapping is 
not the same for all streamlines because different streamlines have different 
velocities.  Beyond the boundary layer, the velocity is the free stream velocity 
and at the surface of the plate, y=0, the velocity is zero.  We will make the 
assumption that the mapping for the entire boundary layer can be approximated 
by using the average of the free stream velocity and the velocity at the plate. 
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Also, we assume for the first approximation that the transverse velocity is zero 
such that each streamline is at a constant value of y.  The diffusion equation now 
transforms into a parabolic PDE in x and y.   
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This mapping of distance along the plate and time is substituted into the 
expression for the diffusion of momentum to a stationary plate that was 
introduced into a uniformly translating fluid at t=0.   
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 This first approximation neglects the transverse velocity and assumes that 
the time since passage of the front of the plate corresponds to the average 
velocity of the fluid in the boundary layer.  Although this solution is quite close to 
the exact,  Blasius solution, it does not satisfy the continuity equation.  We now 
derive the second approximation by application of the continuity equation. 
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The limiting value of the transverse velocity with this approximation is, 
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This limiting value of the transverse velocity differs from the Blasius solution only 
by a coefficient of 0.865. 
 The transverse velocity results in convection of momentum away from the 
wall.  If the convection velocity was constant, then its effect can easily be taken 
into account with the solution to the convection-diffusion equation.  However, the 
transverse convection increases from zero at the wall to the limiting value in the 
free stream.  Thus it makes more sense to use the average transverse velocity 
between the wall and at a point in the boundary layer for substitution into the 
solution of the convective-diffusion equation. 
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 The second approximation will include the transverse convection by 
substituting the average transverse velocity into the convective-diffusion solution. 
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 The first and second approximations are compared with the Blasius exact 
solution and quadratic and cubic approximation in the following figure. 
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 The inclusion of the transverse convection made an insignificant 
improvement in the velocity profile.  Thus it will be neglected in the following.  
The drag coefficient is calculated from the first approximation. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
el

oc
ity

eta=y/sqrt(nu x/U)

green (solid)= error function, w/o trans. convect.

black (solid)= error function, w/ trans. convect.

blue (dash) = quadratic

red (dot) = cubic

* = Blasius exact solution

Boundary Layer Velocity Profiles

 

2 2
0

2 1
8 /

0.3989
Re

xy x
f

y

x

vC
yU U

U x

τ μ
ρ ρ

π ν

∞ ∞ =

∞

∂
≡ =

∂

=

=

 

 
 
This drag coefficient differs from the Blasius solution only by the coefficient of 
0.332 in the exact solution. 
 The evolution of the boundary layer velocity profile with equal increments 
of distance from the leading edge of the plate is illustrated in the following figure.  
It is suggested that the student execute the plate.m file in the boundary directory 
to view the movie of the evolution of the velocity profile and to examine the 
equations used in the calculations. 
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Blasius solution for boundary layer flow past a flat plate 
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 The previous solutions were instructive in that they illustrated the 
correspondence with the diffusion of motion from a plate to the bulk fluid.  
However, the approximate solutions did not exactly satisfy either the continuity 
equation or the equations of motion.  Blasius used the stream function to exactly 
satisfy continuity equation.  The equations of motions were simplified by the 
boundary layer assumption that the thickness of the boundary layer is small 
compared to the distance from the leading edge of the plate.  Also, the pressure 
gradient is zero for this case. 
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Assume that the dimensionless velocity profile can be expressed as a function of 
a similarity variable. 
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The approximate solution had the following form: 
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This suggests a similarity variable: 
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 The equation of motion is expressed in terms of the stream function. 
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Assume that the stream function is a function only of the similarity variable. 
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Make dimensionless: 
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 The dimensionless stream function is expressed as a function of only the 
similarity variable. 
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 Substituting the above equations into the equation of motion and 
cancellation of two terms results in the following ordinary differential equation. 
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 This is a third order ODE with two conditions at 0η =  and one condition at 
η →∞ .  It is convenient to solve it as a set of first order ODEs with initial 
conditions, two of which are specified and the third adjusted such as to satisfy 
the condition at infinity. 
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This set of ODEs can be solved numerically by one of the ODE solvers and the 
initial value of f’’ iterated until the boundary condition at infinity is matched.  The 
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code of this calculation is in the boundary directory as files, blasius.m, blasiusf.m, 
and balsiusd.dat. 
 
Assignment 9.2: Boundary layer flow past a wedge 

1. Derive the equations for boundary layer flow past a wedge.  Use a factor 
of 2  in the denominator of the similarity variable to be in keeping with 
contemporary textbooks.   

2. Use the code in the boundary directory of the CENG 501 website to solve 
the Flakner-Skan equation.   

3. Plot the velocity profiles as a function of the similarity variable for different 
angles of the wedge relative to the approaching free-stream velocity.  
Replace the parameter beta with the angle in degrees.   

4. Illustrate the boundary layer thickness by plotting contour lines of 10%, 
20%, …, 90% of the free stream velocity as a function of dimensionless 
distance along surface of wedge.  Use the same scale for the axis for the 
different wedge angles. 

5. Plot the equally spaced streamlines for the same cases. 
 
Assignment 9.3: Flow in a wedge with zero shear at θ = 0. 
 Start from the continuity and Navier-Stokes equation and derive the 
equations for the flow field near a corner for flow in a wedge of fluid with no slip 
on one side and zero shear stress along θ = 0.  List all your assumptions. 

1. Derive expressions for the stream function, velocity, and pressure. 
2. For what distance from the corner is the solution valid? 
3. What normal stress is required to keep the θ = 0 surface flat?   
4. If the surface of zero shear stress can sustain only finite normal stress, in 

which way will the surface deform?  Recognize that the no-slip surface 
can travel in either direction. 

5. After deriving the equations, view and plot the flow field for various angles 
using wedge.m file in the creeping directory of the CENG 501 website. 

 
Assignment 9.4: Rise of a spherical, inviscid bubble in a liquid. 
 Start from the continuity and Navier-Stokes equation and derive the 
equations for the flow field of a spherical, inviscid bubble rising in a liquid by 
buoyancy.  List all assumptions. 

1. Derive expressions for the stream function, velocity, and pressure. 
2. Derive the expression for the terminal rise velocity.  How does it differ from 

the case with no slip? 
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