
Chapter 7 Solution of the Partial Differential Equations 
 
Classes of partial differential equations  
Systems described by the Poisson and Laplace equation 
Systems described by the diffusion equation 
Greens function, convolution, and superposition 
Green's function for the diffusion equation  
Similarity transformation 
Complex potential for irrotational flow 
Solution of hyperbolic systems 
 
Classes of partial differential equations  
 The partial differential equations that arise in transport phenomena are 
usually the first order conservation equations or second order PDEs that are 
classified as elliptic, parabolic, and hyperbolic.  A system of first order 
conservation equations is sometimes combined as a second order hyperbolic 
PDE.  The student is encouraged to read R. Courant, Methods of Mathematical 
Physics, Volume II Partial Differential Equations, 1962 for a complete discussion. 
 System of conservation laws.  Denote the set of dependent variables (e.g., 
velocity, density, pressure, entropy, phase saturation, concentration) with the 
variable u and the set of independent variables as t and x, where x denotes the 
spatial coordinates.  In the absence of body forces, viscosity, thermal conduction, 
diffusion, and dispersion, the conservation laws (accumulation plus divergence of 
the flux and gradient of a scalar) are of the form 
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This is a system of first order quasilinear hyperbolic PDEs. They can be solved 
by the method of characteristics.  These equations arise when transport of 
material or energy occurs as a result of convection without diffusion. 
 The derivation of the equations of motion and energy using convective 
coordinates (Reynolds transport theorem) resulted in equations that did not have 
the accumulation and convective terms in the form of the conservation laws.  
However, by derivation of the equations with fixed coordinates (as in Bird, 
Stewart, and Lightfoot) or by application of the continuity equation, the 
momentum and energy equations can be transformed so that the accumulation 
and convective terms are of the form of conservation laws.  Viscosity and thermal 
conductivity introduce second derivative terms that make the system non-
conservative.  This transformation is illustrated by the following relations. 
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Assignment 7.1 (a) For the case of inviscid, nonconducting fluid, in the absence 
of body forces, derive the steps to express the continuity equation, equations of 
motion, and energy equations as conservation law equations for mass, 
momentum, the sum of kinetic plus internal energy, and entropy.  (b) For the 
case of isentropic, compressible flow, express continuity equation and equations 
of motions in terms of pressure and velocity.  Transform it to a second order 
hyperbolic equation in the case of small perturbations. 
 
 Second order PDE.  The classification of second order PDEs as elliptic, 
parabolic, and hyperbolic arise from a transformation of the independent 
variables.  The classification apply to quasilinear (i.e., linear in the highest order 
derivatives) but we will only discuss linear equations with constant coefficients 
here.  Numerical solutions are needed for quasilinear systems.  Again let u 
denote the dependent variables and t, x, y, z as the independent variables.  
Examples of the different classes of equations are 
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The ρ  term represents sources. When the cgs system of units is used in 
electrostatics and ρ  is the charge density, the source is expressed as 4π ρ .  
The factor 4π  is absent with the mks or SI system of units.  The parabolic PDEs 
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are sometimes called the diffusion equation or heat equation.  In the limit of 
steady-state conditions, the parabolic equations reduce to elliptic equations.  The 
hyperbolic PDEs are sometimes called the wave equation.  A pair of first order 
conservation equations can be transformed into a second order hyperbolic 
equation. 
 Convective-diffusion equation.  The above equations represented 
convection without diffusion or diffusion without convection.  When both the first 
and second spatial derivatives are present, the equation is called the convection-
diffusion equation. 
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Usually a dimensionless group such as the Reynolds number, or Reynolds 
number and Prandtl number appears as a factor to quantify the relative 
contribution of convection and diffusion.   
 
Systems described by the Poisson and Laplace equation 
 We saw earlier that an irrotational vector field can be expressed as the 
gradient of a scalar and if in addition the vector field is solenoidal, then the scalar 
potential is the solution of the Laplace equation. 
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Also, if the velocity field is solenoidal then the velocity can be expressed as the 
curl of the vector potential and the Laplacian of the vector potential is equal to the 
negative of the vorticity.  If the flow is irrotational, then the vorticity is zero and the 
vector potential is a solution of the Laplace equation. 
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 Other systems, which are solution of the Laplace equation, are steady 
state heat conduction in a homogenous medium without sources and in 
electrostatics and static magnetic fields.  Also, the flow of a single-phase, 
incompressible fluid in a homogenous porous media has a pressure field that is a 
solution of the Laplace equation. 
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Systems described by the diffusion equation 
 Diffusion phenomena occur with viscous flow, thermal conduction, and 
molecular diffusion.  Heat conduction and diffusion without convection are 
described by the diffusion equation.  Convection is always present in fluid flow 
but its contribution to the momentum balance is neglected for creeping (low 
Reynolds number) flow or cases where the velocity is perpendicular to the 
velocity gradient.  In this case 
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Green’s function, convolution, and superposition 
 A property of linear PDEs is that if two functions are each a solution to a 
PDE, then the sum of the two functions is also a solution of the PDE.  This 
property of superposition can be used to derive solutions for general boundary, 
initial conditions, or distribution of sources by the process of convolution with a 
Green’s function.  The student is encouraged to read P. M. Morse and H. 
Feshbach, Methods of Theoretical Physics, 1953 for a discussion of Green’s 
functions. 
 The Green’s function is used to find the solution of an inhomogeneous 
differential equation and/or boundary conditions from the solution of the 
differential equation that is homogeneous everywhere except at one point in the 
space of the independent variables.  (The initial condition is considered as a 
subset of boundary conditions here.)  When the point is on the boundary, the 
Green’s function may be used to satisfy inhomogeneous boundary conditions; 
when it is out in space, it may be used to satisfy the inhomogeneous PDE. 
 The concept of Green’s solution is most easily illustrated for the solution to 
the Poisson equation for a distributed source ρ(x,y,z) throughout the volume.  
The Green’s function is a solution to the homogeneous equation or the Laplace 
equation except at (xo, yo, zo) where it is equal to the Dirac delta function.  The 
Dirac delta function is zero everywhere except in the neighborhood of zero.  It 
has the following property. 
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 The Green's function for the Poisson equation in three dimensions is the 
solution of the following differential equation 
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It is a solution of the Laplace equation except at x=xo where it has a singularity, 
i.e., it has a point source.  The solution of the Poisson equation is determined by 
convolution. 
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 Suppose now that one has an elliptic problem in only two dimensions.  
One can either solve for the Green's function in two dimensions or just recognize 
that the Dirac delta function in two dimensions is just the convolution of the three-
dimensional Dirac delta function with unity. 
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Thus the two-dimensional Green's function can be found by convolution of the 
three dimensional Green's function with unity. 
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This is a solution of the Laplace equation everywhere except at (xo, yo) where 
there is a line source of unit strength.  The solution of the Poisson equation in 
two dimensions can be determined by convolution. 
 
 ( , ) ( , , ) ( , )o o o o o ou x y G x y x y x y dx dyρ= ∫∫ . 
 
Assignment  Derivation of the Green’s function 
 Derive the Green’s function for the Poisson equation in 1-D, 2-D, and 3-D 
by transforming the coordinate system to cylindrical polar or spherical polar 
coordinate system for the 2-D and 3-D cases, respectively.  Compare the results 
derived by convolution. 
 
 Green's functions can also be determined for inhomogeneous boundary 
conditions (the boundary element method) but will not be discussed here.  The 
Green's functions discussed above have an infinite domain.  Homogeneous 
boundary conditions of the Dirichlet type (u = 0) or Neumann type (∂u/∂n = 0) 
along a plane(s) can be determined by the method of images. 
 Suppose one wished to find the solution to the Poisson equation in the 
semi-infinite domain, y > 0 with the specification of either u = 0 or ∂u/∂n = 0 on 
the boundary, y = 0.  Denote as u0(x,y,z) the solution to the Poisson equation for 
a distribution of sources in the semi-infinite domain y > 0.  The solutions for the 
Dirichlet or Neumann boundary conditions at y = 0 are as follows. 
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The first function is an odd function of y and it vanishes at y = 0.  The second is 
an even function of y and its normal derivative vanishes at y = 0. 
 Now suppose there is a second boundary that is parallel to the first, i.e. y 
= a that also has a Dirichlet or Neumann boundary condition.  The domain of the 
Poisson equation is now 0 < y < a.  Denote as u1 the solution that satisfies the 
BC at y = 0.  A solution that satisfies the Dirichlet or Neumann boundary 
conditions at y = a are as follows. 
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This solution satisfies the solution at y = a but no longer satisfies the solution at y 
= 0.  Denote this solution as u2 and find the solution to satisfy the BC at y = 0.  By 
continuing this operation, one obtains by induction a series solution that satisfies 
both boundary conditions. 
 
Assignment 7.2  Calculate the solution for a unit line source at the origin of the 
x,y plane with zero flux boundary conditions at y = +1 and y = -1.  Prepare a 
contour plot of the solution for 0 < x <5.  What is the limiting solution for large x?  
Note: The boundary conditions are conditions on the derivative.  Thus the 
solution is arbitrary by a constant. 
 
Existence and Uniqueness of the Solution to the Poisson Equation 
 If the boundary conditions for Poisson equation are the Neumann 
boundary conditions, there are conditions for the existence to the solution and 
the solution is not unique.  This is illustrated as follows. 
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This necessary condition for the existence of a solution is equivalent to the 
statement that the flux leaving the system must equal the sum of sources in the 
system.  The solution to the Poisson equation with the Neumann boundary 
condition is arbitrary by a constant.  If a constant is added to a solution, this new 
solution will still satisfy the Poisson equation and the Neumann boundary 
condition. 
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Green's function for the diffusion equation  
 We showed above how the solution to the Poisson equation with 
homogeneous boundary conditions could be obtained from the Green's function 
by convolution and method of images.  Here we will obtain the Green's function 
for the diffusion equation for an infinite domain in one, two, or three dimensions.  
The Green's function is for the parabolic PDE 
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where the parameter a2 represents the ratio of the storage capacity and the 
conductivity of the system and ρ  is a known distribution of sources in space and 
time.  The infinite domain Green's function gn(x,t ⎜xo,to) is a solution of the 
following equation 
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The source term is an impulse in the spatial and time variables.  The form of the 
Green's function for the infinite domain, for n dimensions, is (Morse and 
Feshbach, 1953) 
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This Green's function satisfies an important integral property that is valid for all 
values of n: 
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This expression is an expression of the conservation of heat energy.  At a time to 
at xo, a source of heat is introduced.  The heat diffuses out through the medium, 
but in such a fashion that the total heat energy is unchanged.   
 The properties of this Green's function can be more easily seen be 
expressing it in a standard form 
 

 7-7



 
2 2[ / 2(2 / )]

2 2

1 , 0( , ) 2 (2 / )

0 , 0

n

R a

n
ea g R a

τ τ
τ π τ

τ

−
⎧⎛ ⎞
⎪⎜ ⎟ >⎪= ⎜ ⎟⎨⎝ ⎠⎪

<⎪⎩

 

 
 The normalized function a2gn for n = 3 represent the probability distribution 
of the location of a Brownian particle that was at xo at time to.  The cumulative 
probability is equal to unity. 
 The same normalized function for n=1, corresponds to the normal or 
Gaussian distribution with the standard deviation given by 
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 Observe the Green's function in one, two, and three dimensions by 
executing greens.m and the function, greenf.m in the diffuse subdirectory of 
CENG501.  You may wish to use the code as a template for future assignments. 
 
Step Response Function 
 The infinite domain Green's function is the impulse response function in 
space and time.  The response for a distribution of sources in space or as an 
arbitrary function of time can be determined by convolution.  In particular the 
response to a constant source for τ > 0 is the step response function.  It has 
classical solutions in one and two dimensions.  The unit step function or 
Heaviside function is the integral of the Dirac delta function. 
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 The response function to a unit step in the source can be determined by 
integrating the Greens function or the impulse response function in time.   
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 In one dimension, the step response function that has a unit flux at x=0 is 
(R. V. Churchill, Operational Mathematics, 1958) (note: source is 
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For comparison, the function that has a value of unity at x = 0 (Dirichlet boundary 
condition) is  
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 In two dimensions, the unit step response function for a continuous line 
source is (H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 1959) 
 

 

2 2

2 2

2 2 2

Ei , 0
4 4 /

( ) ( )

Ei( )

expint( ), MATLAB function

o o
u

x

a RU t
t a

R x x y y

ex du
u

x

π

−∞

⎛ ⎞− −
= >⎜ ⎟

⎝ ⎠
= − + −

− − =

=

∫
. 

 
For large times this function can be expressed as  
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 In three dimensions, the unit step response function for a continuous point 
source is (H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 1959) 
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 NOTE!  The a2 .factor has the units of time/L2.  If time is made 
dimensionless with respect to  and R with respect to 2 / oa R oR , then the factor will 
disappear from the argument of the erfc. 
 
Assignment 7.3  Plot the profiles of the response to a continuous source in 1, 2, 
and 3 dimensions using the MATLAB code contins.m and continf.m in the diffuse 
subdirectory.  From the integral of the profiles as a function of time, determine 
the magnitude, spatial and time dependence of the source.  Note: The 
exponential integral function, expint will give error messages for extreme values 
of the argument.  It still computes the correct values of the function. 
 
Convective-Diffusion Equation 
 The convective-diffusion equation in one dimension will be expressed in 
terms of velocity and dispersion, 
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The independent variables can be transformed from (x,t) to a spatial coordinate 
that translates with the velocity of the wave in the absence of dispersion, (y,t). 
 
  y x v t= −
 
This transforms the equation to the diffusion equation in the transformed 
coordinates. 
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To see this, we will transform the differentials from x to y. 
 

 
1

y v
t
y
x

∂
= −

∂
∂

=
∂

 

 
The total differentials expressed as a function of (x,t) or (y,t) are equal to each 
other. 
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The total differentials expressed either way are equal.  The partial derivatives in t 
and x can be expressed in terms of partial derivatives in t and y by equating the 
total differentials with either dt or dx equal to zero and dividing by the non-zero 
differential. 
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Substitution into the original equation results in the transformed equation.  This 
result could have been derived in fewer steps by using the chain rule but would 
not have been as enlightening.  

The boundary condition at x = 0 is now at changing values of y.  We will 
seek an approximate solution that has the boundary condition u(y→-∞) = 1.  A 
simple solution can be found for the following initial and boundary conditions. 
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This system is a step with no dispersion at t = 0.  Dispersion occurs for t > 0 as 
the wave propagates through the system.  The solution can be found with a 
similarity transform, which we will discuss later.  For now, the approximate 
solution is given as 
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The boundary condition at x = 0 will be approximately satisfied after a small time 
unless the Peclet number is very small. 
 
Similarity transformation 
 In some cases a partial differential equation and its boundary conditions 
(and initial condition) can be transformed to an ordinary differential equation with 
boundary conditions by combining two independent variables into a single 
independent variable.  We will illustrate the approach here with the diffusion 
equation.  It will be used later for hyperbolic PDEs and for the boundary layer 
problems. 
 The method will be illustrated for the solution of the one-dimensional 
diffusion equation with the following initial and boundary conditions.  The 
approach will follow that of the Hellums-Churchill method. 
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The PDE, IC and BC are made dimensionless with respect to reference 
quantities. 
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There are three unspecified reference quantities and two dimensionless groups.  
The BC can be specified to equal unity.  However, the system does not have a 
characteristic time or length scales to specify the dimensionless group in the 
PDE.  This suggests that the system is over specified and the independent 
variables can be combined to specify the dimensionless group in the PDE to 
equal 1/4. 
 

 2

1 is dimensionless
4 4

( , ) ( )

o

o

K t x
x K t

u x t u

η

η

⎡ ⎤
= ⇒ =⎢ ⎥

⎣ ⎦
=

 

 
The partial derivatives will now be expressed as a function of the derivatives of 
the transformed similarity variable.   
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1
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4
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u du
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η η

η η
η η

η

η

∂
=

∂

∂ −
=

∂
∂ ∂ −

= =
∂ ∂
∂

=
∂

∂
=

∂

 

 
The PDE is now transformed into an ODE with two boundary conditions. 
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∫
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∫
∫

 

 
Therefore, we have a solution in terms of the combined similarity variable that is 
a solution of the PDE, BC, and IC. 
 
Complex potential for irrotational flow 
 Incompressible, irrotational flows in two dimensions can be easily solved 
in two dimensions by the process of conformal mapping in the complex plane.  
First we will review the kinematic conditions that lead to the PDE and boundary 
conditions.  Because the flow is irrotational, the velocity is the gradient of a 
velocity potential.  Because the flow is solenoidal, the velocity is also the curl of a 
vector potential.  Because the flow is two dimensional, the vector potential has 
only one non-zero component that is identified as the stream function.  The 
kinematic condition at solid boundaries is that the normal component of velocity 
is zero.  No condition is placed on the tangential component of velocity at solid 
surfaces because the fluid must be inviscid in order to be irrotational. 
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Both functions are a solution of the Laplace equation, i.e., they are 
harmonic and the last pair of equations corresponds to the Cauchy-Riemann 
conditions if ϕ and ψ are the real and imaginary conjugate parts of a complex 
function, w(z). 
 

 
( ) ( ) ( )

[ ]
[ ]

1/ 22 2

( ) ( ) ( )

cos sin , , arctan /

or
( ) real ( )

( ) imaginary ( )

i

w z z i z
z x i y

r e r i r z x y y x

z w z

z w z

θ

ϕ ψ

θ θ θ

ϕ

ψ

= +
= +

= = + = = + =

=

=

 

 
The Cauchy-Riemann conditions are the necessary and sufficient condition for 
the derivative of a complex function to exist at a point zo , i.e., for it to be 
analytical.  The necessary condition can be illustrated by equating the derivative 
of w(z) taken along the real and imaginary axis. 
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( ) ( )( ) Re '( ) Im '( )
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i  

 
 

Also, if the functions have second derivatives, the Cauchy-Riemann 
conditions imply that each function satisfies the Laplace equation.   
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0

0
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ϕ ϕ
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∂ ∂
+ =

∂ ∂

∂ ∂
+ =

∂ ∂

 

 
The Cauchy-Riemann conditions also imply that the gradient of the 

velocity potential and the stream function are orthogonal.  
 

 ( ) ( ) 0
x x y y
ϕ ψ ϕ ψϕ ψ ∂ ∂ ∂ ∂

∇ • ∇ = + =
∂ ∂ ∂ ∂

 

 
If the gradients are orthogonal then the equipotential lines and the streamlines 
are also orthogonal, with the exception of stagnation points where the velocity is 
zero. 
 Since the derivative 
 

 
0

lim
z

dw w
dz zδ

δ
δ→

=  

 
is independent of the direction of the differential δz in the (x, y) –plane, we may 
imagine the limit to be taken with δz remaining parallel to the x-axis (δz = δx) 
giving  
 

 x y
dw i v i
dz x x

vϕ ψ∂ ∂
= + = −
∂ ∂

. 

 
Now choosing δz to be parallel to the y-axis (δz = i δy), 
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dw i v v v i v
dz i y y y
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These equations are a restatement that an analytical function has a derivative 
defined in the complex plane.  Moreover, we see that the real part of w'(z) is 
equal to vx and the imaginary part of w'(z) is equal to –vy.  If v is written for the 
magnitude of v and θ for the angle between the direction of v and the x-axis, the 
expression for dw/dz becomes 
 

 
or

real

imaginary

i
x y

x

y

dw v i v v e
dz

dwv
dz

dwv
dz

θ−= − =

⎡ ⎤= ⎢ ⎥⎣ ⎦
⎡ ⎤= − ⎢ ⎥⎣ ⎦

. 

 
 Flow Fields.  The simplest flow field that we can imagine is just a constant 
translation, w =(U-iV) z  where U and V are real constants.  The components of 
the velocity vector can be determined from the differential. 
 

 

( ) ( ) ( )( ) ( )
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 Another simple function that is analytical with the exception at the origin is 
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where A and n are real constants.  The boundary condition at stationary solid 
surfaces for irrotational flow is that the normal component of velocity is zero or 
the surface coincides with a streamline.  The expression above for the stream 
function is zero for all r when θ = 0 and when θ = π/n.  Thus these equations 
describe the flow between these boundaries are illustrated below. 
 

 Earlier we discussed the Green's function solution of a line source in two 
dimensions.  The same solution can be found in the complex domain.  A function 
that is analytical everywhere except the singularity at zo is the function for a line 
source of strength m. 

Fig. 6.5.1 (Batchelor, 1967) Irrotational flow in the 
region between two straight zero-flux boundaries 
intersecting at an angle π/n. 

 

 
( ) ln( ), line source

2
dw 1
dz 2 ( )

o

x y
o

mw z z z

m v i v
z z

π

π

= −

= = −
−

 

 
This results can be generalized to multiple line sources or sinks by superposition 
of solutions.  A special case is that of a source and sink of the same magnitude. 
 

 
( ) ln( ), multiple line sources

2

( ) ln , source-sink pair
2

i
i

i

o

o

mw z z z

z zmw z
z z

π

π

= −

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

∑
 

 
 The above flow fields can be viewed with the MATLAB code corner.m, 
linesource.m, and multiple.m in the complex subdirectory. 
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Assignment 7.4 Line Source Solution  For zo at the origin, derive expressions for 
the flow potential, stream function, components of velocity, and magnitude of 
velocity for the solution to the line source in terms of r and θ.  Plot the flow 
potentials and stream functions.  Compute and plot the flow potentials and 
stream function for the superposition of multiple line sources corresponding to 
the zero flux boundary conditions at y=+1 and –1 of the earlier assignment. 
 
 The circle theorem. (Batchelor, 1967) The following result, known as the 
circle theorem (Milne-Thompson, 1940) concerns the complex potential 
representing the motion of an inviscid fluid of infinite extent in the presence of a 
single internal boundary of circular form.  Suppose first that in the absence of the 
circular cylinder the complex potential is  
 
  ( )ow f z=
 
and that f(z) is free from singularities in the region |z| ≤ a, where a is a real length.  
If now a stationary circular cylinder of radius a and center at the origin bounds 
the fluid internally, the flow is modified to the following complex potential: 
 
  
 ( ) ( )1 2 /w f z f a z= +  
 
 
We show that the surface of the cylinder, ⎜z⎜=a, is a streamline. 
 
 2a z= z , 
 

 

( )1 2( ) ( / )

( ) ( / )

( ) ( )

2 Real ( ) 0

z az a z a

z a z a

z a z a

z a

z a z a

w z f z f a z

f z f zz z

f z f z

f z i

iϕ ψ

== =

= =

= =

=

= =

= +

= +

= +

⎡ ⎤= +⎣ ⎦
= +

 

 
A complex potential of this form thus has |z| = a as a streamline, ψ = 0; and it has 
the same singularities outside |z| = a as f(z), since if z lies outside |z| = a, a2/z lies 
in the region inside this circle where f(z) is known to be free from singularities.  
Consequently the additional term 2( / )f a z  in the equation represents fully the 
modification to the complex potential due to the presence of the circular cylinder.  
It should be noted that the complex potentials considered, both in the absence 
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and in the presence of the circular cylinder, refer to the flow relative to axis such 
that the cylinder is stationary. 
 The simplest possible application of the circle theorem is to the case of a 
circular cylinder held fixed in a stream whose velocity at infinity is uniform with 
components (-U, -V).  In the absence of the cylinder the complex potential is 

, it is singular at infinity and the circle theorem shows that, with the 
cylinder present, 

(U iV z− − )

 
 . 2( ) ( ) ( ) /w z U iV z U iV a z= − − − +
 
 The potentials and streamlines for the steady translation of an inviscid 
fluid past a circular cylinder can be viewed with the MATLAB code circle.m.  

Conformal Transformation (Batchelor, 1967).  We now have the complex 
potential flow solutions of several problems with fairly simple boundary 
conditions.  These solutions are analytical functions whose real and imaginary 
parts satisfy the Laplace equation.  They also have a streamline that coincides 
with the boundary to satisfy the condition of zero flux across the boundary.  
Conformal transformations can be used to obtain solutions for boundaries that 
are transformed to different shapes.  Suppose we have an analytical function 
w(z) in the z = x + iy plane.  This solution can be transformed to the ζ = ξ + iη 
plane as another analytical function provided that the relation between these two 
planes, ζ = F(z) is an analytical function.  This mapping is a connection between 

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

x

y

Potentials and Streamlines for Flow Past Cylinder
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the shape of a curve in the z - plane and the shape of the curve traced out by the 
corresponding set of points in the ζ - plane.  The solution in the ζ - plane is 
analytical, i.e., its derivative defined, because the mapping, ζ = F (z) is an 
analytical function.  The inverse transformation is also analytical. 

 
( )

( ) ( )
( )

( ) ( ) ( )

d w z
dw d w z dz dz

dF zd dz d
dz

d w z dw dF z
dz d dz

ς
ς ς

ς
ς

= =

=

 

 
w(ζ) is thus the complex potential of an irrotational flow in a certain region of the 
ζ - plane, and the flow in the z – plane is said to been 'transformed' into flow in 
the ζ - plane.  The family of equipotential lines and streamlines in the z – plane 
given by ϕ(x,y) = const. and ψ(x,y) = const. transform into families of curves in 
the ζ - plane on which ϕ and ψ are constant and which are equipotential lines 
and streamlines in the ζ - plane.  The two families are orthogonal in their 
respective plane, except at singular points of the transformation.  The velocity 
components at a point of the flow in the ζ - plane are given by 
 

 ( )x y
dw dw dz dzv iv v iv
d dz d dξ η ς ς ς

− = = = − . 

 
This shows that the magnitude of the velocity is changed, in the transformation 
from the z – plane to the ζ - plane, by the reciprocal of the factor by which linear 
dimensions of small figures are changed.  Thus the kinetic energy of the fluid 
contained within a closed curve in the z – plane is equal to the kinetic energy of 
the corresponding flow in the region enclosed by the corresponding in the ζ - 
plane. 
 Flow around elliptic cylinder (Batchelor, 1967).  The transformation of the 
region outside of an ellipse in the z – plane into the region outside a circle in the 
ζ - plane is given by 
 

 

( )

2

1/ 22 21 1

2 2
4

z

z z

λς
ς

ς λ

= +

= + −

 

 
where λ is a real constant so that  
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2 2

2 21 , 1x yλ λξ η
ς ς

⎛ ⎞ ⎛
⎜ ⎟ ⎜= + = −
⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎟
⎠
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This converts a circle of radius c with center at the origin in the ζ - plane into the 
ellipse 
 

 
2 2

2 2 1x y
a b

+ =  

 
in the z – plane, where 
 

 ( )1/ 22 21

2
a bλ = −  

 
If the ellipse is mapped into a circle in the ζ - plane, it is convenient to use polar 
coordinates (r,θ), especially since the boundary corresponds to a constant radius.  
The radius that maps to the elliptical boundary is (ellipse.m in the complex 
directory) 
 

 1

2
logo

a br
a b
+⎛ ⎞= ⎜ ⎟−⎝ ⎠

 

 
The transformation from 
the polar coordinates to the 
z – plane is defined by 
 

 
2 cosh

where
z

r i

λ ω

ω θ

=

= +
 

 
The polar coordinates (r,θ), 
transform to an orthogonal 
set of curves which are 
confocal ellipses and 
conjugate hyperbolae. 
 This transformation 
can be substituted into the complex potential expression for the flow of a fluid 
past a circular cylinder. 
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Confocal Ellipses and Conjugate Hyperbolae, a = 1 b = 0.2

Transformation of cylindrical polar coordinates into 
orthogonal, elliptical coordinates 
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 It is convenient to write -α for the angle which the direction of motion of the 
flow at infinity makes with the x – axis so that 
 
 ( )1/ 22 2 iU iV U V e α−+ = +  
 
The complex potential now becomes 
 
 ( ) ( ) (

1/ 22 2 cosh ow U V a b r i )ω α= − + + − +  
 
The corresponding velocity potential and stream function are 
 

 
( ) ( ) ( ) (

( ) ( ) ( ) (

1/ 22 2

1/ 22 2

cosh cos

sinh sin

o

o

U V a b r r

U V a b r r

)

)

ϕ θ α

ψ θ α

= − + + − +

= − + + − +
 

 
 The velocity potentials and streamlines are illustrated below for flow past 
an elliptical cylinder (fellipse.m in the complex directory).  Note the stagnation 
streamlines on either side of the body.  These two stagnation points are regions 
of maximum pressure and result in a torque on the body.  Which way will it 
rotate? 
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Potentials and Streamlines for Flow Past Ellipse

 
Flow past an ellipse of an inviscid fluid that is in steady 
translation at infinity. 

 

 7-23



 Pressure distribution.  When an object is in a flow field, one may wish to 
determine the force exerted by the fluid on the object, or the 'drag' on the object.  
Since the flow field discussed here has assumed an inviscid fluid, it is not 
possible to determine the viscous drag or skin friction directly from the flow field.  
It is possible to determine the 'form drag' from the normal stress or pressure 
distribution around the object.  However, one must be critical to determine if the 
calculated flow field is physically realistic or if some important phenomena such 
as boundary layer separation may occur but is not allowed in the complex 
potential solution. 
 The Bernoulli theorems give the relation between the magnitude of 
velocity and pressure.  We have assumed irrotational, incompressible flow.  If in 
addition we assume the body force can be neglected, then the quantity, H, must 
be constant along a streamline. 
 

 

2

2

1

2

1

2

constant

= - constant, since is also constant

pH v

p v

ρ

ρ ρ

= + =

+
 

 
The pressure relative to some datum can be determined by the square of the 
magnitude of velocity.  This is easily calculated from the complex potential. 
 

 

2 2

thus

x y

x y

x y

dw v i v
dz
dw v i v
dz

dw dw v v v
dz dz

= −

= +

= + = 2

 

 
There are some theorems that facilitate the integration of pressure around 

bodies in the complex plane, but they will not be discussed here.  The pressure 
and tangential velocity profiles for the inviscid flow around an object are needed 
for calculation of the viscous flow in the boundary layer between the solid 
boundary and the inviscid outer flow. 
 
Assignment 7.5  Pressure profiles Calculate the pressure field or the square of 
the velocity field for the flow in or around a corner and the flow past a circular 
cylinder.  Look at the expression for the corner flow.  Under what conditions is 
there a flow singularity?  Show the pressure or velocity squared pseudo-color for 
wall angles of π/2, π, 3π/2, and 2π.  Which cases are physically realistic and what 
do you think happens in the unrealistic cases?  What is special about the 
pressure profile around the circular cylinder?  What value of form drag will it 
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predict?  Is it realistic and if not, why not?  Add the following code to the code for 
corner flow and flow around a circular cylinder. 
pause 
% Calculate pressure distribution from square of velocity  
(your code here to calculate pressure field) 
pcolor(x,y,p) 
colormap(hot) 
shading flat 
axis image 
 
Solution of hyperbolic systems 
 The conservation equations for material, momentum, and energy reduce 
to first order PDE in the absence of diffusivity, dispersion, viscosity, and heat 
conduction.  In thin films, viscosity may be a dominant effect in the velocity profile 
normal to the surface but the continuity equation integrated over the film 
thickness will have only first order spatial derivatives unless the effects of 
interfacial curvature become important.  In one dimension, the system of first 
order partial differential equations can be calculated by the method of 
characteristics [A. Jeffrey (1976), H.-K. Rhee, R. Aris, and N. R. Amundson 
(1986, 1987)].  Here we will only consider the case of a single dependent 
variable with constant initial and boundary conditions.  Denote the dependent 
variable as S and the independent variables as x and t.  The differential equation 
with its initial and boundary conditions are as follows. 
 

 

( ) 0, 0, 0

( ,0)
(0, )

IC

BC

S f S t x
t x

S x S
f t f

∂ ∂
+ = >

∂ ∂
=
=

>

 

 
The dependent variable can be normalized such that the initial condition is equal 
to zero and the boundary condition is equal to unity.  Thus, henceforth it is 
assumed such a transformation has been made.  The dependent variable will be 
called 'saturation' and the flux called 'fractional flow' to use the nomenclature for 
multiphase flow in porous media.  However, the dependent variable could be film 
thickness in film drainage or height of a free surface as in water waves.  The 
PDE, IC, and BC are rewritten as follows. 
 

 

( ) 0, 0, 0

( ,0) 0
(0, ) 1

S df S S t x
t dS x

S x
f t

∂ ∂
+ = >

∂ ∂
=
=

>

 

 
The differential, df/dS is easily calculated since there is only one 

independent saturation.  If there were three or more phases this differential would 
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be a Jacobian matrix.  The locus of constant saturation will be sought by taking 
the total differential of S(x,t). 
 

 0S SdS dt dx
t x

∂ ∂
= + =
∂ ∂

 

 

 ( )
0dS

S

dx S t
dt S x

df S
dS
v

∂ ∂=

∂ ∂⎛ ⎞ = −⎜ ⎟
⎝ ⎠

=

=

 

 
This equation expresses the velocity that a 
particular value of saturation propagates 
through the system, i.e., the saturation 
velocity, vS is equal to the slope of the 
fractional flow curve.  It is also the slope of 
a trajectory of constant saturation (i.e., 
dS=0) in the (x,t) space.  Since we are 
assuming constant initial and boundary 
conditions, changes in saturation originate 
at (x,t)=(0,0).  From there the changes in 
saturation, called waves, propagate in 
trajectories of constant saturation.  We 
assume that df/dS is a function of 
saturation and independent of time or 
distance.  This assumption will result in the trajectories from the origin being 
straight lines if the initial and boundary conditions are constant.  The trajectories 
can easily be calculated from the equation of a straight line. 

x

t
 

 

 ( ) ( )df S
x S t

dS
=  

 
Wave:  A composition (or saturation) change that propagates through the 
system. 
 
 Spreading wave:  A 
wave in which neighboring 
composition (or saturation) 
values become more distant 
upon propagation. 

a a

b b

S S

x x

t1
t2>t1

 

 
a bS S

dx dx
dt dt

⎛ ⎞ ⎛ ⎞<⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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Indifferent waves: A wave 
in which neighboring 
composition (or saturation) 
values maintain the same 
relative position upon 
propagation.   

a

b

S S

x x

t1 t2>t1 a

b 

 
a bS S

dx dx
dt dt

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
Step Wave: An indifferent wave 
in which the compositions change 
discontinuously. 
 
 
 
 
 
Self Sharpening Waves: A wave 
in which neighboring 
compositions (saturations) 
become closer together upon 
propagation. 

a

b

S S

x x

t1 t2>t1 a

b

 
 

 
a bS S

dx dx
dt dt

⎛ ⎞ ⎛ ⎞>⎜ ⎟ ⎜ ⎟
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Shock Wave:  A wave of 
composition (saturation) discontinuity that results from a self sharpening wave. 

aa

bb

SS

xx

t1 t2>t1

 
 

 

aa

bb

S

x

t1 t2
a

b

t3t3t3

 
 
Rule:  Waves originating from the same point (e.g., constant initial and boundary 
conditions) must have nondecreasing velocities in the direction of flow.  This is 
another way of saying that when several waves originate at the same time, the 
slower waves can not be ahead of the faster waves.  If slower waves from 
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compositions close to the initial conditions originate ahead of faster waves, a 
shock will form as the faster waves overtake the slower waves.  This is 
equivalent to the statement that a sharpening wave can not originate from a 
point; it will immediately form a shock. 

Spreading Wave

Sharpening Wave

Shock Wave

Wave does
not exist

S

BC

IC
 

 
 

  ( ) ( )
0dS

x dx df S v S
t dt ds=

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

 
Mass Balance Across Shock 
 
 We saw that sharpening wave 
must result in a shock but that does not 
tell us the velocity of a shock nor the 
composition (saturation) change across 
the shock.  To determine these we 
must consider a mass balance across 
a shock.  This is sometimes called an 
integral mass balance as opposed to 
the differential mass balance derived 
earlier for continuous composition 
(saturation) changes. 

S

X

S2

S1

t t+dt
dx
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f

S

S1

S2

shock

BC ( )2 1Accumulation : A x S Sφ ∆ −  
 
 ( )2 1input output : u A t f f− ∆ −  
 
 A x S u A t fφ ∆ ∆ = ∆ ∆  
 

 D

D S

dx f
dt S

∆

⎛ ⎞ ∆
=⎜ ⎟ ∆⎝ ⎠

 

 
∆f/∆S is the cord slope of the f versus S curve 
between S1 and S2. 
 
 The conservation equation for the shock 
shows the velocity to be equal to the cord slope 
between S1 and S2 but does not in itself 
determine S1 and S2. To determine S1 and S2, 
we must apply the rule that the waves must have 
non-decreasing velocity in the direction of flow.  
The following figure is a solution that is not 
admissible.  This solution is not admissible 
because the velocity of the saturation values 
(slope) between the IC and S1 are less than that 
of the shock and the velocity of the shock (cord 
slope) is less than that of the saturation values 
immediately behind the shock. 

f

S

S2

Not Admissible

IC

shock

S1

BC

 
This solution is admissible in that the velocity in 
nondecreasing in going from the BC to the IC.  
However, it in not unique.  Several values of 
S2 will give admissible solutions.  Suppose that 
the value shown here is a solution.  Also 
suppose that dispersion across the shock 
causes the presence of other values of S 
between S1 and S2.  There are some values of 
S that will have a velocity (slope) greater than 
that of the shock shown here.  These values of 
S will overtake S2 and the shock will go the 
these values of S.  This will continue until there 
is no value of S that has a velocity greater than 
that of the shock to that point.  At this point the 
velocity of the saturation value and that of the 
shock are equal.  On the graphic construction , 
the cord will be tangent to the curve at this 
point.  This is the unique solution in the 

f

S
S1

S2

shock

BC

IC

admissible but not unique
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presence of a small amount of dispersion. 

f

S
S1

S2

shock

BC
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unique 
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  Composition (Saturation) Profile  The 
composition (saturation) profile is the 
composition distribution existing in the system 
at a given time. 

 
 
 
Composition or Flux History:  The 
composition or flux appearing at a given  point 
in the system, e.g., x=1. 
 
Summary of Equations 
 
 The dimensionless velocity that a 
saturation value propagates is given by the 
following equation. 

S

x

t=to

 

f

t

x=1

 

 ( )
0dS

dx df S
dt dS=

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

 
With uniform initial and boundary conditions, the origin of all changes in 
saturation is at x=0 and t=0.  If f(S) depends only on S and not on x or t, then the 
trajectories of constant saturation are straight line determined by integration of 
the above equation from the origin. 
 

 
( )

( )

0

( )
dS

S

dx dfx S t
dt dS
dx f

S t

x S t
dt S

=

∆

⎛ ⎞= =⎜ ⎟
⎝ ⎠

∆⎛ ⎞∆ = =⎜ ⎟ ∆⎝ ⎠
t

 

 
These equations give the trajectory for a given value of S or for the shock.  By 
evaluating these equations for a given value of time these equations give the 
saturation profile. 
 
 The saturation history can be determined by solving the equations for t 
with a specified value of x, e.g. x=1. 
 

 

( )

( )
( )

, 1

, 1

xt S xf
S
xt S xdf S

dS

∆ = =
∆
∆

= =
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The breakthrough time, tBT, is the time at which the fastest  wave reaches 
x=1.0.  The flux history (fractional flow history) can be determined by calculating 
the fractional flow that corresponds to the saturation history. 
 

x

t

x=1.0

t=to

I.C.

B.C.

Summary of Diagrams 
 
 The relationship between the 
diagrams can be illustrated in a 
diagram for the trajectories.  The 
profile is a plot of the saturation at t=to.  
The history at x=1.0 is the saturation 
or fractional flow at x=1.  In this 
illustration, the shock wave is the 
fastest wave.  Ahead of the shock is a 
region of constant state that is the 
same as the initial conditions. 
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