
Chapter 8  Laminar Flows with Dependence on One Dimension 
 

Couette flow 
Planar Couette flow 
Cylindrical Couette flow 
Planer rotational Couette flow 

Hele-Shaw flow  
Poiseuille flow 

Friction factor and Reynolds number 
Non-Newtonian fluids 

Steady film flow down inclined plane 
Unsteady viscous flow 

Suddenly accelerated plate 
Developing Couette flow 

 
Reading Assignment: Chapter 2 of BSL, Transport Phenomena 
 
 One–dimensional (1-D) flow fields are flow fields that vary in only one 
spatial dimension in Cartesian coordinates.  This excludes turbulent flows 
because it cannot be one-dimensional.  Acoustic waves are an example of 1-D 
compressible flow.  We will concern ourselves here with incompressible 1-D flow 
fields that result from axial or planar symmetry.  Cartesian, 1-D incompressible 
flows do not have a velocity component (other than possibly a uniform 
translation) in the direction of the spatial dependence because of the condition of 
zero divergence.  Thus the nonlinear convective derivative disappears from the 
equations of motion in Cartesian coordinates.  They may not disappear with 
curvilinear coordinates. 
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 We can demonstrate that this relation may not apply in curvilinear 
coordinates by considering an example with cylindrical polar coordinates.  
Suppose that the only nonzero component of velocity is in the θ direction and the 
only spatial dependence is on the r coordinate.  The radial component of the 
convective derivative is non-zero due to centrifugal forces. 
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 The flows can be classified as either forced flow resulting from the 
gradient of the pressure or the potential of the body force or induced flow 
resulting from motion of one of the bounding surfaces. 

Some flow fields that result in 1-D flow are listed below and illustrated in the 
following figure (Churchill, 1988) 
1. Forced flow through a round tube  
2. Forced flow between parallel plates 
3. Forced flow through the annulus between concentric round tubes of different 

diameters 
4. Gravitational flow of a liquid film down an inclined or vertical plane 
5. Gravitational flow of a liquid film down the inner or outer surface of a round 

vertical tube 
6. Gravitational flow of a liquid through an inclined half-full round tube 
7. Flow induced by the movement of one of a pair of parallel planes 
8. Flow induced in a concentric annulus between round tubes by the axial 

movement of either the outer or the inner tube 
9. Flow induced in a concentric annulus between round tubes by the axial 

rotation of either the outer or the inner tube 
10. Flow induced in the cylindrical layer of fluid between a rotating circular disk 

and a parallel plane 
11. Flow induced by the rotation of a central circular cylinder whose axis is 

perpendicular to parallel circular disks enclosing a thin cylindrical layer of fluid 
12. Combined forced and induced flow between parallel plates  
13. Combined forced and induced longitudinal flow in the annulus between 

concentric round tubes 
14. Combined forced and rotationally induced flow in the annulus between 

concentric round tubes  
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Geometry and conditions that produce one-dimensional velocity 
fields (Churchill, 1988) 

 
Couette Flow 
 The flows when the fluid between two parallel surfaces are induced to flow 
by the motion of one surface relative to the other is called Couette flow.  This is 
the generic shear flow that is used to illustrate Newton's law of viscosity.  
Pressure and body forces balance each other and at steady state the equation of 
motion simplify to the divergence of the viscous stress tensor or the Laplacian of 
velocity in the case of a Newtonian fluid. 

Planar Couette flow.  (case 7). 
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The coordinates system can be defined so that v = 0 at x3 = 0 and the j 
component of velocity is non-zero at x3 = L. 
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The velocity field is 
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The shear stress can be determined from Newton's law of viscosity. 
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 Cylindrical Couette flow.  The above example was the translational 
movement of two planes relative to each other.  Couette flow is also possible in 
the annular gap between two concentric cylindrical surfaces (cases 8 and 9) if 
secondary flows do not occur due to centrifugal forces.  We use cylindrical polar 
coordinates rather than Cartesian and assume vanishing Reynolds number.  The 
only independent variable is the radius. 
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The stress profile can be calculated by integration. 
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The boundary conditions on velocity depend on whether the cylindrical surfaces 
move relative to each other as a result of rotation, axial translation, or both. 
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The velocity field for cylindrical Couette flow of a Newtonian fluid is . 
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 Planer rotational Couette flow.  The parallel plate viscometer has the 
configuration shown in case 10.  The system is not strictly 1-D because the 
velocity of one of the surfaces is a function of radius.  Also, there is a centrifugal 
force present near the rotating surface but is absent at the stationary surface.  
However, if the Reynolds number is small enough that secondary flows do not 
occur, then the velocity at a given value of the radius may be approximated as a 
function of only the z distance in the gap.  The differential equations at zero 
Reynolds number are as follows. 
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Suppose the bottom surface is stationary and the top surface is rotating.  Then 
the boundary conditions are as follows. 
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The stress and velocity profiles are as follows. 
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The stress is a function of the radius and if the fluid is non-Newtonian, the 
viscosity may be changing with radial position. 
 
Plane-Poiseuille and Hele-Shaw flow 
 Forced flow between two stationary, parallel plates, case 2, is called 
plane-Poiseuille flow or if the flow depends on two spatial variables in the plane, 
it is called Hele-Shaw flow.  The flow is forced by a specified flow rate or a 
specified pressure or gravity potential gradient.  The pressure and gravitational 
potential can be combined into a single variable, P. 
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The product gh is the gravitational potential, where g is the acceleration of gravity 
and h is distance upward relative to some datum.  The pressure, p, is also 
relative to a datum, which may be the datum for h. 

The primary spatial dependence is in the direction normal to the plane of 
the plates.  If there is no dependence on one spatial direction, then the flow is 
truly one-dimensional.  However, if the velocity and pressure gradients have 
components in two directions in the plane of the plates, the flow is not strictly 1-D 
and nonlinear, inertial terms will be present in the equations of motion.  The 
significance of these terms is quantified by the Reynolds number.  If the flow is 
steady, and the Reynolds number negligible, the equations of motion are as 
follows. 
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Let h be the spacing between the plates and the velocity is zero at each surface. 
 
  30, 0, 1,2jv x h j= = =
 
The velocity profile for a Newtonian fluid in plane-Poiseuille flow is 
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The average velocity over the thickness of the plate can be determined by 
integrating the profile. 
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This equation for the average velocity can be written as a vector equation if it is 
recognized that the vectors have components only in the (1,2) directions. 
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 If the flow is incompressible, the divergence of velocity is zero and the 
potential, P, is a solution of the Laplace equation except where sources are 
present.  If the strength of the sources or the flux at boundaries are known, the 
potential, P, can be determined from the methods for the solution of the Laplace 
equation. 

We now have the result that the average velocity vector is proportional to 
a potential gradient.  Thus the average velocity field in a Hele-Shaw flow is 
irrotational.  If the fluid is incompressible, the average velocity field is also 
solenoidal can can be expressed as the curl of a vector potential or the stream 
function.  The average velocity field of Hele-Shaw flow is an physical analog for 
the irrotational, solenoidal, 2-D flow described by the complex potential.  It is also 
a physical analog for 2-D flow of incompressible fluids through porous media by 
Darcy’s law and was used for that purpose before numerical reservoir simulators 
were developed. 
 
Poiseuille Flow 
 Poiseuille law describes laminar flow of a Newtonian fluid in a round tube 
(case 1).  We will derive Poiseuille law for a Newtonian fluid and leave the flow of 
a power-law fluid as an assignment.  The equation of motion for the steady, 
developed (from end effects) flow of a fluid in a round tube of uniform radius is as 
follows. 
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The boundary conditions are symmetry at r = 0 and no slip at r = R.   
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From the radial component of the equations of motion, P does not depend 

on radial position.  Since the flow is steady and fully developed, the gradient of P 
is a constant.  The z component of the equations of motion can be integrated 
once to derive the stress profile and wall shear stress. 
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If the fluid is Newtonian, the equation of motion can be integrated once 

more to obtain the velocity profile and maximum velocity. 
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The volumetric rate of flow through the pipe can be determined by 

integration of the velocity profile across the cross-section of the pipe, i.e., 0 < r < 
R and 0 < θ < 2π.   
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This relation is the Hagen-Poiseuille law.  If the flow rate is specified, then the 
potential gradient can be expressed as a function of the flow rate and substituted 
into the above expressions. 

The average velocity or volumetric flux can be determined by dividing the 
volumetric rate by the cross-sectional area. 
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 Before one begins to believe that the Hagen-Poiseuille law is a “law” that 
applies under all conditions, the following is a list of assumptions are implicit in 
this relation (BSL, 1960). 
a. The flow is laminar—NRe less than about 2100. 
b. The density ρ is constant ("incompressible flow"). 
c. The flow is independent of time ("steady state"). 
d. The fluid is Newtonian. 
e. End effects are neglected—actually an "entrance length" (beyond the tube 

entrance) on the order of Le = 0.035D NRe is required for build-up to the 
parabolic profiles; if the section of pipe of interest includes the entrance region, 
a correction must be applied.  The fractional correction introduced in either ∆P 
or Q never exceeds Le/L if L > Le. 
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f. The fluid behaves as a continuum—this assumption is valid except for very 
dilute gases or very narrow capillary tubes, in which the molecular mean free 
path is comparable to the tube diameter ("slip flow" regime) or much greater 
than the tube diameter ("Knudsen flow" or "free molecule flow" regime). 

g. There is no slip at the wall—this is an excellent assumption for pure fluids 
under the conditions assumed in ( f ). 

 
 Friction factor and Reynolds number.  Because pressure drop in pipes is 
commonly used in process design, correlation expressed as friction factor versus 
Reynolds number are available for laminar and turbulent flow.  The Hagen-
Poiseuille law describes the laminar flow portion of the correlation.  The 
correlations in the literature differ when they use different definitions for the 
friction factor.  Correlations are usually are usually expressed in terms of the 
Fanning friction factor and the Darcy-Weisbach friction factor. 
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The Reynolds number is expressed as a ratio of inertial stress and shear 

stress. 
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 Both the friction factor and the Reynolds number have as a common 
factor, the kinetic energy per unit volume 2

muρ .  This factor may be eliminated 
between the two equations to express the friction factor as a function of the 
Reynolds number. 
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Recall the expressions derived earlier for the wall shear stress and the 
average velocity for a Newtonian fluid and substitute into the above expressions. 
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 Correlation of friction factor versus Reynolds number appear in the 
literature with all three definitions of the friction factor and usually without a 
subscript to denote which definition is being used.   
 Non-Newtonian fluids.  The velocity profiles above were derived for a 
Newtonian fluid.  A constitutive relation is necessary to determine the velocity 
profile and mean velocity for non-Newtonian fluids.  We will consider the cases of 
a Bingham model fluid and a power-law or Ostwald-de Waele model fluid.  The 
constitutive relations for these fluids are as follows. 
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 The power-law model is an empirical model that is often valid over an 
intermediate range of shear rates.  At very low and very high shear rates limiting 
values of viscosity are approached. 
 
Assignment 8.1 Flow in annular space between concentric cylinders as function 
of relative translation, rotation, potential gradient, flow or no-net flow.  Assume 
incompressible, Newtonian fluid with small Reynolds number.  The outer radius 
has zero velocity.  Parameters: 
 R2 outer radius 
 R1 inner radius, may be zero 

 P
z

∂
∂

 potential gradient, may be zero 

 vz1 translation velocity of inner radius, may be zero 
 vθ1 rotational velocity of inner radius 
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 q net flow rate, may be zero 
 

a) Express dimensionless velocity as a function of the dimensionless 
radius and dimensionless groups.  Plot the following cases: 
Table of cases to plot 
Case R1/R2 /P z∂ ∂  1zv  1vθ  q 
1 0 0≠    0≠  
2 0.5 0≠  0 0 0≠  
3 0.5 =0 0≠  0 0≠  
4 0.5 0≠  0≠  0 0 
5 0.5 0≠  0≠  0≠  0≠  

b) What is the net flow if the inner cylinder is translating and the pressure 
gradient is zero? 
c) What is the pressure gradient if the net flow is zero?  Plot the velocity 
profile for this case. 
 

Assignment 8.2  Capillary flow of power-law model fluid.  Calculate the following 
for a power-law model fluid (see hint in BSL, 1960). 
a) Calculate and plot the velocity profile, normalized with respect to the mean 

velocity for n = 1, 0.67, 0.5, and 0.33. 
b) Derive an expression corresponding to Poiseuille law. 
c) Derive the same relation between friction factor and Reynolds number as for 

Newtonian flow by defining a modified Reynolds number for power-law fluids. 
 
Steady film flow down inclined plane 
 Steady film flow down an inclined plane corresponds to case 4 (Churchill, 
1988) or Section 2.2; Flow of a Falling Film (BSL, 1960).  These flows occur in 
chemical processing with falling film sulfonation reactors, evaporation and gas 
adsorption, and film-condensation heat transfer.  It is assumed that the flow is 
steady and there is no dependence on distance in the plane of the surface due to 
entrance effects, side walls, or ripples.  The Reynolds number must be small 
enough for ripples to be avoided.  The configuration will be similar to that of BSL 
except x = 0 corresponds to the wall and the thickness is denoted by h rather 
than δ.   
 It is assumed that the gas has negligible density compared to the liquid 
such that the pressure at the gas-liquid interface can be assumed to be constant.  
The potential gradient in the plane of the film is constant and can be expressed 
either in term of the angle from the vertical, β, or the angle from the horizontal, α. 
 
 cos sin , / 2P g gρ β ρ α α π β−∇ = = = −  
 
 The equations of motion are as follows. 
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 The boundary conditions are zero stress at the gas-liquid interface and no 
slip at the wall. 
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 The shear stress profile can be determined by integration and application 
of the zero stress boundary condition. 
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The velocity profile for a Newtonian fluid can be determined by a second 

integration and application of the no slip boundary condition. 
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 The average velocity and volumetric flow rate can be determined by 
integration of the velocity profile over the film thickness. 
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 The film thickness, h, can be given in terms of the average velocity, the 
volume rate of flow, or the mass rate of flow per unit width of wall ( zh vρΓ = ): 
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Unsteady viscous flow 
 Suddenly accelerated plate. (BSL, 1960)  A semi-infinite body of liquid 
with constant density and viscosity is bounded on one side by a flat surface ( the 
xz plane).  Initially the fluid and solid surface is at rest; but at time t = 0 the solid 
surface is set in motion in the positive x-direction with a velocity U.  It is desired 
to know the velocity as a function of y and t.  The pressure is hydrostatic and the 
flow is assumed to be laminar. 
 The only nonzero component of velocity is vx = vx(y,t).  Thus the only non-
zero equation of motion is as follows. 
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 The initial condition and boundary conditions are as follows. 
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 If we normalize the velocity with respect to the boundary condition, we see 
that this is the same parabolic PDE and boundary condition as we solved with a 
similarity transformation.  Thus the solution is 
 

 erfc
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yv U
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 The presence of the ratio of viscosity and density, the kinematic viscosity, 
in the expression for the velocity implies that both viscous and inertial forces are 
operative. 
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 The velocity profiles for the wall at y = 0 suddenly set in motion is 
illustrated below. 
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Wall set into motion; t= 0.01       0.03        0.1        0.3          1

 
 Developing Couette flow.  The transient development to the steady-state 
Couette flow discussed earlier can now be easily derived.  We will let the plane y 
= 0 be the surface with zero velocity and let the velocity be specified at y = L.  
The initial and boundary conditions are as follows. 
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It should be apparent that the two formulations of the boundary conditions give 
the same solution.  However, the latter gives a clue how one should obtain a 
solution.  The solution is antisymmetric about y = 0 and the zero velocity 
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condition is satisfied.  A series of additional terms are needed to satisfy the 
boundary conditions at y = ± L.  The solution is 
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Developing Couette Flow; t= 0.01       0.03        0.1        0.3          1
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